Duration - 2 hours

Total marks - 60
SECTION 1-45 marks
Attempt ALL questions.

SECTION 2-15 marks

Attempt EITHER Part A OR Part B.

You may use a calculator.

To earn full marks you must show your working in your answers.
State the units for your answer where appropriate.
You will not earn marks for answers obtained by readings from scale drawings.
Write your answers clearly in the spaces provided in the answer booklet. The size of the space provided for an answer is not an indication of how much to write. You do not need to use all the space.

Additional space for answers is provided at the end of the answer booklet. If you use this space you must clearly identify the question number you are attempting.

Use blue or black ink.
Before leaving the examination room you must give your answer booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

Standard derivatives	
$f(x)$	$f^{\prime}(x)$
$\sin ^{-1} x$	$\frac{1}{\sqrt{1-x^{2}}}$
$\cos ^{-1} x$	$-\frac{1}{\sqrt{1-x^{2}}}$
$\tan ^{-1} x$	$\frac{1}{1+x^{2}}$
$\tan x$	$\sec ^{2} x$
$\cot x$	$-\operatorname{cosec}^{2} x$
$\sec x$	$\sec x \tan x$
$\operatorname{cosec} x$	$-\operatorname{cosec} x \cot x$
$\ln x$	$\frac{1}{x}$
e^{x}	e^{x}

Standard integrals	
$f(x)$	$\int f(x) d x$
$\frac{\sec ^{2}(a x)}{\frac{1}{\sqrt{a^{2}-x^{2}}}}$	$\frac{1}{a} \tan (a x)+c$
$\frac{1}{a^{2}+x^{2}}$	$\left.\frac{1}{\sin ^{-1}} \tan ^{-1}\left(\frac{x}{a}\right)+c\right)+c$
$\frac{1}{x}$	$\frac{\ln \|x\|+c}{a}$
$e^{a x}$	$\frac{1}{a} e^{a x}+c$

Summations

(Arithmetic series)

$$
S_{n}=\frac{1}{2} n[2 a+(n-1) d]
$$

(Geometric series)

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}, r \neq 1
$$

$$
\sum_{r=1}^{n} r=\frac{n(n+1)}{2}, \quad \sum_{r=1}^{n} r^{2}=\frac{n(n+1)(2 n+1)}{6}, \quad \sum_{r=1}^{n} r^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

Binomial theorem

$$
(a+b)^{n}=\sum_{r=0}^{n}\binom{n}{r} a^{n-r} b^{r} \quad \text { where }\binom{n}{r}={ }^{n} C_{r}=\frac{n!}{r!(n-r)!}
$$

Maclaurin expansion

$$
f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0) x^{2}}{2!}+\frac{f^{\prime \prime \prime}(0) x^{3}}{3!}+\frac{f^{i v}(0) x^{4}}{4!}+\ldots
$$

FORMULAE LIST (continued)

De Moivre's theorem

$$
[r(\cos \theta+i \sin \theta)]^{n}=r^{n}(\cos n \theta+i \sin n \theta)
$$

Vector product

$$
\begin{aligned}
\mathbf{a} \times \mathbf{b} & =|\mathbf{a}||\mathbf{b}| \sin \theta \hat{\mathbf{n}} \\
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\mathbf{i}\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|-\mathbf{j}\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|+\mathbf{k}\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|
\end{aligned}
$$

Matrix transformation

Anti-clockwise rotation through an angle, θ, about the origin, $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$
[Turn over

SECTION 1-45 marks

Attempt ALL questions

1. Given $f(x)=3 \sec 2 x$, find the exact value of $f^{\prime}\left(\frac{\pi}{8}\right)$.
2. (a) Use the Euclidean algorithm to find integers a and b such that $105 a+72 b=3$.
(b) Hence find integers x and y such that $105 x+72 y=360$.
3. Use integration by parts to find $\int(2 x+3) \cos 4 x d x$.
4. A curve is defined parametrically by

$$
x=\sin ^{-1} 2 t \text { and } y=\tan ^{-1} t
$$

(a) Find $\frac{d x}{d t}$ and $\frac{d y}{d t}$.
(b) When $t=0$ find the equation of the tangent to the curve.
5. A non-singular matrix A satisfies the equation

$$
A^{2}=2 A+5 I,
$$ where I is the identity matrix.

(a) Express A^{4} in the form $p A+q I$, where $p, q \in \mathbb{Z}$.
(b) Express A^{-1} in the form $r A+s I$, where $r, s \in \mathbb{Q}$.
6. Solve the differential equation

$$
\frac{d y}{d x}+2 x y=14 x e^{-x^{2}}
$$

given that when $x=0, y=3$.
Express y in terms of x.
7. A complex number is defined by $z=a+2 i$ where a is a positive real number.
(a) State and simplify the binomial expansion of z^{3}.
(b) Given that $z^{3}+3 z=b+148 i$, where b is a real number, find the values of a and b.
8. A curve is defined by $x^{2} y^{3}+e^{2 y}=5$.
(a) Find $\frac{d y}{d x}$ in terms of x and y.
(b) Show that there is only one stationary point on the curve.
9. (a) Express $\frac{1}{x(5-x)}$ in partial fractions.
(b) A small island is being populated by seals. The size of the seal population can be modelled by the differential equation

$$
\frac{d P}{d t}=\frac{1}{100} P(5-P), 0<P<5
$$

where P (in hundreds) is the number of seals on the island t years after the seals arrive.

Given that there are 250 seals after 10 years, find an expression for P in terms of t.

SECTION 2-15 marks
 Attempt EITHER Part A OR Part B

Part A

10. Prove by induction that $\sum_{r=2}^{n} \frac{1}{r(r-1)}=\frac{n-1}{n}$ for all positive integers $n \geq 2$.
11. Three consecutive terms of an arithmetic sequence are given by

$$
x-1, \quad x-7, \quad 2 x-9
$$

(a) (i) Find the common difference.
(ii) Hence find the value of x.
(b) Given that $x-1$ is the $21^{\text {st }}$ term, find
(i) the value of the first term
(ii) a simplified expression for the $n^{\text {th }}$ term of the sequence.

Three consecutive terms of a geometric sequence are given by

$$
y-1, \quad y-7, \quad 2 y-9 .
$$

(c) Find the two possible values of y and the corresponding common ratios.

One of the values of y gives an associated geometric series which has a sum to infinity.
(d) (i) Identify the value of y and justify your answer.
(ii) Determine whether $\frac{64}{3}$ is a possible value for this sum to infinity. Give a reason for your answer.

Part B

12. The points $A(4,0,8), B(6,-5,4)$ and $C(3,4,11)$ all lie on the plane π_{1}.
(a) Find the Cartesian equation of π_{1}.

The plane π_{2} is parallel to π_{1} and passes through the origin.
(b) State the equation of π_{2}.

A sphere touches π_{1}, where A is the point of contact. The sphere also has a single point of contact, Q , with π_{2}.
(c) (i) Find parametric equations for the line $A Q$. 1
(ii) Hence find the coordinates for Q .
13. (a) Express -1 in the form $\cos \theta+i \sin \theta$.

The complex number z_{1} is defined by $z_{1}=\cos \frac{\pi}{5}+i \sin \frac{\pi}{5}$.
(b) Use de Moivre's theorem to show that z_{1} is a root of the equation $z^{5}+1=0$.

The complex number z_{2} is also a root of the equation $z^{5}+1=0$. Roots z_{1} and z_{2} have been plotted on an Argand diagram, as shown.

(c) Express z_{2} in the form $\cos \theta+i \sin \theta$.

The remaining roots of the equation $z^{5}+1=0$ are z_{3}, z_{4} and z_{5}.
(d) Express z_{3}, z_{4} and z_{5} in the form $\cos \theta+i \sin \theta$, where $-\pi<\theta \leq \pi$.
(e) Given $z_{1}+z_{2}+z_{3}+z_{4}+z_{5}=0$, show algebraically that

$$
\cos \frac{\pi}{5}+\cos \frac{3 \pi}{5}=\frac{1}{2}
$$

[END OF SECTION 2]

