

Advanced Higher Computing Science

Project

Assessment task

This document provides information for teachers and lecturers about the coursework
component of this course in terms of the skills, knowledge and understanding that are
assessed. It must be read in conjunction with the course specification.

Valid from session 2024–25 and until further notice.

The information in this publication may be reproduced in support of SQA qualifications only
on a non-commercial basis. If it is reproduced, SQA must be clearly acknowledged as the
source. If it is to be reproduced for any other purpose, written permission must be
obtained from permissions@sqa.org.uk.

This edition: September 2024 (version 2.0)

© Scottish Qualifications Authority 2014, 2019, 2022, 2023, 2024

mailto:permissions@sqa.org.uk

Contents
Introduction 1

Instructions for teachers and lecturers 2

Marking instructions 5

Instructions for candidates 12

Version 2.0 1

Introduction
This document contains instructions for teachers and lecturers, marking instructions and
instructions for candidates for the Advanced Higher Computing Science project. You must
read it in conjunction with the course specification.

This project has 80 marks out of a total of 135 marks available for the course assessment.

This is one of two course assessment components. The other component is a question
paper.

Version 2.0 2

Instructions for teachers and lecturers
Time
There is no time limit for the project. It is recommended that the project is completed
within 40 hours. This can be broken down for each stage as follows:

♦ Analysis — 5 hours
♦ Design — 10 hours
♦ Implementation — 15 hours
♦ Testing — 8 hours
♦ Evaluation — 2 hours

Candidates should start at an appropriate point in the course.

Supervision, control and authentication
The project is conducted under some supervision and control.

Candidates can complete part of the work outwith the learning and teaching setting,
therefore you must exercise professional responsibility to ensure that evidence submitted
by a candidate is their own work.

You should put in place ways to authenticate candidate evidence, for example:

♦ regular checkpoint or progress meetings with candidates
♦ checklists which record activity and progress

Group work approaches can be helpful to simulate real-life situations, share tasks and
promote team-working skills; however, you can only use these to prepare candidates for
assessment. Group work is not allowed once formal work on assessment has started.

Resources
This is an open-book assessment. Candidates can access any appropriate resources.

Candidates are required to design and code their solution, and should be aware that
extensive use of resources, such as pre-written module libraries, frameworks and software
plug-ins may not allow them to demonstrate these skills and access all marks available.

Reasonable assistance
Candidates must carry out the assessment independently. However, you can provide
reasonable assistance prior to, and during, the formal assessment process.

The term ‘reasonable assistance’ is used to balance the need for support with the need to
avoid giving too much help. If candidates need more than what is thought to be
‘reasonable assistance’, they may not be ready for assessment.

Version 2.0 3

Reasonable assistance must be limited to constructive comment and/or questioning. You
must not adopt a directive role or provide specific advice on how to rephrase, improve
responses or provide model answers. Helping candidates on a one-to-one basis in the
context of something they have already produced, could become support for assessment
and would be going beyond reasonable assistance. For example, you should not prompt
candidates to revisit their initial analysis and design as the project develops, and before
submitting the final evidence to SQA.

You can give advice on a generic basis, such as how to produce a project plan or how to
collate evidence. Where this happens, you should give it to the whole class.

You should advise candidates on their choice of problem, to ensure that it meets the
criteria for the Advanced Higher project and is achievable. The purpose of the project is to
assess the practical skills of the course, so the project marking criteria is mainly focused
on the functionality of the solution. If a project does not meet the criteria, or it relies
heavily on frameworks and software plug-ins to do so, it will not allow candidates to
demonstrate these skills and access all the marks available.

You should work with individual candidates to ensure that their proposed project meets
the criteria of one of the six possible project combinations set out in the ‘Mandatory
requirements’ section. You can use the ‘Choosing a suitable problem — checklist’ to
support this.

Once you have agreed a suitable project with the candidate, they must work
independently, with your input limited to constructive comment and/or questioning.

You can support candidates with the following aspects of their projects:

♦ printing, collating and labelling their evidence, to ensure it is in the format specified

by SQA
♦ ensuring they have all the materials and equipment they need to complete their

project
♦ ensuring they understand the conditions of assessment, and any administrative

arrangements around submitting and storing evidence
♦ technical support

Once projects are completed and submitted, they must not be returned to candidates for
further work.

Research
As candidates implement their solution, their project requirements might lead them to
implement some code that extends beyond the content of the Advanced Higher course.

Where this is the case, candidates would need to develop new skills/knowledge, so a small
number of marks for this are included in the implementation stage.

For some candidates, this could be a distraction and you might advise them to focus on the
Advanced Higher concepts and integration, to ensure they can maximise marks in these
sections.

Version 2.0 4

Evidence
All candidate evidence (whether created manually or electronically) must be submitted to
SQA in paper-based format. There is no need for evidence to be printed single sided or in
colour.

The evidence checklists at the end of this document detail all evidence to be gathered for
each of the possible project combinations. You should encourage candidates to use them
to ensure they submit all evidence to SQA. A template for gathering evidence is also
available on the Advanced Higher Computing Science subject page.

You should advise candidates that evidence, especially code, must be clear and legible.
This is particularly important when pasting screenshots into a document.

Version 2.0 5

Marking instructions
In line with SQA’s normal practice, the following marking instructions for the Advanced
Higher Computing Science project are addressed to the marker. They will also be helpful
for those preparing candidates for course assessment.

Candidates’ evidence is submitted to SQA for external marking.

General marking principles
Always apply these general principles. Use them in conjunction with the detailed marking
instructions, which identify the key features required in candidates’ responses.

a Always use positive marking. This means candidates accumulate marks for the

demonstration of relevant skills, knowledge and understanding; marks are not
deducted for errors or omissions.

b If a candidate response does not seem to be covered by either the principles or
detailed instructions, and you are uncertain how to assess it, you must seek guidance
from your team leader.

c Assess ‘completeness’ of evidence according to each project. Complete evidence:
— meets all requirements
— relates to the problem
— meets the quality and technical accuracy of Advanced Higher

d Award 0 marks where evidence is:
— not provided
— not related to the problem
— not appropriate to Advanced Higher

e Where bands refer to minor, significant, or major errors and/or omissions, these
terms do not indicate the volume required, but the importance of the errors and/or
omissions in the context of the project.

f Select the band that most closely describes the evidence provided. Where a range of
marks is available for a band, you should determine:
— if the evidence is a closer match to the band above, and if so, award the highest

available mark from the range
— if the evidence is a closer match to the band below, and if so, award the lowest

available mark from the range

Version 2.0 6

Detailed marking instructions
Analysis of the problem (10 marks)

Evidence requirements Marks Marking instructions

Description of the problem, including:

♦ an outline of the problem, identifying

Advanced Higher concepts and
integration

♦ any constraints

2 2 marks Complete and detailed description of the problem that meets
 all of the evidence requirements, including integration.

1 mark Description of the problem, that meets some of the evidence
 requirements.

UML use case diagram, showing integration,
and defining:

♦ actors
♦ use cases
♦ relationships

2 2 marks Complete, detailed and integrated use case diagram that
 meets all of the evidence requirements, including integration.

1 mark Use case diagram that meets some of the evidence
 requirements.

Requirements specification, including:

♦ end-user requirements
♦ functional requirements

4 3–4 marks Complete or almost complete and detailed requirements
 specification that meets all end-user and functional requirements
 for a fully-working, integrated solution.

1–2 marks Requirements specification, with some missing information for a
 fully-working, integrated solution.

Project plan for each stage, including:

♦ identified tasks
♦ resources required
♦ estimate of timings

2 2 marks Complete and detailed project plan that meets all of the
 evidence requirements.

1 mark Project plan that meets some of the evidence requirements.

Version 2.0 7

Design of the solution (20 marks)

Evidence requirements Marks Marking instructions

Design of Advanced Higher concepts 6 5–6 marks Complete or almost complete and detailed design.

3–4 marks Partially complete and detailed design, with some errors and/or
 omissions.

1–2 marks Incomplete design, with a number of significant errors and/or
 omissions.

Design of integration 4 3–4 marks Complete or almost complete and detailed design showing
 integration.

1–2 marks Partially complete design.

User-interface design shows inputs,
processes and outputs, and matches the
end-user and functional requirements

5 4–5 marks Complete or almost complete and detailed user-interface design,
 showing validated inputs and outputs, matching the end-user and
 functional requirements, and indicating the underlying processes.

2–3 marks Partially complete user-interface design, with some errors and/or
 omissions.

1 mark Minimal user-interface design.

Overall design matches the requirements
specification

5 4–5 marks Design matches all or almost all of the requirements specification.

2–3 marks Design matches some of the requirements specification.

1 mark Minimal match to the requirements specification.

Version 2.0 8

Implementation (30 marks)

Evidence requirements Marks Marking instructions

Implemented Advanced Higher concepts and
requirements, that match the design

12 11–12 marks Complete or almost complete and fully-working implementation
 that matches the design.

9–10 marks Partially complete and working implementation that closely
 matches the design, but has some minor errors and/or omissions.

7–8 marks Partially complete and working implementation that matches the
 design, with some significant errors and/or omissions.

5–6 marks Partially complete implementation that matches some aspects of
 the design, and has a number of significant errors and/or
 omissions

3–4 marks Incomplete implementation, with limited match to the design due
 to major errors and/or omissions.

1-2 marks Minimal implementation that does not match the design.

Implemented integration, that matches the
design

6 5–6 marks Complete or almost complete and fully-working integration that
 matches the design.

3–4 marks Partially complete and working integration that matches some
 aspects of the design, but with some significant errors and/or
 omissions.

1–2 marks Incomplete implementation, with limited match to the design and
 a number of significant errors and/or omissions.

Version 2.0 9

Implementation (30 marks) (continued)

Evidence requirements Marks Marking instructions

Implemented user interface, that matches
the design

3 3 marks Complete or almost complete and fully-working user interface
 that matches the design.

2 marks Partially complete and working user interface that matches some
 aspects of the design, but with some significant errors and/or
 omissions.

1 mark Incomplete user interface, with limited match to the design and a
 number of significant errors and/or omissions.

Description of new skills and/or knowledge
researched and developed

4 3-4 marks Complete, or almost complete, and detailed description of
 research and application of new skills and/or knowledge, that
 extends beyond what is required for the Advanced Higher course,
 developed during the implementation stage.

1-2 marks Partially complete description of research and application of new
 skills and/or knowledge developed during the implementation
 stage.

Log of ongoing testing, including:

♦ a description of issues resolved
♦ references used to resolve these issues

5 4–5 marks Complete, or almost complete, and detailed log of ongoing
 testing, describing issues resolved, and evidencing solutions and
 references throughout the implementation stage.

2–3 marks Partially complete log of ongoing testing.

1 mark Incomplete log of ongoing testing.

Version 2.0 10

Testing the solution (15 marks)

Evidence requirements Marks Marking instructions

A comprehensive plan for carrying out final
testing of the fully implemented solution,
including:

♦ all requirements
♦ description of tests
♦ persona and test cases

6 5–6 marks Complete and detailed test plan that meets all evidence
 requirements.

3–4 marks Partially complete test plan that meets some evidence
 requirements.

1–2 marks Incomplete test plan that meets minimal evidence requirements.

Evidence of requirements testing 6 5–6 marks Complete evidence of requirements testing that matches the
 test plan.

3-4 marks Partially complete evidence of requirements testing.

1-2 marks Incomplete evidence of requirements testing.

Description of the results of the test cases 3 3 marks Complete and detailed description of the results of the test
 cases that matches the test plan.

2 marks Partially complete description of the results of the test cases.

1 mark Incomplete description of the results of the test cases.

Version 2.0 11

Evaluation of the solution (5 marks)

Evidence requirements Marks Marking instructions

Evaluation of the solution in terms of fitness
for purpose, by discussing:

♦ how closely the solution matches the

requirements specification
♦ the results of testing

3 3 marks Complete and detailed evaluation of the solution’s fitness for
 purpose that meets all of the evidence requirements.

2 marks Partially complete evaluation of the solution that meets some of
 the evidence requirements.

1 mark Incomplete evaluation of the solution that meets minimal
 evidence requirements.

Evaluation of the solution in terms of:

♦ future maintainability
♦ robustness

2 2 marks Complete and detailed evaluation of the solution’s
 future maintainability and robustness.

1 mark Partially complete evaluation of the solution’s
 future maintainability and robustness.

Version 2.0 12

Instructions for candidates
This assessment applies to the project for Advanced Higher Computing Science.

This project has 80 marks out of a total of 135 marks available for the course assessment.

It assesses the following skills, knowledge and understanding:

♦ applying computational thinking to solve a complex computing problem
♦ analysing a complex problem within a computing science context
♦ designing, developing, implementing, testing, and evaluating a digital solution to a

complex problem
♦ demonstrating advanced skills in computer programming
♦ communicating understanding of complex concepts related to computing science,

clearly and concisely, using appropriate terminology

Your teacher or lecturer will let you know if there are any specific conditions for doing this
assessment.

For this project, you have to identify a computing science problem, agreed with your
teacher or lecturer. You need to develop a solution to the problem, from analysis through
to evaluation. You gain marks for the following stages of the project:

♦ analysis of the problem (10 marks)
♦ design of the solution (20 marks)
♦ implementation (30 marks)
♦ testing the solution (15 marks)
♦ evaluation of the solution (5 marks)

In this document, there is guidance on:

♦ how much support and assistance your teacher or lecturer can give you
♦ what evidence you need to collect
♦ choosing a suitable problem for your project
♦ what you need to do at each stage of the project

There are also evidence checklists that you should use to ensure that you are submitting all
the evidence required for the project you have completed. A template for gathering
evidence is also available on the Advanced Higher Computing Science subject page.

Version 2.0 13

Support and guidance from your teacher or lecturer
You must complete this project independently; however, your teacher or lecturer can
provide you with guidance to help develop your thinking as you progress. This could be:

♦ general support in class on broad areas, such as project planning
♦ constructive questioning with you on an individual basis
♦ constructive comments to help you find a solution

Your teacher or lecturer cannot tell you specifically how to proceed with your project,
how to rephrase or improve responses, or provide you with model answers.

Evidence to be gathered
You need to gather evidence for each stage of the project. Evidence can include program
listings, screenshots, web page source files, data files or similar, as appropriate. You must
print your evidence and submit it to SQA for marking. You can use the Advanced Higher
Computing Science Project Template to present your evidence. You can find this on the
Advanced Higher Computing Science subject page.

You should ensure that you:

♦ include all your evidence, by completing the evidence checklist appropriate for your

project
♦ clearly label your evidence
♦ annotate code to highlight Advanced Higher concepts and integration
♦ print code in a format that is legible (suggested minimum font size 11pt. If the

programming environment does not have a printing facility, consider copying and
pasting into a word processor rather than screenshots)

♦ print screenshots so that all content is legible
♦ submit your evidence in a logical order, with appropriate headings for each stage (you

may want to include a contents page and page numbers)

The template is designed to make it easier for you to do this.

You will probably work on your project for several weeks and during that time, you will
produce many types of evidence.

Each stage of the project provides more detail on the evidence required. For the design
and implementation stages, the evidence will depend on the problem you are solving — the
evidence checklists detail the specific evidence required for design and implementation for
each project combination.

Although there is no page limit or maximum word count for your evidence, marks are
awarded for the quality of your work, not the quantity.

Version 2.0 14

Choosing a suitable problem
You must choose a suitable problem for your project. You may already have an idea, or you
can explore ideas with other candidates and/or your teacher or lecturer. You can also get
ideas from online resources, industry news, television, local business partners or STEM
ambassadors. A successful project is likely to be about something you are interested in.

It is possible to complete some projects within your centre, but you could consider a
project that requires collaboration with a university, college or local industry. Your
teacher or lecturer can advise you about this.

Your chosen problem must allow you to meet the criteria below.

It is essential that you are clear on what Advanced Higher concepts your project includes
and how it integrates with the other areas of the course. The diagrams on the following
pages show the minimum mandatory requirements, and will help you.

You should focus on the functionality of your solution, rather than its appearance. Your
project must have no more than:
♦ 6 end-user requirements
♦ 24 functional requirements

If you spend too much time learning to use frameworks and software plug-ins, this could
distract you from ensuring your project meets all the criteria. The project itself does not
have to be overly complex. If you remain focused on the essential criteria, you can access
all the marks.

You must discuss your project idea with your teacher or lecturer. This ensures that it
meets the project criteria set out below and is achievable within the constraints of time,
expertise and resources available.

Project criteria
Your project must:

♦ be based on one of the following areas of the course:

— software design and development
— database design and development
— web design and development

♦ include two concepts from this area of the course
♦ integrate with one of the other two areas of the course
♦ validate all inputs

You should review your proposed project against the mandatory requirements on the
following pages. Examples of suitable projects for each possible combination are on the
following pages. You can choose or adapt one of these examples, or use an idea of your
own, however, remember to discuss your project idea with your teacher or lecturer to
ensure it meets the criteria and is achievable.

Version 2.0 15

Mandatory requirements

Software design and development (SDD) project

The mandatory requirements for an SDD project are shown below, followed by an example
of each project.

Concept 1
Object-oriented programming with an
array of objects

or
Concept 1

Procedural programming with a 2D array
or an array of records

with

Concept 2
One standard algorithm (using the data structure from above), from the following:

♦ binary search
♦ insertion sort
♦ bubble sort

Your SDD project should integrate with either:

Database design and development
Create a database with at least one
table

and

open and/or close the database
connection to execute an SQL query
and (if required), format the results

or

Web design and development
Web user interface to receive input
and/or display formatted output

Version 2.0 16

Example
A computer game requires a variety of
regular polygons to appear in the top,
left, right and bottom of the screen.

Players respond to each shape by
pressing keys corresponding to the
correct number of sides and the
position of the shapes.

The reaction time of players is
calculated and stored.
Analyse the problem, create a design
and then implement a procedural
program that:

♦ reads previous players’ times from a

database table, into an array of
records

♦ prepares a 2D array storing
randomised shapes and co-ordinates

♦ displays each shape in the 2D array
and calculates the total time taken
by each player to press the correct
keys

♦ adds each player’s time to the array
of records , and bubble sorts by
time

♦ displays the top 10 times
♦ inserts the players’ times into a

table

Test the program with a variety of
sample data.

Evaluate the solution.

Example
The results of a survey are stored in a
file.

A simple web page, with embedded
program code, is required to allow a
user to search for data within the file
and display the results of the search.

Analyse the problem, create a design
and then implement object-oriented
code that:

♦ reads the survey data from a file and

stores it within an array of objects
♦ uses a binary search to find user

input within the array
♦ outputs the search results within the

web page, formatted using HTML
table elements and Inline CSS

Test the program with a variety of
survey data and search scenarios.

Evaluate the solution.

Version 2.0 17

Database design and development (DDD) project

The mandatory requirements for a DDD project are shown below, followed by an example
of each project.

Concept 1
Create a database with a minimum of four related tables, using SQL

with

Concept 2
SQL queries (using the tables above), that incorporate any two of the following:

♦ subquery
♦ one logical operator (NOT, BETWEEN, ANY, EXISTS)
♦ query across at least three tables

Your DDD project should integrate with either:

Software design and development
Programming interface to receive input
and/or display formatted output

or

Web design and development
Web user interface to receive input
and/or display formatted output

Version 2.0 18

Example
A relational database is needed to
store personal details, meter readings
and previous bills of electricity
customers.

Analyse the problem, design and
implement a suitable database using
only SQL statements.

Design and implement additional SQL
statements to maintain the database,
for example to:

♦ insert, update and remove

customers
♦ generate bills
♦ update electricity costs

Design and implement a small program
to search for a customer, and insert a
new meter reading for that customer.

Test the solution with sample data.

Evaluate the solution.

Example
A relational database is needed to store
the personal details and health data (for
example steps and average heart rate)
of members of a gym.

Analyse the problem, design and
implement a suitable database using
only SQL statements.

Design and implement additional SQL
statements to maintain the database,
for example to:

♦ insert, update and remove members
♦ create statistical output for

members

Design and implement a simple web
page to allow members to input their
step count and average heart rate.

Test the solution with sample data.

Evaluate the solution.

Version 2.0 19

Web design and development (WDD) project

The mandatory requirements for a WDD project are shown below, followed by an example
of each project.

Concept 1
Complete website that includes:

♦ form elements (action, method, and name)
♦ external CSS
♦ multiple layouts using a media query
♦ use of session variables

with

Concept 2
Server-side processing (PHP) used to:

♦ assign variables
♦ process form data

Your WDD project should integrate with either:

Database design and development
Create a database with at least one
table

and

open or close the database connection
to execute an SQL query and (if
required), format the results

or

Software design and development
Embedded programming using one
Advanced Higher level data structure or
standard algorithm

Version 2.0 20

Example
Members of a swimming club need to be
able to register for the club’s annual
swimming competition by completing an
HTML form on a website.

Analyse the problem, design and
implement a website for the swimming
club.
Design and implement a single-table
database, along with the required PHP
code to validate and store the form
details.

Test the solution with sample data.

Evaluate the solution.

Example
Online revision quizzes are needed to
prepare learner drivers for their theory
test.

Analyse the problem, design, and
implement a website for the quizzes
that stores the quiz questions and
answers, within a 2D array.

When a user submits a quiz answer, a
function is called to check the answer
and display a result.

Design and implement the required code
to store and check users’ answers.

Test the solution with sample quiz data.

Evaluate the solution.

Version 2.0 21

Choosing a suitable problem — checklist

Use the following checklist to help you decide on the idea for your project.

a Will the solution to your problem involve implementing two

Advanced Higher concepts from one area of the course?

 These are:

 1 ___

 2 ___

yes no

b Will the solution to your problem involve integration with one

of the other two areas of the course?

 Integrates with _________________________________

yes no

c Will the solution to your problem validate all inputs?

yes no

d Will you be able to complete the project in the time available?

yes no

e Can you overcome all potential barriers to carrying out your

project, for example permissions, logistics, and access to
necessary hardware and software?

yes no

f Does your teacher or lecturer agree with your answers above?

yes no

Your answers to questions a–c will help you outline your problem in the analysis stage.

If you answer ‘no’ to any of the above questions, you will need to reconsider your
project idea.

Version 2.0 22

Tips for candidates
1 You must be sure from the outset which of the six project combinations you are

following. Being clear on how you will use the Advanced Higher concepts and
integration within your solution will help you focus on these essential elements as you
develop your solution.

2 You should view your requirements specification as a ‘golden thread’ that is vital to

every stage of the project. Consider numbering the requirements to make it easier to
cross reference them when designing, implementing, testing, and evaluating.

3 Follow the guidance and use the headings as a template for organising your evidence.

Well organised evidence can help ensure you have provided evidence for all stages. You
can also highlight or label evidence such as code and diagrams to identify the Advanced
Higher concepts and integration, and to cross reference with the requirements
specification.

4 Remember that markers need to see evidence of the Advanced Higher concepts that

you have coded. This is especially important if you are using a framework or software
plug-in that generates lots of code. Highlight and annotate your own work to show you
have implemented the concepts being assessed. If there are many pages of code,
consider extracting the Advanced Higher concepts into the main body of your evidence
and provide the full code as an appendix.

5 Many marks are available for the design and implementation of Advanced Higher

concepts and integration. It is important that you focus on this. While a small number
of marks are available for demonstrating new skills/knowledge, don't let this (or
making your user interface look nice) distract you from the functionality, as this carries
most of the marks.

6 Use the Advanced Higher Computing Science Project Template to help you present your

evidence. It is designed to follow the tips above.

7 Use the evidence checklists at the end of this document to ensure that you submit the
appropriate evidence, especially for design and implementation, as this will vary
depending on the project you complete.

Version 2.0 23

Guidance for each stage
Developing a solution
As you work through your project, you must follow these five stages of development:

♦ analysis
♦ design
♦ implementation
♦ testing
♦ evaluation

You can follow these stages using an iterative approach or using an agile methodology —
where you break the project down into several small iterations of design, implement and
test.

Whatever approach you use, each stage of development should continue from the previous
stage. For example, you should create your design from the requirements identified at the
analysis stage; you should implement a solution from the design you created; and so on.

The following pages detail the requirements for each stage. You gain marks based on the
evidence you submit for each of these stages.

If you need to go back and revisit a previous stage (for example to add detail to analysis or
improve a design), you should ensure that you submit only the final version as evidence.

Version 2.0 24

Analysis of the problem 10 marks
Before you begin designing and developing a solution, you must analyse the problem that
you are going to solve, to ensure that you fully understand every aspect of it. This stage of
your project should take between 5 and 6 hours.

Description of the problem (2 marks)
Describe your problem. Your description should include:

♦ an outline of the problem, identifying the Advanced Higher concepts and integration

(see the examples earlier in this document)
♦ any constraints you identify

UML use case diagram (2 marks)
Draw a UML use case diagram for your problem. Your diagram should define the following:

♦ actors
♦ use cases
♦ relationships

Your diagram should include the integration you intend to implement, for example a web
project connecting to a database.

Requirements specification (4 marks)
Produce a requirements specification. Your requirements specification should list a
maximum of:

♦ 6 end-user requirements
♦ 24 functional requirements

Your requirements specification should consider all input validation that is required for
your problem.

Project plan (2 marks)
Create a project plan for the four remaining stages of your project.

Your project plan should include:

♦ the tasks you complete in each stage
♦ any resources you need to implement your solution
♦ an estimate of how long each stage and tasks will take

Version 2.0 25

Guidance for producing a project plan
Your list of tasks for each stage could include:

♦ user-interface design
♦ implementation of input validation
♦ ongoing testing

Resources can include access to development tools and end users. Some of these could be
available at any time, while others may only be available at certain times. You need to
plan to ensure that your project is not held up waiting for resources.

Your timings should allow for holidays, or other events that affect how much time you can
spend on your project.

You should review and update your project plan as you work through each stage. You must
submit your final version of the plan as evidence.

Version 2.0 26

Design of the solution 20 marks
Now, design your solution based on your requirements specification. This stage of your
project should take between 10 and 12 hours.

Project design (15 marks)
Design your solution, using appropriate design methodologies or techniques.

Your design should meet the end-user and functional requirements identified at the
analysis stage, and include the integrated part of the project.

User-interface design (5 marks)
Design the user interface for your solution using appropriate design methodologies or
techniques.

Your user-interface design should include annotated wireframes that show all inputs (with
notes on validation), underlying processes and outputs. It should also meet the end-user
and functional requirements identified at the analysis stage.

Design methodologies
The problem you are solving will determine the design methodologies you use. The
following may be suitable:

Software design and development
♦ use structure diagrams or pseudocode to show:

— top level design with data flow
— refinements of Advanced Higher concepts, functional requirements and input

validation
♦ use a UML class diagram — including class names, properties and data types, methods

(including constructor) and arguments, and (where appropriate), public and/or private,
inheritance to show class structure(s)

♦ design structure and data type(s) of array of records or 2D arrays
♦ use wireframes to show user-interface design

Database design and development
♦ entity relationship diagram — including (where appropriate) entity name, entity type

(strong, weak), attributes, relationship participation (mandatory, optional),
relationship name and cardinality

♦ data dictionary — using SQL attribute types and indicating input validation
♦ query designs

Web design and development
♦ use structure diagram or pseudocode to show Advanced Higher concepts, functional

requirements and input validation
♦ site navigation structure showing use of session variables if appropriate
♦ use wireframes to show:

— user-interface design
— effect of media query

Version 2.0 27

Implementation 30 marks
Now implement your solution.

Implementation (21 marks)
Implement your solution, including the user interface, ensuring it matches your completed
design. This stage of your project should take between 15 and 18 hours.

The problem you are solving will determine the evidence you provide of your implemented
solution. The following may be suitable:

Software design and development
♦ program code
♦ screenshots of program user interface

Database design and development
♦ SQL code
♦ screenshots to show

— that the structure of the implemented table(s) matches the design
— any initial value stored in table(s)

Web design and development
♦ PHP code
♦ HTML code and page content
♦ CSS declarations
♦ screenshots of pages to show

— user interface
— effect of media queries

Remember you must provide evidence of the integrated part of your solution.

Research and development of new skills and/or knowledge (4 marks)
When implementing your functional requirements, you may need to make use of some
coding that extends beyond the content of the Advanced Higher course. If this is the case,
you will need to carry out some research.

Describe:

♦ any new skills and/or knowledge that you researched
♦ why those new skills and/or knowledge were necessary
♦ how you applied these new skills and/or knowledge to your project

You should reference the resources you used to research and develop these new skills
and/or knowledge.

Version 2.0 28

Log of ongoing testing (5 marks)
As you implement your solution, you will encounter errors or problems that you need to
solve before you can continue. Take notes of errors, solutions and any reference materials
you use, for example websites, forums, textbooks or learning resources. You will need to
refer to these notes to produce evidence of ongoing testing

Produce a log of the ongoing testing you carry out during implementation. Your log should
include:

♦ what you are testing
♦ descriptions of issues you encounter during testing
♦ descriptions of how you resolve these issues
♦ lists of references you use to resolve each issue

You could present your log as a table, using the above bullet points as column headings.

Version 2.0 29

Testing the solution 15 marks
Once you have fully implemented your design, you must carry out final testing on your
solution. This testing should be systematic and comprehensive, and based on a test plan.

This stage of your project should take between 7 and 9 hours.

Final test plan (6 marks)
Create a plan of how you will carry out final testing of your fully implemented solution.

Your plan should be comprehensive, to ensure that your solution meets all the
requirements identified at the analysis stage. It should include:

♦ all end-user and functional requirements
♦ a description of the tests you will carry out
♦ a description of a persona, with a list of test cases that will be used to test the solution

with an end user

Note: the end-user can be another candidate, a teacher or a lecturer, who adopts the
persona and carries out the test cases.

Requirements testing (6 marks)
Test your solution and provide evidence of each end-user and functional requirement test
identified in your plan.

Evidence should show inputs (including errors if any are generated) and outputs to show
that all functional requirements are working correctly.

The problem you are solving will determine the evidence you require. The following may
be suitable:

♦ screenshots showing inputs and any errors generated
♦ screenshots showing successful implementation of Advanced Higher algorithms
♦ screenshots showing successful implementation of SQL queries
♦ screenshots showing successful implementation of media queries

Testing with persona and test cases (3 marks)
Test your solution using the persona and test cases identified in your plan.

Describe the results of each test case — this could be in the form of a short report or a
table.

Version 2.0 30

Evaluation of the solution 5 marks
You must now evaluate your solution. This stage of your project should take between 2 and
3 hours.

Evaluation report (5 marks)
Produce a report to evaluate your solution. This should include:

♦ the fitness for purpose of your solution, discussing:

— how closely your solution matches all requirements stated in your requirements
specification

— the results of your testing
♦ the future maintainability and robustness of your solution

Version 2.0 31

Evidence checklist for SDD projects
Analysis
Description of the problem that includes: Complete
♦ outline of the problem:

— SDD Advanced Higher (AH) concepts

— integration with DDD/WDD

♦ constraints

UML use case diagram that defines: Complete
♦ actors

♦ use cases

♦ relationships

Requirements specification that includes: Complete
♦ end-user requirements

♦ functional requirements for SDD

♦ functional requirements for integration with DDD/WDD

♦ validation of inputs

Project plan for each stage that includes: Complete
♦ tasks for each stage

♦ resources required for implementation

♦ estimate of timings

Design
Design of Advanced Higher concepts that includes: Complete
♦ UML class diagram (object-oriented only)

♦ Data structure design (2-D array and/or array of records)

♦ structure diagrams or pseudocode showing:

— top-level design with data flow

— refinement of AH algorithm(s) making use of AH data structure

— input validation

Design of integration with either: Complete
♦ DDD, including:

— connection to database

— data dictionary

— entity-relationship diagram (if two or more tables)

— design of query/queries

OR

♦ WDD, showing:

— connection with website

— how program will send data to web code for display

— how program will receive input from web code for processing

Version 2.0 32

User interface design that includes: Complete
♦ wireframe designs of:

— input forms showing input validation

— buttons and menu options showing underlying processes

— output screens

Implementation
Implementation of Advanced Higher concepts that includes: Complete

♦ evidence of implemented code showing:

— AH algorithm(s)

— data structure (2-D array and/or array of records)

— classes (object-oriented only)

— all end-user requirements met

— all functional requirements met

— input validation

♦ screenshot evidence to show before and after execution of AH algorithm

Implementation of integration with either: Complete

♦ DDD, including evidence of:

— database structure

— initial values in tables

— connection code

— code for query/queries

— results of SELECT query/queries

— tables updated by INSERT, DELETE, UPDATE query/queries

OR

♦ WDD, including evidence of:

— connection code

— working integration with web code

Implementation of user interface, including: Complete
♦ screenshot evidence of:

— input screens

— output showing results of processing

— gameplay (if appropriate)

Description of new skills and/or knowledge, including a description of: Complete

♦ each new skill and/or knowledge

♦ research required to acquire new skills and/or knowledge

♦ the use made of new skills and/or knowledge in implementation stage

Version 2.0 33

Log of ongoing testing that includes: Complete
♦ description of all tests performed during implementation

♦ description of details of non-trivial errors or problems encountered,
including:

— description of each issue

— references used to resolve each issue (if appropriate)

Testing
Comprehensive test plan that indicates: Complete

♦ testing of:

— all functional requirements

— all end-user requirements

— input validation

— integration

♦ the planned tests to be used

♦ characteristics of personas

♦ test cases to be completed by the personas

Requirements testing Complete
♦ Screenshot evidence of each test listed in the plan.

Results of the test cases Complete
♦ Description of results of testing with the persona and test cases.

Evaluation
Fitness for purpose Complete

♦ Description of how closely the solution matches each of the functional
and end-user requirements stated in the ‘requirements specification’.

♦ Discussion of the results of testing.

Evaluation Complete
♦ Description of maintainability of the solution that refers to ease of

future maintenance.

♦ Description of robustness of the solution.

Version 2.0 34

Evidence checklist for DDD projects
Analysis
Description of the problem that includes: Complete
♦ outline of the problem:

— DDD Advanced Higher (AH) concepts

— integration with SDD/WDD

♦ constraints

UML use case diagram that defines: Complete
♦ actors

♦ use cases

♦ relationships

Requirements specification that includes: Complete
♦ end-user requirements

♦ functional requirements for DDD

♦ functional requirements for integration with SDD/WDD

♦ validation of inputs

Project plan for each stage that includes: Complete
♦ tasks for each stage

♦ resources required for implementation

♦ estimate of timings

Design
Design of Advanced Higher concepts that includes: Complete

♦ data dictionary with appropriate SQL data types and input validation

♦ entity-relationship diagram

♦ design of queries

Design of integration with either: Complete

♦ SDD, including pseudocode or structure diagram showing:

— connection with database

— execution of queries

— entry of data from the user

— formatting of output

OR

♦ WDD, including pseudocode or structure diagram showing:

— connection with webpage/site

— execution of queries

— entry of data from the user

— formatting of output

Version 2.0 35

User interface design that includes: Complete
♦ wireframe designs of:

— input forms showing input validation

— buttons and menu options showing underlying processes

— output screens

Implementation
Implementation of Advanced Higher concepts that includes: Complete

♦ evidence of implemented SQL code for:

— implemented tables

— all queries

♦ evidence of implemented code for:

— all functional requirements

— all end-user requirements

— input validation

♦ screenshot evidence showing:

— initial values shown in tables

— tables updated by INSERT, DELETE, UPDATE queries

— results from SELECT queries

Implementation of integration with either: Complete

♦ SDD, including evidence of implemented code showing:

— connection with database

— execution of queries

— input received from user and/or formatting of output

OR

♦ WDD, including evidence of implemented code:

— connection with database

— execution of queries

— input received from user and/or formatting of output

Implementation of user interface, including: Complete
♦ screenshot evidence of:

— input screens

— output showing results of processing

Description of new skills and/or knowledge, including a description of: Complete
♦ each new skill and/or knowledge

♦ research required to acquire new skills and/or knowledge

♦ the use made of new skills and/or knowledge in implementation stage

Version 2.0 36

Log of ongoing testing that includes: Complete

♦ description of all tests performed during implementation

♦ description of details of non-trivial errors or problems encountered,
including:

— description of each issue

— references used to resolve each issue (if appropriate)

Testing
Comprehensive test plan that indicates: Complete

♦ testing of:

— all functional requirements

— all end-user requirements

— input validation

— integration

♦ the planned tests to be used

♦ characteristics of personas

♦ test cases to be completed by the personas

Requirements testing Complete
♦ Screenshot evidence of each test listed in the plan.

Results of the test cases Complete
♦ Description of results of testing with the persona and test cases.

Evaluation
Fitness for purpose Complete

♦ Description of how closely the solution matches each of the functional
and end-user requirements stated in the ‘requirements specification’.

♦ Discussion of the results of testing.

Evaluation Complete
♦ Description of maintainability of the solution that refers to ease of

future maintenance.

♦ Description of robustness of the solution.

Version 2.0 37

Evidence checklist for WDD projects
Analysis
Description of the problem that includes: Complete
♦ outline of the problem:

— WDD Advanced Higher (AH) concepts

— integration with DDD/SDD

♦ constraints

UML use case diagram that defines: Complete
♦ actors

♦ use cases

♦ relationships

Requirements specification that includes: Complete
♦ end-user requirements

♦ functional requirements for WDD

♦ functional requirements for integration with DDD/SDD

♦ validation of inputs

Project plan for each stage that includes: Complete
♦ tasks for each stage

♦ resources required for implementation

♦ estimate of timings

Design
Design of Advanced Higher concepts that includes: Complete

♦ pseudocode showing:

— processing of form data

— assignment of variables

♦ site navigation structure

♦ use of session variables (in pseudocode or site navigation structure)

♦ media queries

♦ input validation

Design of integration with either: Complete

♦ DDD, including:

— data dictionary
— entity-relationship diagram (if two or more tables)
— connection to database
— design of queries

OR

♦ SDD, including:

— connection with program
— AH data structure or algorithm

Version 2.0 38

User interface design that includes: Complete
Wireframe designs of:
♦ input forms showing input validation

♦ buttons and menu options showing underlying processes

♦ output screens

Implementation

Implementation of Advanced Higher concepts that includes: Complete

♦ evidence of implemented:

— HTML code for forms

— code for form processing and assignment of variables

— external CSS file with link in HTML/PHP pages

— media queries in CSS file

— session variables

— functional requirements

— end-user requirements

— input validation

Implementation of integration with either: Complete

♦ DDD, including evidence of:

— database structure

— initial values in tables

— connection code

— code for query/queries

— results of SELECT query/queries

— tables updated by INSERT, DELETE, UPDATE query/queries

OR

♦ SDD, including evidence of implemented code showing:

— connection with program

— AH data structure or algorithm

— input received from user and/or format output

Implementation of user interface, including: Complete

♦ screenshot evidence of:

— input screens

— output showing results of processing

Description of new skills and/or knowledge, including a description of: Complete
♦ each new skill and/or knowledge

♦ research required to acquire new skills and/or knowledge

♦ the use made of new skills and/or knowledge in implementation stage

Version 2.0 39

Testing
Comprehensive test plan that indicates: Complete

♦ testing of:

— all functional requirements

— all end-user requirements

— input validation

— integration

♦ the planned tests to be used

♦ characteristics of personas

♦ test cases to be completed by the personas

Requirements testing Complete
♦ Screenshot evidence of each test listed in the plan.

Results of the test cases Complete
♦ Description of results of testing with the persona and test cases.

Evaluation
Fitness for purpose Complete

♦ Description of how closely the solution matches each of the functional
and end-user requirements stated in the ‘requirements specification’.

♦ Discussion of the results of testing.

Evaluation Complete
♦ Description of maintainability of the solution that refers to ease of

future maintenance.

♦ Description of robustness of the solution.

Log of ongoing testing that includes: Complete
♦ description of all tests performed during implementation

♦ description of details of non-trivial errors or problems encountered,
including:

— description of each issue

— references used to resolve each issue (if appropriate)

Version 2.0 40

Administrative information

Published: September 2024 (version 2.0)

History of changes

Version Description of change Date

1.2 Updated the guidance for teachers, lecturers and candidates on:

♦ selecting a suitable project
♦ using frameworks and software plug-ins
♦ developing new skills/knowledge
♦ gathering evidence

Updated the diagrams to clarify that these are mandatory
requirements and to define ‘Advanced Higher concepts’.

Included more detailed evidence requirements for design,
implementation and testing, incorporating the requirement for
input validation.

Removed the requirement for scope and boundaries in analysis.

Added in ‘Tips for candidates’ section.

September
2022

1.3 ‘Candidate checklist’ replaced with detailed ‘Evidence
checklists’ for each type of project.

September
2023

2.0 Updated guidance for teachers, lecturers and candidates to:

♦ add suggested timings
♦ introduce a maximum limit of end-user and functional

requirements
♦ refer to checklist and template as appropriate
♦ change total mark from 160 to 135 (pages 1 and 11)
♦ replace reference to parallel arrays with arrays of records in

example of SDD/DDD project (page 15)

September
2024

Note: you are advised to check SQA’s website to ensure you are using the most up-to-date
version of this document.

Version 2.0 41

Security and confidentiality
This document can be used by SQA approved centres for the assessment of National
Courses and not for any other purpose.

© Scottish Qualifications Authority 2014, 2019, 2022, 2023, 2024

	Advanced Higher Computing Science
	Project
	Assessment task
	Valid from session 2024–25 and until further notice.
	Database design and development
	Web design and development
	Example
	Example
	Software design and development
	Web design and development
	Example
	Example
	Concept 1
	Concept 2
	Database design and development
	Software design and development
	Example
	Example

	Introduction 1
	Instructions for teachers and lecturers 2
	Marking instructions 5
	Instructions for candidates 12
	Introduction
	Instructions for teachers and lecturers
	Time
	Supervision, control and authentication
	Resources
	Reasonable assistance
	Research
	Evidence

	Marking instructions
	General marking principles
	Detailed marking instructions
	Analysis of the problem (10 marks)
	Design of the solution (20 marks)
	Implementation (30 marks)
	Implementation (30 marks) (continued)
	Testing the solution (15 marks)
	Evaluation of the solution (5 marks)

	Instructions for candidates
	Support and guidance from your teacher or lecturer
	Evidence to be gathered
	Choosing a suitable problem
	Project criteria
	Mandatory requirements
	Software design and development (SDD) project
	Database design and development (DDD) project
	Web design and development (WDD) project

	Choosing a suitable problem — checklist

	Tips for candidates
	Guidance for each stage
	Developing a solution
	Analysis of the problem 10 marks
	Description of the problem (2 marks)
	UML use case diagram (2 marks)
	Requirements specification (4 marks)
	Project plan (2 marks)
	Guidance for producing a project plan

	Design of the solution 20 marks
	Project design (15 marks)
	User-interface design (5 marks)
	Design methodologies
	Software design and development
	Database design and development
	Web design and development

	Implementation 30 marks
	Implementation (21 marks)
	Software design and development
	Database design and development
	Web design and development

	Research and development of new skills and/or knowledge (4 marks)
	Log of ongoing testing (5 marks)

	Testing the solution 15 marks
	Final test plan (6 marks)
	Requirements testing (6 marks)
	Testing with persona and test cases (3 marks)

	Evaluation of the solution 5 marks
	Evaluation report (5 marks)

	Evidence checklist for SDD projects
	Analysis
	Design
	Implementation
	Testing
	Evaluation

	Evidence checklist for DDD projects
	Analysis
	Design
	Implementation
	Testing
	Evaluation

	Evidence checklist for WDD projects
	Analysis
	Design
	Implementation
	Testing
	Evaluation

	Administrative information
	Security and confidentiality

