
HA4G 35: Software Development: Implementation and Testing (SCQF level 8) 1

Higher National Unit specification

General information

Unit title: Software Development: Implementation and Testing

(SCQF level 8)

Unit code: HA4G 35

Superclass: CB

Publication date: January 2016

Source: Scottish Qualifications Authority

Version: 01

Unit purpose

The purpose of this Unit is to introduce learners to the use of object-oriented programming
techniques, to extend their skills in using algorithms and data structures in program
development, and apply a wider range of testing techniques.

Object-oriented programming techniques will include the use of objects and classes and
algorithms, encapsulation, inheritance and polymorphism.

Data structures will cover lists, queues, stacks tables and trees, and algorithms will include
sorting and searching. Testing will cover Static Testing (verification), Dynamic Testing
(validation), Unit Testing, Integration Testing and User Acceptance Testing.

Learners will develop their programming skills by designing, implementing and testing
practical solutions using an appropriate software development environment.

On completion of the Unit, learners will have gained knowledge and experience of
implementing and testing moderately-complex programs using an object-oriented
programming language.

Learners who have completed this Unit could progress to the Unit Software Development:
Implementation and Testing (SCQF level 9). Learners who have completed both this Unit
and Software Development: Analysis and Design (SCQF level 8) could progress to the Unit
Software Development: Project (SCQF level 8).

HA4G 35: Software Development: Implementation and Testing (SCQF level 8) 2

Higher National Unit specification: General information (cont)

Unit title: Software Development: Implementation and Testing
(SCQF level 8)

Outcomes

On successful completion of the Unit the learner will be able to:

1 Describe programming and testing methods.
2 Apply object-oriented programming concepts.
3 Construct programs that make use of algorithms and data structures.
4 Test programs using a range of approaches.

Credit points and level

2 Higher National Unit credits at SCQF level 8: (16 SCQF credit points at SCQF level 8)

Recommended entry to the Unit

Entry to this Unit is at the discretion of the centre. However, it would be beneficial if learners
had prior knowledge/skills in computer programming.

It would be beneficial if learners had some prior experience of the basic concepts of software
development, and analysis and design tools that could be evidenced by having achieved the
Higher National Unit HA4F 34 Software Development: Implementation and Testing
(SCQF level 7) or equivalent.

Core Skills

Opportunities to develop aspects of Core Skills are highlighted in the Support Notes for this
Unit specification.

There is no automatic certification of Core Skills or Core Skill components in this Unit.

Context for delivery

If this Unit is delivered as part of a Group Award, it is recommended that it should be taught
and assessed within the subject area of the Group Award to which it contributes.

The Assessment Support Pack (ASP) for this Unit provides assessment and marking
guidelines that exemplify the national standard for achievement. It is a valid, reliable and
practicable assessment. Centres wishing to develop their own assessments should refer to
the ASP to ensure a comparable standard. A list of existing ASPs is available to download
from SQA’s website (http://www.sqa.org.uk/sqa/46233.2769.html).

http://www.sqa.org.uk/sqa/46233.2769.html

HA4G 35: Software Development: Implementation and Testing (SCQF level 8) 3

Higher National Unit specification: General information (cont)

Unit title: Software Development: Implementation and Testing
(SCQF level 8)

Equality and inclusion

This Unit specification has been designed to ensure that there are no unnecessary barriers
to learning or assessment. The individual needs of learners should be taken into account
when planning learning experiences, selecting assessment methods or considering
alternative evidence.

Further advice can be found on our website www.sqa.org.uk/assessmentarrangements.

http://www.sqa.org.uk/assessmentarrangements

HA4G 35: Software Development: Implementation and Testing (SCQF level 8) 4

Higher National Unit specification: Statement of standards

Unit title: Software Development: Implementation and Testing
(SCQF level 8)

Acceptable performance in this Unit will be the satisfactory achievement of the standards set
out in this part of the Unit specification. All sections of the statement of standards are
mandatory and cannot be altered without reference to SQA.

Where evidence for Outcomes is assessed on a sample basis, the whole of the content listed
in the Knowledge and/or Skills section must be taught and available for assessment.
Learners should not know in advance the items on which they will be assessed and different
items should be sampled on each assessment occasion.

Outcome 1

Describe programming and testing methods.

Knowledge and/or Skills

 Describe structured programming constructs

 Describe simple data types, data structures and algorithms

 Describe basic software testing methods

 Describe contemporary programming paradigms

Outcome 2

Apply object-oriented programming concepts.

Knowledge and/or Skills

 Write programs constructed from objects and classes

 Hide internal workings of objects by encapsulation

 Create new classes by inheriting properties and methods from existing classes

 Create a single interface to entities of different types by means of polymorphism

Outcome 3

Construct programs that make use of algorithms and data structures.

Knowledge and/or Skills

 Select or construct algorithms to traverse, sort and search data structures

 Create data structures

 Carry out operations on data structures

HA4G 35: Software Development: Implementation and Testing (SCQF level 8) 5

Higher National Unit specification: Statement of standards (cont)

Unit title: Software Development: Implementation and Testing
(SCQF level 8)

Outcome 4

Test programs using a range of approaches.

Knowledge and/or Skills

 Carry out static testing (verification)

 Carry out dynamic testing (validation)

 Carry out Unit testing

 Carry out integration testing

 Check that software meets specified requirements prior to User Acceptance Testing

Evidence Requirements for this Unit

Learners will need to provide evidence to demonstrate their Knowledge and/or Skills across
all Outcomes. The Evidence Requirements for this Unit will take two forms:

1 evidence of cognitive competence (for Outcomes 1, 2, 3 and 4).
2 evidence of practical competence (for Outcomes 2, 3 and 4).

Please note that Outcome 1 covers only cognitive competences while Outcomes 2, 3 and 4
cover both cognitive and practical competencies. Each of the Knowledge and/or Skills items
listed in Outcomes 2, 3 and 4 is practical in nature but has an underlying cognitive
competence that needs to be evidenced.

The evidence of cognitive competence will be the definitions, descriptions and explanations
required for Outcomes 1, 2, 3 and 4. The evidence of practical competence will be the
application of object-oriented programming techniques, algorithms, data structures and
testing approaches to specific problems required for Outcomes 2, 3 and 4.

The evidence of practical competence (Outcomes 2, 3 and 4) may relate to one or more
problems. Candidates should make use of object-oriented programming techniques,
algorithms, data structures and testing approaches. The evidence would consist of program
code, evidence of successful execution and test documentation. All of the Knowledge and
Skills statements for Outcomes 2, 3 and 4 must be evidenced.

Evidence is normally required for all of the Knowledge and Skills in every Outcome. This
means that every Knowledge and Skills statement must be evidenced. However, sampling
may be used in a specific circumstance (see below).

The amount of evidence should be the minimum consistent with the defined Knowledge and
Skills. For Outcome 2, it is sufficient for the candidate to develop one program using object
— oriented techniques. For Outcome 3, it is sufficient to develop one program that makes
use of data structures and algorithms. For Outcome 4 it is sufficient to use a range of testing
approaches with one program. The same program could be used for all three Outcomes or a
different program could be used for each Outcome.

HA4G 35: Software Development: Implementation and Testing (SCQF level 8) 6

Higher National Unit specification: Statement of standards (cont)

Unit title: Software Development: Implementation and Testing
(SCQF level 8)

Evidence may be wholly or partly produced under controlled conditions. When evidence is
produced in uncontrolled or loosely controlled conditions it must be authenticated. The Guide
to Assessment provides further advice on methods of authentication.

There are no time limitations on the production of evidence (but see exception below). The
evidence may be produced at any time during the life of the Unit. Candidates may use
reference materials when undertaking assessment (but see exception below).

Sampling is permissible when the evidence of cognitive competence for Outcomes 1, 2, 3
and 4 is produced by a test of knowledge and understanding. The test may take any form
(including oral) but must be supervised, unseen and timed. The contents of the test must
sample broadly and proportionately from the contents of Outcomes 1, 2, 3 and 4 with
approximately equal weighting for each Outcome. Access to reference material is not
appropriate for this type of assessment.

The Guidelines on Approaches to Assessment (see the Support Notes section of this
specification) provides specific examples of instruments of assessment.

HA4G 35: Software Development: Implementation and Testing (SCQF level 8) 7

Higher National Unit Support Notes

Unit title: Software Development: Implementation and Testing

(SCQF level 8)

Unit Support Notes are offered as guidance and are not mandatory.

While the exact time allocated to this Unit is at the discretion of the centre, the notional
design length is 80 hours.

Guidance on the content and context for this Unit

Useful information about many of the topics covered in this Unit can be found by searching
online sources such as Wikipedia.

Outcome 1

Learners should be able to describe the purpose of a range of programming constructs
(expressions, sequence, selection, iteration, pre-defined functions and file handling), data
types (string, numeric (integer and real) and Boolean variables), data structures (1-D arrays
and records (including arrays of records) and sequential files (open, create, read, write,
close)). and algorithms (input validation, linear search, find minimum and maximum and
count occurrences).

They should be able to describe software testing methodologies including testing methods
(static and dynamic, white and black box) testing levels (Unit, integration, component
testing), test plan (exceptional, extreme and normal data), debugging techniques (dry runs,
walkthroughs, breakpoints, trace tables) and types of errors (syntax, execution, logic).

Learners should know how to develop programs by selecting and using a combination of
appropriate constructs, data types, data structures and algorithms. They should also know
how to use subprograms and parameter passing.

Learners should also know how to test digital solutions including checking the use of
meaningful identifiers and indentation, providing internal commentary, Unit and integration,
testing, using own test data and test plan (exceptional, extreme and normal data).

Learners should know that a programming paradigm is a fundamental style of computer
programming. Major paradigms include procedural, event-driven and object-oriented. The
capabilities of programming languages are defined by their supported programming
paradigms. Some programming languages are designed to follow only one paradigm, while
others support multiple paradigms.

kttp://wikipedia.com/

HA4G 35: Software Development: Implementation and Testing (SCQF level 8) 8

Higher National Unit Support Notes (cont)

Unit title: Software Development: Implementation and Testing

(SCQF level 8)

Outcome 2

Learners should know that object-oriented programming (OOP) is based on the concept of
‘objects’, which are data structures that contain data, in the form of fields (often known as
attributes) and code, in the form of procedures (often known as methods). An object's
procedures can access and often modify the data fields of the object with which they are
associated. Object-oriented programs are designed by constructing them from objects that
interact with one another. Most popular object-oriented languages are class-based, meaning
that objects are instances of classes, which typically also determines their type. Major object-
oriented languages include Python, C++, Delphi, Java and Ruby.

If a class prevents calling code from accessing internal object data and forces access
through methods only, this is known as encapsulation. Some languages (eg Java) let
classes enforce access restrictions explicitly, buy using the private and public keywords. In
other languages (eg Python) this is enforced only by convention (for example, naming
‘private’ methods starting with an underscore). Encapsulation prevents external code from
being concerned with the internal workings of an object and encourages programmers to put
all the code that handles a certain set of data in the same class.

Languages that support classes nearly always support inheritance. This allows classes to
be arranged in a hierarchy that represents ‘is-a-type-of’ relationships. For example, class
Employee might inherit from class Person. All the data and methods available to the parent
class also appear in the child class with the same names. This technique allows easy re-use
of the same procedures and data definitions and mirrors real-world relationships in an
intuitive way. Classes and subclasses are similar to sets and subsets in mathematical logic.

In object-oriented programming languages, polymorphism is the provision of a single
interface to entities of different types. A polymorphic type is one whose operations can also
be applied to values of some other type, or types. There are several different kinds of
polymorphism:

Ad hoc polymorphism: when a function denotes different implementations depending on a
limited range of individually specified types and combinations. Ad hoc polymorphism is
supported in many languages using function overloading.

Parametric polymorphism: when code is written without mention of any specific type and
thus can be used transparently with any number of new types. This is often known as
generics or generic programming.

Subtyping (also called subtype polymorphism or inclusion polymorphism): when a name
denotes instances of many different classes related by some common superclass. This is
often simply referred to as polymorphism.

HA4G 35: Software Development: Implementation and Testing (SCQF level 8) 9

Higher National Unit Support Notes (cont)

Unit title: Software Development: Implementation and Testing

(SCQF level 8)

Outcome 3

Learners should know the range of data structures including lists, queues, stacks, tables
and trees, commonly used within software development environments and be aware of both
static (array) and dynamic (pointer) implementations. They should be introduced to both
linear and circular data structures, single and double linked lists, binary trees hash tables.

Operations on data structures should include the creation and deletion of nodes, traversal,
sorting, searching and merging.

Learners should be aware of the importance of algorithm complexity and be familiar with
big O notation. They should know that linear O(n) algorithms are preferable to exponential
O (n^2) algorithms when operating on large data sets.

You should typically aim for linear O(n) algorithms rather than, say exponential O (n^2).
Searching algorithms should cover linear, binary and hash table searching techniques to
illustrate how the efficiency of searches can be dependent on the underlying data structure.

Sorting algorithms should cover an appropriate range (eg contrast bubble and selection
sorts with the merge and quick sorts) to illustrate how the time efficiency can be improved at
the expense of increased space complexity.

Outcome 4

Learners should be able to use the following approaches to testing:

Static Testing (verification): testing software manually, possibly using a set of tools. This
starts early in the life cycle during the verification process. It does not need a computer as the
testing is done without executing the program, eg reviewing, walk through, inspection, etc.

Dynamic Testing (validation): a method of assessing the feasibility of a software program
by giving input and examining output (I/O). This requires that the code be compiled and run.
Types of dynamic testing include Unit testing, integration testing and acceptance testing.

Unit Testing: a process in which the smallest testable parts of an application, called Units,
are individually and independently scrutinised for proper operation. Unit testing is often
automated but it can also be done manually.

Integration Testing: tests integration or interfaces between components, interactions to
different parts of the system such as an operating system, file system and hardware or
interfaces between systems. It is carried out after integrating different components together.

User Acceptance Testing (UAT): is the last phase of the software testing process. During
this phase, actual software users test the software to make sure it can handle required tasks
in real-world scenarios, according to specifications. UAT is also known as beta testing,
application testing or end user testing. While software developers would not normally carry
out UAT they should check that the software meets the requirements of the specification
prior to handover.

HA4G 35: Software Development: Implementation and Testing (SCQF level 8) 10

Higher National Unit Support Notes (cont)

Unit title: Software Development: Implementation and Testing

(SCQF level 8)

Guidance on approaches to delivery of this Unit

This Unit is a component of the PDA Software Development (SCQF) level 8. It should be
delivered after, or in parallel with the Unit Software Development: Analysis and Design
(SCQF level 8). Both of the Units should be completed before delivery of the Unit Software
Development: Project (level 8).

The Outcomes may be delivered in the order in which they are written. They have been
written with a learning sequence in mind.

The actual distribution of time between Outcomes is at the discretion of the centre. However,
one possible approach is to distribute the available time as follows:

Outcome 1: 20 hours
Outcome 2: 20 hours
Outcome 3: 20 hours
Outcome 4: 20 hours

It is anticipated that the required concepts will be introduced by the teacher and reinforced by
appropriate examples.

There is significant scope in this Unit to illustrate concepts and skills with case studies of
implementation and testing. The majority of time in this Unit will be spent on the practical
application of the theoretical aspects of the Unit.

Throughout this Unit, learner activities should relate to their vocational interests.

Guidance on approaches to assessment of this Unit

Evidence can be generated using different types of assessment. The following are
suggestions only. There may be other methods that would be more suitable to learners.

A traditional approach to assessment would involve an end of Unit test of the knowledge and
understanding (Outcomes 1, 2, 3 and 4) and a practical assessment of practical abilities
(Outcomes 2, 3 and 4).

The end of Unit test would sample from the knowledge and understanding contained in
Outcomes 1, 2, 3 and 4. The test could consist of selected response or constructed response
questions. A selected response test could comprise a number of multiple-choice questions
(MCQs) or multiple-response questions (MRQs), and would be marked and assessed
traditionally. For example, the test could comprise 40 multiple-choice questions, each of

which could have four options (AD), distributed equally across all the Outcomes, with an
appropriate pass mark. This test would be taken, sight-unseen, in controlled and timed
conditions without reference to teaching materials. A suitable duration could be 60 minutes.
Given the level of this Unit (SCQF level 8), the test would comprise questions spanning a
range of cognitive skills (including higher level ones involving analysis and synthesis).

HA4G 35: Software Development: Implementation and Testing (SCQF level 8) 11

Higher National Unit Support Notes (cont)

Unit title: Software Development: Implementation and Testing

(SCQF level 8)

Practical assessment (Outcomes 2, 3 and 4) could involve the practical application of the
skills taught in each Outcome. A single exercise could be used to cover all three Outcomes
or a separate exercise may be used for each Outcome. The exercise(s) could be assessed
holistically, without a marking scheme and not assigned a specific score, and given a simple
“pass/fail” grade. All of the Knowledge and Skills would be evidenced in this assessment.
There would be no time limitations (beyond the practicality of completing the Unit within the
scheduled timetable) for this assessment.

A more contemporary approach to assessment could use a web log to record learning
throughout the life of the Unit. If this approach is taken, then sampling would not be
appropriate. The blog would contain evidence for all Knowledge and Skills statements. The
blog would record, on a daily or weekly basis, the learning that has occurred. It would contain
textual definitions, descriptions and explanations as required by the Knowledge and Skills
statements in the Outcomes (all Outcomes), including hyperlinks and embedded multimedia
(audio, graphic or video).

The blog could encompass all Outcomes, including Outcome 2, 3 and 4 (which are practical).
This could be done by the blog demonstrating how implementation and testing techniques
could be applied to one or more problems. Given that the blog would, most likely, be
completed at various times and locations throughout the life of the Unit, some form of
authentication would be necessary. There would be no time limitation on the completion of
the blog since it would be done on an on-going basis throughout the life of the Unit.

Centres are reminded that prior verification of centre-devised assessments would help to
ensure that the national standard is being met. Where learners experience a range of
assessment methods, this helps them to develop different skills that should be transferable to
work or further and higher education.

Opportunities for e-assessment

E-assessment may be appropriate for some assessments in this Unit. By e-assessment we
mean assessment which is supported by Information and Communication Technology (ICT),
such as e-testing or the use of e-portfolios or social software. Centres which wish to use
e-assessment must ensure that the national standard is applied to all learner evidence and
that conditions of assessment as specified in the Evidence Requirements are met,
regardless of the mode of gathering evidence. The most up-to-date guidance on the use of
e-assessment to support SQA’s qualifications is available at
www.sqa.org.uk/e-assessment.

Opportunities for developing Core and other essential skills

There is no automatic certification of Core Skills or Core Skill components in this Unit. The
Unit provides opportunities for developing Computational Thinking skills.

http://www.sqa.org.uk/e-assessment

HA4G 35: Software Development: Implementation and Testing (SCQF level 8) 12

History of changes to Unit

Version Description of change Date

© Scottish Qualifications Authority 2016

This publication may be reproduced in whole or in part for educational purposes provided
that no profit is derived from reproduction and that, if reproduced in part, the source is
acknowledged.

Additional copies of this Unit specification can be purchased from the Scottish Qualifications
Authority. Please contact the Business Development and Customer Support team, telephone
0303 333 0330.

HA4G 35: Software Development: Implementation and Testing (SCQF level 8) 13

General information for learners

Unit title: Software Development: Implementation and Testing
(SCQF level 8)

This section will help you decide whether this is the Unit for you by explaining what the Unit
is about, what you should know or be able to do before you start, what you will need to do
during the Unit and opportunities for further learning and employment.

The purpose of this Unit is to introduce you to the use of object-oriented programming
techniques, to extend your skills in using algorithms and data structures in program
development and let you apply a wider range of testing techniques.

Object-oriented programming techniques will include the use of objects and classes and
algorithms, encapsulation, inheritance and polymorphism.

Data structures will cover lists, queues, stacks tables and trees, and algorithms will include
sorting and searching. Testing will cover Static Testing (verification), Dynamic Testing
(validation), Unit Testing, Integration Testing and User Acceptance Testing.

You will develop your programming skills by designing, implementing and testing practical
solutions using an appropriate software development environment.

You may be assessed in various ways, including multiple-choice question relating to the
theoretical knowledge covered in the Unit, and practical exercises applying the
implementation and testing skills learned.

On completion of the Unit, you will have gained knowledge and experience of implementing
and testing moderately-complex programs written in an object-oriented programming
language. You could progress to the Unit Software Development: Implementation and
Testing (SCQF level 9). If you have completed both this Unit and Software Development:
Analysis and Design (SCQF level 8), you could progress to Software Development: Project
(SCQF level 8).

