-SQA-SCOTTISH QUALIFICATIONS AUTHORITY
NATIONAL CERTIFICATE MODULE: UNIT SPECIFICATION

GENERAL INFORMATION

-Module Number- 8110105 -Session- 1995-96
-Superclass- CB

-Title- DEVELOPING SOFTWARE 1

-DESCRIPTION-

GENERAL COMPETENCE FOR UNIT: Appreciating the features of
contemporary software and understanding how software is produced.

OUTCOMES

1. explore the features of existing software;

2. describe the stages in developing new software;

3. investigate contemporary methods of producing software.

CREDIT VALUE: 1 NC Credit

ACCESS STATEMENT: No previous qualifications or experience to access this
unit.

For further information contact: Committee and Administration Unit,, SQA,
Hanover House, 24 Douglas Street, Glasgow G2 7NQ.

Additional copies of this unit may be purchased from SQA (Sales and Despatch
section). At the time of publication, the cost is £1.50 (minimum order £5.00).



Unit No. 8110105 Continuation Session 1995-96

NATIONAL CERTIFICATE MODULE; UNIT SPECIFICATION

STATEMENT OF STANDARDS

UNIT NUMBER: 8110105

UNIT TITLE: DEVELOPING SOFTWARE 1

Acceptable performance in this unit will be the satisfactory achievement of the
standards set out in this part of the specification. All sections of the statement of
standards are mandatory and cannot be altered without reference to SQA.
OUTCOME

1. EXPLORE THE FEATURES OF EXISTING SOFTWARE

PERFORMANCE CRITERIA

@) Exploration is effective in identifying the features of the software.
(b) Use of documentation is efficient and effective.

(c) Identification of the features of each type of program is accurate.

(d) Identification of the characteristics of high quality programs is
accurate.

(e) Identification of the characteristics of high quality documentation is
accurate.

RANGE STATEMENT

Features: user interface; functionality; speed; robustness; documentation
(including on-line help).

Program types: systems; applications (including leisure and business).

EVIDENCE REQUIREMENTS

Evidence of actual performance to show that the candidate can explore software
as detailed in Performance Criteria (a) and (b) for at least three software
products.

Written or oral evidence is needed to show that the candidate can identify the
features as detailed in Performance Criteria (c) to (e) for at least three software
products.



Unit No. 8110105 Continuation Session 1995-96

OUTCOME

2. DESCRIBE THE STAGES IN DEVELOPING NEW SOFTWARE

PERFORMANCE CRITERIA

@) Description includes all stages.
(b) Description of each stage is accurate.

(c) Identification of the sequence of each stage is correct.
(d) Description of the iterative nature of software development is
accurate.

RANGE STATEMENT

Stages: analysis; design; implementation; testing; documentation; review.

EVIDENCE REQUIREMENTS
Written or oral evidence is needed to show the candidate can describe the
stages in developing software as detailed in Performance Criteria (a) to (d).
OUTCOME
3. INVESTIGATE CONTEMPORARY METHODS OF PRODUCING
SOFTWARE
PERFORMANCE CRITERIA
@) Conduct of investigation is efficient and effective.
(b) Description of types of contemporary programming languages is
accurate.
(c) Description of role of members of development team is accurate.
RANGE STATEMENT

Programming languages: procedural; event driven; object orientated; functional.

Roles: project leader; systems analyst; programmer.

EVIDENCE REQUIREMENTS

Evidence of actual performance to show that the candidate can investigate
contemporary means of producing software as detailed in Performance Criterion

@).



Unit No. 8110105 Continuation Session 1995-96

Written or oral evidence of the candidate’s knowledge and understanding of
contemporary means of producing software as detailed in Performance Criteria
(b) and (c).

ASSESSMENT

In order to achieve this unit, candidates are required to present sufficient
evidence that they have met all the performance criteria for each outcome within
the range specified. Details of these requirements are given for each outcome.
The assessment instruments used should follow the general guidance offered by
the SQA assessment model and an integrative approach to assessment is
encouraged. (See references at the end of support notes).

Accurate records should be made of the assessment instruments used showing
how evidence is generated for each outcome and giving marking schemes
and/or checklists, etc. Records of candidates’ achievements should be kept.
These records will be available for external verification.

SPECIAL NEEDS

In certain cases, modified outcomes and range statements can be proposed for
certification. See references at end of support notes.

O Copyright SQA 1995

Please note that this publication may be reproduced in whole or in part for
educational purposes provided that:

@ no profit is derived from the reproduction;
(i) if reproduced in part, the source is acknowledged.



Unit No. 8110105 Continuation Session 1995-96

NATIONAL CERTIFICATE MODULE: UNIT SPECIFICATION

SUPPORT NOTES

UNIT NUMBER: 8110105

UNIT TITLE: DEVELOPING SOFTWARE 1

SUPPORT NOTES: This part of the unit specification is offered as guidance.
None of the sections of the support notes is mandatory.

NOTIONAL DESIGN LENGTH: SQA allocates a notional design length to a unit
on the basis of time estimated for achievement of the stated standards by a
candidate whose starting point is as described in the access statement. The
notional design length for this unit is 40 hours. The use of notional design length
for programme design and timetabling is advisory only.

PURPOSE This module may be taken as a free-standing module in a wide
variety of programmes. It is suitable for candidates undertaking a wide range of
National Certificate awards.

SQA publishes summaries of NC units for easy reference, publicity purposes,
centre handbooks, etc. The summary statement for this unit is as follows

This unit has been designed to serve as a simple introduction to computer
programming for students who are interested in producing computer software or
who wish to appreciate the software development process. Students will explore
the features of existing software (such as games programs and commercial
software) and will be introduced to the stages in producing new software
together with contemporary methods of producing it. This module does not
require students to write computer programs (although students may be asked to
do this as part of the learning process); subsequent modules will focus on
programming.

CONTENT/CONTEXT Corresponding to Outcomes 1-3:

1. The aim of this outcome is to expose students to a wide range of pre-
written software to expose them to good (and bad) examples of computer
programs and associated documentation. It is anticipated that the
majority of students’ time will be spent on this outcome. Centres are
encouraged to provide students with the opportunity to experience a
range of diverse programs. A minimum of three items of software must
be explored. This might include a small utility program (such as a
program to defragment disks), a business application (such as a
spreadsheet program) and leisure software (such as a computer game).
Diversity within a class of software should also be explored. For
example, games software includes adventure games, 3D combat games
and simulations. Students should be



Unit No. 8110105 Continuation Session 1995-96

exposed to as wide a range of software as time permits. This outcome
should prepare students for subsequent outcomes by providing them with
experience of a variety of contemporary software. In particular, the
strengths and weaknesses of each program should be explored. For
example, a specific program might have a poor user interface; another
program might run slowly; another may have poor game play. There is
scope for group discussion of the pros and cons of specific programs. An
alternative approach might involve students in writing personal reviews of
specific programs. Students should also be encouraged to critically
appraise the documentation that comes with the program.

2. This outcome focuses on the software development process. It is not
required that the student gains an in-depth understanding of any one
stage; rather; s/he should be exposed to typical activities. For example,
students should gain an appreciation of the review stage together with an
appreciation of how this is carried out. A crucial point to reinforce is the
iterative nature of the software development cycle. While this outcome is
knowledge-based, it can be made more interesting through the use of
video, case studies and guest lecturers. For example, a local practitioner
could be invited to the centre to talk to students about the projects in
which s/he has been involved. Case studies should relate to failed
software projects as well as successful ones.

3. This outcome provides an opportunity to investigate the methods of
producing software. It focuses on the people involved in the software
development process and the range of tools they have available. Given
the introductory nature of this unit, it is not required that students gain a
detailed knowledge of any specific role or software tool. For example,
lecturer exposition of the types of programming language should be light
but sufficient to reinforce the distinctions between major classes of
programming language. Important instances within a class should also
be introduced such a C and Visual basic. The description of the role of
each member within the development team need not be too detailed; it is
sufficient to outline the major tasks of each person. The importance of
team work should be stressed. This outcome is descriptive and can be
enlivened through the use of video, case studies, guest speakers and a
visit to a software company. For example, there have been various
television programmes on the developments of high profile software
projects. Students should be encouraged to conduct their own research
through reading, questioning and patrticipating in some of the suggested
activities.

APPROACHES TO GENERATING EVIDENCE A candidate-centred, resource-
based learning approach is recommended. During the work of the module,
candidates should have several opportunities to develop their practical skills and
should be assessed at appropriate points. Terminology should be presented in
context throughout the module. Where the candidate is unsuccessful in
achieving an outcome, provision should be made for remediation and re-
assessment.



Unit No. 8110105 Continuation Session 1995-96

The evidence of competence for this module should be generated naturally
during the life of the module. It is recommended that the focus of the module is
Outcome 1 with the other outcomes introduced at appropriate points within the
module. For example, the roles of each person within a project team (Outcome
3) could be introduced when this subject arises naturally in discussing a specific
program as part of Outcome 1.

ASSESSMENT PROCEDURES Centres may use instruments of assessment
which are considered to be most appropriate. Examples of instruments of
assessment which could be used are as follows:

Outcome 1

Assignment requiring the student to explore and evaluate a wide range of
software. This assignment might incorporate the cognitive and practical aspects
of the evidence requirements. For example, s/he may be observed running
software and completing a pro-forma identifying the characteristics of each
program.

Outcome 2

Extended response question requiring the candidate to describe the main stages
involved in the software development process; the extent of response could be
between 500-750 words.

Outcome 3

Assignment involving the candidate in researching the work of software
development teams and the nature of contemporary programming languages
and producing a short summary of their findings. The extent of response could
be between 750-1000 words.

There is an opportunity to integrate the assessment for Outcomes 2 and 3 into a
single assessment activity requiring the candidate to describe the stages, roles
and tools involved in software production.

The required performance evidence for each of the outcomes could be combined
into a single observation checklist which could be completed throughout the life
of the unit.

PROGRESSION This module contributes towards the National Certificate (level
II) Information Technology and is the first in a series of modules entitled
‘Developing Software’. Students may progress to the second level module
entitled ‘Developing Software 2’ which involves writing computer programs.

RECOGNITION Many SQA NC units are recognised for entry/recruitment
purposes. For up-to-date information see the SQA guide ‘Recognised Groupings
of National Certificate Modules’.



Unit No. 8110105 Continuation Session 1995-96

REFERENCES

1. Guide to unit writing.

2. For a fuller discussion on assessment issues, please refer to SQA’s
Guide to Assessment.

3. Procedures for special needs statements are set out in SQA’s guide
‘Students with Special Needs'.

4. Information for centres on SQA’'s operating procedures is contained in
SQA'’s Guide to Procedures.

5. For details of other SQA publications, please consult SQA’s publications
list.

O Copyright SQA 1995

Please note that this publication may be reproduced in whole or in part for
educational purposes provided that:

@ no profit is derived from the reproduction;
(i) if reproduced in part, the source is acknowledged.



