
HA4G 35: Software Development: Implementation and Testing (SCQF level 9) 1

Higher National Unit specification

General information

Unit title: Software Development: Implementation and Testing

(SCQF level 9)

Unit code: HA4H 36

Superclass: CB

Publication date: January 2016

Source: Scottish Qualifications Authority

Version: 01

Unit purpose

The purpose of this Unit is to introduce learners to the planning of software development
projects, the use of libraries and Application Programming Interfaces (APIs) in software
development and the use of code repositories.

Project planning will be carried out in line with the Agile project management process. APIs
will be used to interface with major platforms. Libraries covered will include standard and
add-on libraries for the relevant platform. Version control will be accomplished by the use of
code repositories.

Learners will develop their programming skills by planning, designing, implementing and
testing practical solutions using an appropriate software development environment.

On completion of the Unit, learners will have gained knowledge and experience of
implementing complex programs using an object-oriented programming language and
making use of APIs, libraries and code repositories.

Learners who have completed both this Unit and Software Development: Analysis and
Design (SCQF level 9) could progress to the Unit Software Development: Project
(SCQF level 9).

Outcomes

On successful completion of the Unit the learner will be able to:

1 Describe object-oriented programming techniques and approaches to software testing.
2 Develop and modify programs that make use of APIs, frameworks and libraries.
3 Maintain version control by the use of code repositories.
4 Manage the software testing process.

HA4G 35: Software Development: Implementation and Testing (SCQF level 9) 2

Higher National Unit Specification: General information (cont)

Unit title: Software Development: Implementation and Testing
(SCQF level 9)

Credit points and level

2 Higher National Unit credits at SCQF level 9: (16 SCQF credit points at SCQF level 9)

Recommended entry to the Unit

Entry to this Unit is at the discretion of the centre. However, it would be beneficial if learners
had prior knowledge and skills in computer programming.

It would be beneficial if learners had some prior experience of software development, and
analysis and design tools that could be evidenced by having achieved the Higher National
Unit HA4G 35 Software Development: Implementation and Testing (SCQF level 8) or
equivalent.

Core Skills

Opportunities to develop aspects of Core Skills are highlighted in the Support Notes for this
Unit specification.

There is no automatic certification of Core Skills or Core Skill components in this Unit.

Context for delivery

If this Unit is delivered as part of a Group Award, it is recommended that it should be taught
and assessed within the subject area of the Group Award to which it contributes.

The Assessment Support Pack (ASP) for this Unit provides assessment and marking
guidelines that exemplify the national standard for achievement. It is a valid, reliable and
practicable assessment. Centres wishing to develop their own assessments should refer to
the ASP to ensure a comparable standard. A list of existing ASPs is available to download
from SQA’s website (http://www.sqa.org.uk/sqa/46233.2769.html).

Equality and inclusion

This Unit specification has been designed to ensure that there are no unnecessary barriers
to learning or assessment. The individual needs of learners should be taken into account
when planning learning experiences, selecting assessment methods or considering
alternative evidence.

Further advice can be found on our website www.sqa.org.uk/assessmentarrangements.

http://www.sqa.org.uk/sqa/46233.2769.html
http://www.sqa.org.uk/assessmentarrangements

HA4G 35: Software Development: Implementation and Testing (SCQF level 9) 3

Higher National Unit specification: Statement of standards

Unit title: Software Development: Implementation and Testing
(SCQF level 9)

Acceptable performance in this Unit will be the satisfactory achievement of the standards set
out in this part of the Unit specification. All sections of the statement of standards are
mandatory and cannot be altered without reference to SQA.

Where evidence for Outcomes is assessed on a sample basis, the whole of the content listed
in the Knowledge and/or Skills section must be taught and available for assessment.
Learners should not know in advance the items on which they will be assessed and different
items should be sampled on each assessment occasion.

Outcome 1

Describe object-oriented programming techniques and approaches to software testing.

Knowledge and/or Skills

 Describe object-oriented programming concepts

 Describe APIs, frameworks and libraries

 Describe the differences between object-oriented and traditional approaches to software
development

 Describe algorithms and data structures

 Describe approaches to software testing

 Describe the use of input validation to ensure data security

Outcome 2

Develop and modify programs that make use of APIs, frameworks and libraries.

Knowledge and/or Skills

 Develop programs using APIs

 Develop programs using frameworks

 Develop programs using libraries

 Modify programs that make use of APIs, frameworks or libraries

Outcome 3

Maintain version control by the use of code repositories.

Knowledge and/or Skills

 Store source code in code repositories

 Use version control systems to record changes

 Use hosting facilities to host repositories

HA4G 35: Software Development: Implementation and Testing (SCQF level 9) 4

Higher National Unit specification: Statement of standards (cont)

Unit title: Software Development: Implementation and Testing
(SCQF level 9)

Outcome 4

Manage the software testing process.

Knowledge and/or Skills

 Produce test plans, estimates and strategies

 Monitor and control the testing process

 Improve testing by the use of configuration management

 Apply risk analysis and risk management techniques to testing

Evidence Requirements for this Unit

Learners will need to provide evidence to demonstrate their Knowledge and/or Skills across
all Outcomes. The Evidence Requirements for this Unit will take two forms:

1 evidence of cognitive competence (for Outcomes 1, 2, 3 and 4).
2 evidence of practical competence (for Outcomes 2, 3 and 4).

Please note that Outcome 1 covers only cognitive competences while Outcomes 2, 3 and 4
cover both cognitive and practical competencies. Each of the Knowledge and/or Skills items
listed in Outcomes 2, 3 and 4 is practical in nature but has an underlying cognitive
competence that needs to be evidenced.

The evidence of cognitive competence will be the definitions, descriptions and explanations
required for Outcome 1. The evidence of practical competence will be the application of
planning and programming skills to specific problems required for Outcomes 2, 3 and 4.

The evidence of practical competence (Outcomes 2, 3 and 4) may relate to one or more
problems. Candidates should apply planning, programming and testing techniques. The
evidence would consist of a project plan, program code and evidence of successful
execution and test documentation. All of the Knowledge and Skills statements for Outcomes
2, 3 and 4 must be evidenced.

Evidence is normally required for all of the Knowledge and Skills in every Outcome. This
means that every Knowledge and Skills statement must be evidenced. However, sampling
may be used in a specific circumstance (see below).

The amount of evidence should be the minimum consistent with the defined Knowledge and
Skills. For Outcome 2, it is sufficient to develop at least one program that makes use of
APIs, Frameworks and Libraries. For Outcome 3, it is sufficient to maintain version control for
at least one software project. For Outcome 4, it is sufficient for the candidate to manage the
software testing process for at least one software project. At this level, the programs should
be complex in terms of their functionality, algorithms and data structures.

Evidence may be wholly or partly produced under controlled conditions. When evidence is
produced in uncontrolled or loosely controlled conditions it must be authenticated. The Guide
to Assessment provides further advice on methods of authentication.

HA4G 35: Software Development: Implementation and Testing (SCQF level 9) 5

Higher National Unit specification: Statement of standards (cont)

Unit title: Software Development: Implementation and Testing
(SCQF level 9)

There are no time limitations on the production of evidence (but see exception below). The
evidence may be produced at any time during the life of the Unit. Candidates may use
reference materials when undertaking assessment (but see exception below).

Sampling is permissible when the evidence of cognitive competence for Outcomes 1, 2, 3
and 4 is produced by a test of knowledge and understanding. The test may take any form
(including oral) but must be supervised, unseen and timed. The contents of the test must
sample broadly and proportionately from the contents of Outcomes 1, 2, 3 and 4 with
approximately equal weighting for each Outcome. Access to reference material is not
appropriate for this type of assessment.

The Guidelines on Approaches to Assessment (see the Support Notes section of this
specification) provides specific examples of instruments of assessment.

HA4G 35: Software Development: Implementation and Testing (SCQF level 9) 6

Higher National Unit Support Notes

Unit title: Software Development: Implementation and Testing

(SCQF level 9)

Unit Support Notes are offered as guidance and are not mandatory.

While the exact time allocated to this Unit is at the discretion of the centre, the notional
design length is 80 hours.

Guidance on the content and context for this Unit

Outcome 1

Learners should know how to develop programs by selecting and using a combination of
appropriate constructs, data types, data structures and algorithms. They should also know
how to use subprograms and parameter passing.

They should be able to describe software testing methodologies including testing methods
(static and dynamic, white and black box) testing levels (Unit, integration, component, system
testing), test plan (exceptional, extreme and normal data), debugging techniques (dry runs,
walkthroughs, breakpoints, trace tables) and types of errors (syntax, execution, logic).

Learners should also know how to test digital solutions including meaningful identifiers,
indentation, providing internal commentary, Unit, integration, component and system testing,
using own test data and test plan (exceptional, extreme and normal data). They should be
aware that input validation should be used to ensure that only correct data is accepted and to
prevent the injection of malicious code.

Outcome 2

Program development time can be reduced significantly by making use of pre-existing code
provided by APIs, frameworks and libraries.

A Library consists of code fragments that can be called from a program, to help do things
more quickly/easily. For example, a Bitmap Processing library could provide code for loading
and manipulating bitmap images, saving programmers having to write that code themselves.
A Framework is a big library that provides many services (rather than only one focussed
ability as most libraries do). For example.NET is an application framework — it provides of
the services needed to write a vast range of applications — so one ‘library’ provides support
for almost everything required. A framework often supplies a base on which programmers
can build their own code, rather than building an application that consumes library code.

An API (Application Programming Interface) is the functions/methods in a library that you can
call upon to do things for you — it the interface to the library.

HA4G 35: Software Development: Implementation and Testing (SCQF level 9) 7

Higher National Unit Support Notes (cont)

Unit title: Software Development: Implementation and Testing

(SCQF level 9)

Outcome 3

A code repository is a file archive where source code for software and web pages can be
kept, publicly or privately. Code repositories are often used by open-source projects and
other multi-developer projects. They help developers submit changes to code in an
organised manner. Code repositories often support version control, bug tracking, release
management, mailing lists, and wiki-based documentation.

Version control is the management of changes to documents, computer programs, large web
sites, and other collections of information. Changes are normally identified by a number or
letter code, known as the ‘revision number’ or ‘revision level’. Each revision is associated
with a timestamp and details of the person making the change. Revisions can be compared,
restored, and with some types of files, merged. Version Control Systems (VCS) are widely
used in software development, where a team of people may change the same files.

Version control systems often run as stand-alone applications, but they are also embedded
in various types of code repositories. Version control provides the ability to revert a document
to a previous revision, track edits, correct mistakes and defend against malicious changes.

Learners should be aware that programs often require to be modified in order to meet
changing requirements or to correct newly-discovered bugs.

Code repository hosting systems vary widely in the facilities provided. A comprehensive
comparison can be found at:

https://en.wikipedia.org/wiki/Comparison_of_source_code_hosting_facilities

and another at:

https://blog.profitbricks.com/top-source-code-repository-hosts/

GitHub is one well-known Web-based Git repository hosting service. It offers all of the
distributed revision control and source code management (SCM) functionality of Git as well
as adding its own features. Unlike Git, which is strictly a command-line tool, GitHub provides
a Web-based graphical interface and desktop as well as mobile integration.

It also provides access control and several collaboration features such as bug tracking,
feature requests, task management, and wikis for every project.

GitHub offers a Student Developer Pack which offers students free access to popular
development tools and services: https://education.github.com/pack.

https://en.wikipedia.org/wiki/Comparison_of_source_code_hosting_facilities
https://blog.profitbricks.com/top-source-code-repository-hosts/
https://education.github.com/pack

HA4G 35: Software Development: Implementation and Testing (SCQF level 9) 8

Higher National Unit Support Notes (cont)

Unit title: Software Development: Implementation and Testing

(SCQF level 9)

Outcome 4

Learners should be aware of the fundamentals of test planning and estimation. They should
know the reasons for writing test plans and be able to explain how test plans relate to
projects, test levels, test targets and test execution. They should know the factors that affect
the effort involved in testing, including test strategies and how they affect testing. They
should be able to explain how metrics, expertise and negotiation are used for estimating and
be familiar with the terms entry criteria, exit criteria, exploratory testing, test approach, test
level, test plan, test procedure and test strategy.

Learners should be able to explain the essentials of test progress monitoring and control.
They should know the common metrics that are captured, logged and used for monitoring
and be able to analyse, interpret and explain test metrics. They should be familiar with test
status reports, test summary reports and test logs and should know the terms defect density,
failure rate, test control, test coverage, test monitoring and test report.

Learners should understand the basics of configuration management as they relate to testing
and should be able to explain how good configuration management assists testing. They
should know the terms configuration management and version control.

Learners should be able to explain how risk and testing relate and should know that a risk is
a potential undesirable or negative Outcome. They should be aware of likelihood and impact
as factors determining the importance of a risk. They should be able to describe the use of
risk analysis and risk management for testing and test planning and should know the terms
product risk, project risk, risk and risk-based testing.

Guidance on approaches to delivery of this Unit

This Unit is a component of the PDA Software Development (SCQF) level 9. It should be
delivered after, or in parallel with the Unit Software Development: Analysis and Design
(SCQF level 9). Both of these Units should be completed before delivery of the Unit Software
Development: Project (level 9).

The Outcomes may be delivered in the order in which they are written. They have been
written with a learning sequence in mind.

The actual distribution of time between Outcomes is at the discretion of the centre. However,
one possible approach is to distribute the available time as follows:

Outcome 1: 20 hours
Outcome 2: 20 hours
Outcome 3: 20 hours
Outcome 4: 20 hours

It is anticipated that the required concepts will be introduced by the teacher and reinforced by
appropriate examples.

HA4G 35: Software Development: Implementation and Testing (SCQF level 9) 9

Higher National Unit Support Notes (cont)

Unit title: Software Development: Implementation and Testing

(SCQF level 9)

There is significant scope in this Unit to illustrate concepts and skills with case studies of
implementation and testing. The majority of time in this Unit will be spent on the practical
application of the theoretical aspects of the Unit.

Throughout this Unit, learner activities should relate to their vocational interests.

Guidance on approaches to assessment of this Unit

Evidence can be generated using different types of assessment. The following are
suggestions only. There may be other methods that would be more suitable to learners.

A traditional approach to assessment would involve an end of Unit test of the knowledge and
understanding (Outcomes 1, 2, 3 and 4) and a practical assessment of practical abilities
(Outcomes 2, 3 and 4).

The end of Unit test would sample from the knowledge and understanding contained in
Outcomes 1, 2, 3 and 4. The test could consist of selected response or constructed response
questions. A selected response test could comprise a number of multiple-choice questions
(MCQs) or multiple-response questions (MRQs), and would be marked and assessed
traditionally. For example, the test could comprise 40 multiple-choice questions, each of

which could have four options (AD), distributed equally across all the Outcomes, with an
appropriate pass mark. This test would be taken, sight-unseen, in controlled and timed
conditions without reference to teaching materials. A suitable duration could be 60 minutes.
Given the level of this Unit (SCQF level 9), the test would comprise questions spanning a
range of cognitive skills (including higher level ones involving analysis and synthesis).

Practical assessment (Outcomes 2, 3 and 4) could involve the practical application of the
skills taught in each Outcome. A single assignment could be used to cover all three
Outcomes or a separate assignment may be used for each. The assignment(s) could be
assessed holistically, without a marking scheme and not assigned a specific score, and given
a simple ‘pass/fail’ grade. All of the Knowledge and Skills would be evidenced in this
assessment. There would be no time limitations (beyond the practicality of completing the
Unit within the scheduled timetable) for this assessment.

A more contemporary approach to assessment could use a web log to record learning
throughout the life of the Unit. If this approach is taken, then sampling would not be
appropriate. The blog would contain evidence for all Knowledge and Skills statements.
The blog would record, on a daily or weekly basis, the learning that has occurred. It would
contain textual definitions, descriptions and explanations as required by the Knowledge and
Skills statements in the Outcomes (all Outcomes), including hyperlinks and embedded
multimedia (audio, graphic or video).

The blog could encompass all Outcomes, including Outcome 2, 3 and 4 (which are practical).
This could be done by the blog demonstrating how implementation and testing techniques
could be applied to one or more problems. Given that the blog would, most likely, be
completed at various times and locations throughout the life of the Unit, some form of
authentication would be necessary. There would be no time limitation on the completion of
the blog since it would be done on an on-going basis throughout the life of the Unit.

HA4G 35: Software Development: Implementation and Testing (SCQF level 9) 10

Higher National Unit Support Notes (cont)

Unit title: Software Development: Implementation and Testing

(SCQF level 9)

Centres are reminded that prior verification of centre-devised assessments would help to
ensure that the national standard is being met. Where learners experience a range of
assessment methods, this helps them to develop different skills that should be transferable to
work or further and higher education.

Opportunities for e-assessment

E-assessment may be appropriate for some assessments in this Unit. By e-assessment we
mean assessment which is supported by Information and Communication Technology (ICT),
such as e-testing or the use of e-portfolios or social software. Centres which wish to use
e-assessment must ensure that the national standard is applied to all learner evidence and
that conditions of assessment as specified in the Evidence Requirements are met,
regardless of the mode of gathering evidence. The most up-to-date guidance on the use of
e-assessment to support SQA’s qualifications is available at
www.sqa.org.uk/e-assessment.

Opportunities for developing Core and other essential skills

There is no automatic certification of Core Skills or Core Skill components in this Unit. The
Unit provides opportunities for the development of Computational Thinking skills,

HA4G 35: Software Development: Implementation and Testing (SCQF level 9) 11

History of changes to Unit

Version Description of change Date

© Scottish Qualifications Authority 2016

This publication may be reproduced in whole or in part for educational purposes provided
that no profit is derived from reproduction and that, if reproduced in part, the source is
acknowledged.

Additional copies of this Unit specification can be purchased from the Scottish Qualifications
Authority. Please contact the Business Development and Customer Support team, telephone
0303 333 0330.

HA4G 35: Software Development: Implementation and Testing (SCQF level 9) 12

General information for learners

Unit title: Software Development: Implementation and Testing
(SCQF level 9)

This section will help you decide whether this is the Unit for you by explaining what the Unit
is about, what you should know or be able to do before you start, what you will need to do
during the Unit and opportunities for further learning and employment.

The purpose of this Unit is to introduce you to the use of libraries and Application
Programming Interfaces (APIs) in software development, the use of code repositories and
the management of the software testing process.

Libraries and frameworks covered will include standard and add-on libraries for the relevant
platform. Version control will be accomplished by the use of code repositories.

The management of testing includes test planning and estimation, test progress monitoring
and control, configuration management as it relates to testing the relationship between risk
and testing.

You will develop their programming skills by planning, designing, implementing and testing
practical solutions using an appropriate software development environment.

You may be assessed in various ways, including multiple-choice questions relating to the
theoretical knowledge covered in the Unit, and practical exercises applying the
implementation and testing skills learned.

On completion of the Unit, you will have gained knowledge and experience of implementing
complex programs using an object-oriented programming language, making use of APIs,
libraries, frameworks and code repositories and managing software testing.

Once you have completed both this Unit and Software Development: Analysis and Design
(SCQF level 9) you can progress to the Unit Software Development: Project (SCQF level 9).

