$\square$

Fill in these boxes and read what is printed below.

Full name of centre
$\square$


## Forename(s)



Surname


Number of seat


Date of birth


Total marks - 60
Attempt ALL questions.
Write your answers clearly in the spaces provided in this booklet. Additional space for answers is provided at the end of this booklet. If you use this space you must clearly identify the question number you are attempting.
Use blue or black ink.
Before leaving the examination room you must give this booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

1. The table below gives information about some circuit components.

Some of the boxes have been left blank.
(a) Complete the table for the missing entries.

| Component name | Symbol | Function |  |
| :--- | :--- | :--- | :--- |
| Light emitting diode |  |  | Emits light indicating <br> a current flow |
| Speaker |  |  |  |
|  |  |  | A resistor whose <br> resistance value <br> can be adjusted |
| Variable resistor |  |  |  |

1. (continued)
(b) The diagram below shows the colour coding for a resistor.


Use the information in the data sheet to answer the question below. Determine the colour codes for a resistor of value $4 K 7$ with $a \pm 1 \%$ tolerance.

|  | 1st band | 2nd band | Multiplier | Tolerance |
| :--- | :---: | :---: | :---: | :---: |
| Colour <br> code |  |  |  | brown |

1. (continued)
(c) The diagram below shows the colour coding for a second resistor.


Use the information in the data sheet to answer the questions below.
(i) Determine the resistance of the second resistor.

Space for working and answer
(ii) Determine the minimum and maximum resistance of the second resistor.
Space for working and answer
2. Complete the table below by stating a typical use for each cable type shown.

[Turn over
3. A circuit diagram is shown below.

(a) Switch S is open.
(i) Calculate the total resistance of the circuit.
Space for working and answer
(ii) Calculate the current in the circuit.

Space for working and answer
3. (continued)
(b) Switch S is now closed.
(i) Calculate the total resistance of the circuit.
Space for working and answer
(ii) State the voltage across the $5 \Omega$ resistor.
(iii) Calculate the power dissipated in the $5 \Omega$ resistor.

Space for working and answer
4. Logic gates are widely used in electronic circuits.
(a) Complete the truth table for a NAND gate.

| A | B | Output |
| :---: | :---: | :---: |
| 0 | 0 |  |
| 0 | 1 |  |
| 1 | 0 |  |
| 1 | 1 |  |

(An additional truth table, if required, can be found on page 22)
(b) A logic gate is shown below.


Determine the logic state at $X$ that would produce the output shown.
4. (continued)
(c) Many electronic devices use a combination of interconnected logic gates.

Complete the truth table for the logic circuit shown below.


| A | B | C | D | E | Y | Z |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 |  |  |  |  |
| 0 | 0 | 1 |  |  |  |  |
| 0 | 1 | 0 |  |  |  |  |
| 0 | 1 | 1 |  |  |  |  |
| 1 | 0 | 0 |  |  |  |  |
| 1 | 0 | 1 |  |  |  |  |
| 1 | 1 | 0 |  |  |  |  |
| 1 | 1 | 1 |  |  |  |  |

(An additional truth table, if required, can be found on page 22)
5. A logic probe is used to test the inputs and outputs of a 7400 series logic chip. The logic probe is set to TTL and pulse.

(a) State where the red and black wires should be connected.
(b) Describe how a logic 0 would be detected.
6. A student produces a simulation of a circuit that will turn on a LED when it gets dark.

However, the simulation does not work as specified.
Identify four errors in the simulation below.


Error 1:

Error 2:

Error 3:

Error 4:
7. The circuit diagram below has test points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E as shown.


Complete the table below stating what the test points measure and the instrument used to carry out each test.

| Test points | Measuring | Instrument |
| :---: | :---: | :---: |
| A and E | supply voltage | multimeter <br> voltage setting |
| B |  |  |
| C and D |  |  |

8. A student builds the circuit shown below.


Using the information from the two suppliers catalogues shown on the opposite page, complete the costings sheet below to produce the lowest cost for the circuit.

| Supplier | Component | Product code | Cost (p) |
| :---: | :---: | :---: | :---: |
| JIMSON | NE555 | TC124 | 20 |
| SWIFT | 8 way DIL <br> socket | SK-0080 | 10 |
|  | LED 5 mm std |  |  |
|  | $100 \mu \mathrm{~F}$ <br> electrolytic <br> capacitor |  |  |
|  | 100 nF <br> capacitor <br> $270 R$ |  |  |
|  | $4 \mathrm{K7}$ |  |  |

(An additional costings sheet, if required, can be found on page 23)
8. (continued)

| Supplier | SWIFT |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Component | Description | Product code | Cost |
| Integrated circuits | LM555CM | timers | IC-0283 | 45p |
|  | NE555 | timers | IC-0254 | 32p |
|  | NE556 | timers | IC-0216 | 25p |
|  | 8 way dil | ic socket | SK-0080 | 10p |
| Semi-conductors | LED | 5 mm std red | SC-0155 | 4p |
|  | LED | 10 mm std red | SC-0177 | 10p |
| Capacitors | 10 nF | 16 V | CP-2020 | 30p |
|  | 100 nF | 16 V | CP-2030 | 35p |
|  | 100 nF | 5 V | CP-2040 | 40p |
| Electrolytic capacitors | $10 \mu \mathrm{~F}$ | 16 V | CP-0555 | 10p |
|  | $100 \mu \mathrm{~F}$ | 16 V | CP-0566 | 18p |
|  | $100 \mu \mathrm{~F}$ | 5 V | CP-0599 | 8p |
| Resistors | 270R | 0.25 W carbon film 5\% | EC-0161 | 0.5p |
|  | 4K7 | 0.25 W carbon film 5\% | EC-0175 | 0.5p |
|  | 47K | 0.25 W carbon film 5\% | EC-0182 | 1.5p |
| Supplier | JIMSON |  |  |  |
|  | Component | Description | Product code | Cost |
| Integrated circuits | LM555CM | timers | TC 123 | 90p |
|  | NE555 | timers | TC 124 | 20p |
|  | NE556 | timers | TC 125 | 80p |
|  | 8 way dil | ic socket | SK 099 | 50p |
| Semi-conductors | LED | 5 mm std red | LD345 | 12p |
|  | LED | 10 mm std red | LD346 | 20p |
| Capacitors | 10 nF | 16 V | CP 120 | 12p |
|  | 100 nF | 16 V | CP 135 | 45p |
|  | 100 nF | 5 V | CP 140 | 25p |
| Electrolytic capacitors | $10 \mu \mathrm{~F}$ | 16 V | EC 799 | 14p |
|  | $100 \mu \mathrm{~F}$ | 16 V | EC 800 | 10p |
|  | $100 \mu \mathrm{~F}$ | 5 V | EC 801 | 8p |
| Resistors | 270R | 0.25 W carbon film 5\% | FR 922 | 0.25p |
|  | 4K7 | 0.25 W carbon film 5\% | FR 923 | 0.25p |
|  | 47K | 0.25 W carbon film 5\% | FR 924 | 2p |

9. A technician needs to work in a well lit room. For safety reasons when the light level decreases to 250 lux an alarm sounds.

The alarm circuit uses a light dependent resistor as a sensor. The graph below shows how the resistance of the LDR varies with changing light levels.

(a) State the resistance of the LDR when the alarm sounds.
9. (continued)
(b) The alarm circuit is shown below.


Calculate the voltage across the LDR when the alarm (buzzer) sounds. Space for working and answer
(c) Describe how this circuit works.
10. A zoo uses an incubator to keep eggs warm.

A safety system for the incubator requires an electric heater to turn on when the temperature in the incubator becomes too cold.
When the heater is turned on during daylight hours an alarm should sound.
Selecting from the elements given below, draw a block diagram of an electronic solution for this system.
On your diagram, clearly indicate the input, process and output sections of your solution.

| light sensor | motion sensor | temperature sensor | buzzer | XOR gate | AND gate |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (logic 1 for light) | (logic 1 for motion) | (logic 1 for hot) | heating element | $\begin{aligned} & \text { NOT } \\ & \text { gate } \end{aligned}$ | lamp |

11. The stripboard plan shows a component (top) view of a circuit with the following layout.


Note $R_{2}$ vertically mounted.

Component data
IC 1 — NE555
$\mathrm{LD}_{1}-5 \mathrm{~mm}$ standard led (red)
$\mathrm{R}_{1}$ - carbon film 330 R 0.25 w
$R_{2}$ and $R_{3}$ — carbon film 10 K 0.25 w
Circuit symbol for $\mathrm{IC}_{1}$

$\mathrm{C}_{1}-100 \mu \mathrm{~F} 16 \mathrm{~V}$ electrolytic capacitor

Draw a circuit diagram for this circuit.
Each component must be labelled.
11. (continued)
[END OF QUESTION PAPER]

## ADDITIONAL SPACE FOR ANSWERS

Additional truth table for question 4 (a)

| A | B | Output |
| :---: | :---: | :---: |
| 0 | 0 |  |
| 0 | 1 |  |
| 1 | 0 |  |
| 1 | 1 |  |

Additional truth table for question 4 (c)

| A | B | C | D | E | Y | Z |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 |  |  |  |  |
| 0 | 0 | 1 |  |  |  |  |
| 0 | 1 | 0 |  |  |  |  |
| 0 | 1 | 1 |  |  |  |  |
| 1 | 0 | 0 |  |  |  |  |
| 1 | 0 | 1 |  |  |  |  |
| 1 | 1 | 0 |  |  |  |  |
| 1 | 1 | 1 |  |  |  |  |

Additional costings sheet for question 8

| Supplier | Component | Product code | Cost (p) |
| :---: | :---: | :---: | :---: |
| JIMSON | NE555 | TC124 | 20 |
| SWIFT | 8 way DIL <br> socket | SK-0080 | 10 |
|  | LED 5 mm std |  |  |
|  | $100 \mu \mathrm{~F}$ <br> electrolytic <br> capacitor |  |  |
|  | 100 nF <br> capacitor |  |  |
|  | 270 R |  |  |
|  | $4 \mathrm{K7}$ |  |  |



## [BLANK PAGE]

DO NOT WRITE ON THIS PAGE
$|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||\mid$

## [BLANK PAGE]

DO NOT WRITE ON THIS PAGE

## [BLANK PAGE]

DO NOT WRITE ON THIS PAGE

## Acknowledgement of copyright

Question 2 Panyawatt/shutterstock.com
Question 2 alphaspirit/shutterstock.com

* X 860750128 *

