Technological Studies

Intermediate 2 and Higher

Data Booklet

For the use of candidates during coursework and in examinations

Edition: October 1999 Price: £0.50 Publication code: G0894 ISBN: 1 85969 269 9

Published by the Scottish Qualifications Authority Hanover House, 24 Douglas Street, Glasgow G2 7NQ, and Ironmills Road, Dalkeith, Midlothian EH22 1LE

The information in this publication may be reproduced to support SQA qualifications. If it is reproduced for any other purpose then SQA should be clearly acknowledged as the source in the reproduction.

© Scottish Qualifications Authority 1999

Copies are available from the Sales Section at SQA, telephone $0141\mathchar`-242\ 2168$

Contents

	Page
Basic Units	5
Decimal Prefixes	5
Formulae	6
Young's Modulus and Stress	9
Typical Operational Amplifier Circuits	10
Operational Characteristics for Thermistors, Thermocouple and LDR	13
Binary Weighting of Data Lines	16
Symbols for Flow Charts	17
PBASIC Instruction Set	18

Preface

This data booklet is intended for use by candidates in examinations in Technological Studies at Intermediate 2 and Higher. It is recommended that candidates should become familiar with the contents of the data booklet through use in undertaking units of these courses.

It should be noted that the range of data contained in the booklet has been limited to that syllabus content which may be assessed through written examination papers. This range should be supplemented by other resource material as necessary during the course, eg by using data sheets. However, should any additional information (or data not included in this booklet) be required in an examination, such information will be included in the examination paper.

Teachers/lecturers should note that all of the material contained in this booklet is likely to be examined at some time. This excludes the additional PBASIC commands listed on page 20. With regard to tables of information, not every entry in a table will necessarily be involved in examination questions.

From the variety of data offered in this booklet, candidates will be expected to demonstrate the ability to select an appropriate:

item of information; formulae; material property; operational amplifier circuit; PBASIC instruction.

Basic Units

Quantity	Symbol	Unit	Abbreviation
Length	<i>l</i> , L	metre	m
Distance	S, <i>X</i>	metre	m
Time	t	second	S
Velocity	V	metre/second	m/s
Mass	m	kilogram	kg
Force	F	newton	Ν
Work	W	joule	J
Energy	E	joule	J
Power	Р	watt (J/s)	W
Stress	σ	newton/metre ²	N/m^2
Strain	E		
Temperature	T, t	kelvin, celsius	K, °C
Current	Ι	ampere	А
Voltage	V	volt	V
Resistance	R	ohm	Ω
Frequency	f	hertz	Hz

Decimal Prefixes

prefix	symbol	multiplying factor
tera	Т	10^{12}
giga	G	10 ⁹
mega	М	10^{6}
kilo	k	10^3
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	р	10^{-12}

Formulae

Energy and Power

Potential energy	$E_p = mgh$	$g = 9 \cdot 81 \text{ m/s}^2$
Kinetic energy	$E_k = \frac{1}{2}mv^2$	
Strain energy	$E_s = \frac{1}{2}Fx$	
Electrical energy	$E_e = VIt$	
Heat energy	$E_h = Cm \Delta T$	C is specific heat capacity in J/kgK
Work done	W = Fs	
Power	$P = \frac{E}{t}$	
Electrical power	$P = VI = \frac{V^2}{R} = I^2 R$	
Mechanical power	P = Fv	
	$P = 2\pi nT$	Where T is torque in Nm n is number of rev/s
Torque	T = Fr	
Efficiency	$\eta = \frac{E_{out}}{E_{in}} = \frac{P_{out}}{P_{in}}$	
Specific heat capacity of water	$C_w = 4190 \text{ J/kgK}$	

Electrical/Electronic

Ohm's law	V = IR
Resistors in series	$R_t = R_1 + R_2 + R_3 \cdots$
Resistors in parallel	$\frac{1}{R_{t}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} \dots$
for 2 resistors in parallel	$\mathbf{R}_{t} = \frac{\mathbf{R}_{1}\mathbf{R}_{2}}{\left(\mathbf{R}_{1} + \mathbf{R}_{2}\right)}$
Bi-polar transistor gain	$h_{\rm FE} = \frac{I_c}{I_b}$

Structures

Stress	$\sigma = \frac{F}{A}$	A is the cross-sectional area resisting the applied load
Strain	$\in = \frac{\Delta \ell}{\ell}$	
Stress/strain relationship	$E = \frac{\sigma}{\epsilon}$	E is Young's Modulus
Moment of force	M = Fx	<i>x</i> is the perpendicular distance to pivot
Principle of moments	Σ moments = ()

(design factor) safe working load safe working stre	Factor of Safety	_	ultimate load	_	ultimate stress
	(design factor)	_	safe working load	_	safe working stress

Additional Formulae

Area of circle

A =
$$\frac{\pi d^2}{4}$$
 d = Diameter

Circumference of circle $C = \pi d$

Young's Modulus and Stress

	Young's Modulus E	Yield Stress _{o_y}	Ultimate Tensile Stress	Ultimate Compressive Stress
Material	kN/mm ²	N/mm ²	N/mm ²	N/mm ²
Mild steel	196	220	430	430
Stainless steel	190-200	286-500	760-1280	460-540
Low-alloy steels	200-207	500-1980	680-2400	680-2400
Cast iron	120	—	120-160	600-900
Aluminium alloy	70	250	300	300
Soft brass	100	50	80	280
Cast bronze	120	150	300	_
Titanium alloy	110	950	1000	1000
Nickel alloys	130-234	200-1600	400-2000	400-2000
Concrete	_	—	—	60
Concrete (steel reinforced)	45-50	—	—	100
Concrete (post stressed)	—	—	—	100
Plastic, ABS polycarbonate	2.6	55	60	85
Plastic, polypropylene	0.8	19-36	33-36	70
Wood, parallel to grain	9-16	—	55-100	6-16
Wood, perpendicular to grain	0.6-1.0	—	—	2-6
Soda glass	69	3600	—	_
Diamond	1000	50 000	—	_
Gold	82	40	220	_
Ice	9.1	85	—	_

Typical Operational Amplifier Circuits

Voltage Follower

Difference Amplifier

$$A_v = \frac{V_o}{(V_2 - V_1)}$$
 $A_v = \frac{R_f}{R_i}$ $V_o = \frac{R_f}{R_i}(V_2 - V_1)$

Graphs for Thermistors, Thermocouple and LDR

Thermistors

Thermocouple

Typical temperature gradient for type K thermocouple

Light Dependent Resistor (LDR)

Binary Weighting of Data Lines

	7	6	5	4	3	2	1	0	Bits
	2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0	
	128	64	32	16	8	4	2	1	Weighting
]	Deciı	nal		1	Binar	y		
		0			(0000			
		1			()000			
		2			(010			
3 0011									
4 0100									
5 0101									
		6			()110			
		7			()111			
8 1000									
9 1001									
10 1010									
11 1011									
	1				1				
	1	13			1				
	1	141			1				
	_	IJ			1	111			

Symbols for Flow Charts

PBASIC Instruction Set for Use at Intermediate 2 level

INPUT/OUTPUT LOW HIGH	Make pin output and switch it low. Make pin output and switch it high.
TIME PAUSE	Pause for 0–65535 milliseconds.
LOOPING FOR NEXT	Establish a FOR-NEXT loop.
PROGRAM FLOW IF THEN GOTO	Compare and conditionally jump. Jump to address.
SUBROUTINES GOSUB RETURN	Jump to subroutine at address. Return from subroutine.
NUMERICS LET	Allocate variables using mathematical equations.
POWER CONTROL END	Sleep until the power cycles or the computer connects.
MISCELLANEOUS SYMBOL % DIRS	Allocate a symbol for a variable or value. Set pin conditions to input/output.

PBASIC Instruction Set for Use at Higher level

INPUT/OUTPUT LOW HIGH	Make pin output and switch it low. Make pin output and switch it high.
TIME PAUSE	Pause for 0–65535 milliseconds.
LOOPING FOR NEXT	Establish a FOR-NEXT loop.
PROGRAM FLOW IF THEN GOTO	Compare and conditionally jump. Jump to address.
SUBROUTINES GOSUB RETURN	Jump to subroutine at address. Return from subroutine.
NUMERICS LET	Allocate variables using mathematical equations.
SERIAL I/O SERIN SEROUT	Receive serial data via a pin. Transmit serial data via a pin.
EEPROM ACCESS EEPROM READ WRITE	Store data in the EEPROM. Read an EEPROM byte into variable. Write byte into the EEPROM.
POWER CONTROL END	Sleep until the power cycles or the computer connects.
MISCELLANEOUS DEBUG SYMBOL % DIRS	Send variables to computer for viewing. Allocate a symbol for a variable or value. Set pin conditions to input/output.

PBASIC Instruction Set —additional instructions normally outwith the scope of Intermediate 2 and Higher

INPUT/OUTPUT TOGGLE SOUND PULSIN PULSOUT BUTTON	Make pin an output and toggle state. Generate tones on a piezo-sounder. Measure an input pulse. Output a timed pulse. De-bounce a switch input.
INPUT/OUTPUT DIRECTIONS INPUT OUTPUT REVERSE	Make pin an input. Make pin an output. If pin is an output, make it an input, or vice-versa.
PROGRAM FLOW BRANCH	Jump to address specified by offset.
NUMERICS LOOKUP LOOKDOWN RANDOM	Look up stored data in a table. Find target number in a table and store in a variable. Generate a random number.
ANALOG I/O PWM POT	Output analogue voltages using a capacitor and resistor. Measure a potentiometer by charging through a capacitor.
POWER CONTROL NAP SLEEP	Nap for a short period to reduce power consumption. Sleep for 1–65535 seconds.