

Reference language for
Computing Science question
papers (summary)

This document summarises the reference language used to present code in SQA

Computing Science question papers for National 5, Higher and Advanced Higher

qualifications.

This edition: September 2016, version 1.0

Published by the Scottish Qualifications Authority
The Optima Building, 58 Robertson Street, Glasgow G2 8DQ
Lowden, 24 Wester Shawfair, Dalkeith, Midlothian EH22 1FD

www.sqa.org.uk

© Scottish Qualifications Authority 2016

Contents
National 5 reference language 1

Higher reference language 2

Advanced Higher reference language 3

September 2016, version 1.0 1

National 5 reference language

Questions assessing understanding and application of programming skills will

(mainly) be presented using SQA’s standardised reference language, which may

include the following terms:

Base types: INTEGER, REAL, BOOLEAN, CHARACTER

Structured types: STRING

ARRAY OF ..

Structured values: " .. ", [..], { .. }, id(..)

System entities: DISPLAY, KEYBOARD

Variable introduction: DECLARE .. INITIALLY

 DECLARE .. AS .. INITIALLY

Assignment: SET .. TO ..

Conditions: IF .. THEN .. END IF

 IF .. THEN .. ELSE .. END IF

Conditional repetition: WHILE .. DO .. END WHILE

REPEAT .. UNTIL ..

Fixed repetition: REPEAT .. TIMES .. END REPEAT

Iteration: FOR .. FROM .. TO .. DO .. END FOR

 FOR .. FROM .. TO .. DO .. STEP .. END FOR

FOR EACH .. FROM .. DO .. END FOR EACH

Input / output: RECEIVE .. FROM ..

 DECLARE .. AS .. INITIALLY FROM ..

SEND .. TO ..

Operations: -, +, *, /, ^, MOD, &

Comparisons: =, ≠, <, ≤,, >, ≥

Logical operators: AND, OR, NOT

Subprograms: id(parameters)

< .. > is used to indicate an elision — a code fragment expressed in English, not

in the formal reference language

is used to indicate comments

September 2016, version 1.0 2

Higher reference language

Questions assessing understanding and application of programming skills will

(mainly) be presented using SQA’s standardised reference language, which may

include the following terms:

Base types: INTEGER, REAL, BOOLEAN, CHARACTER

Structured types: STRING

ARRAY OF ..

RECORD .. IS { .. }

Structured values: " .. ", [..], { .. }, id(..)

System entities: DISPLAY, KEYBOARD

Variable introduction: DECLARE .. INITIALLY

 DECLARE .. AS .. INITIALLY

Assignment: SET .. TO ..

Conditions: IF .. THEN .. END IF

 IF .. THEN .. ELSE .. END IF

Conditional repetition: WHILE .. DO .. END WHILE

REPEAT .. UNTIL ..

Fixed repetition: REPEAT .. TIMES .. END REPEAT

Iteration: FOR .. FROM .. TO .. DO .. END FOR

 FOR .. FROM .. TO .. DO .. STEP .. END FOR

FOR EACH .. FROM .. DO .. END FOR EACH

Input / output: RECEIVE .. FROM ..

(including files) DECLARE .. AS .. INITIALLY FROM ..

SEND .. TO ..

File Operations: OPEN ..

CLOSE ..

CREATE ..

Operations: -, +, *, /, ^, MOD, &

Comparisons: =, ≠, <, ≤,, >, ≥

Logical operators: AND, OR, NOT

Subprograms: id(parameters)

Where required, subprograms may be presented in the following formats:

PROCEDURE id (parameters)

commands

END PROCEDURE

FUNCTION id(parameters) RETURNS type

commands

RETURN expression

END FUNCTION

< .. > is used to indicate an elision — a code fragment expressed in English, not

in the formal reference language

is used to indicate comments

September 2016, version 1.0 3

Advanced Higher reference language
Questions assessing understanding and application of programming skills will

(mainly) be presented using SQA’s standardised reference language, which may

include the following terms:

Base types: INTEGER, REAL, BOOLEAN, CHARACTER

Structured types: STRING

ARRAY OF ..

RECORD .. IS { .. }

CLASS .. IS { .. } METHODS ... END CLASS

CLASS .. INHERITS .. WITH { .. } METHODS .. END

CLASS

CONSTRUCTOR .. END CONSTRUCTOR

OVERRIDE CONSTRUCTOR .. END CONSTRUCTOR

Structured values: " .. ", [..], { .. }, id(..)

System entities: DISPLAY, KEYBOARD

Variable introduction: DECLARE .. INITIALLY

 DECLARE .. AS .. INITIALLY

Assignment: SET .. TO ..

Conditions: IF .. THEN .. END IF

 IF .. THEN .. ELSE .. END IF

Conditional repetition: WHILE .. DO .. END WHILE

REPEAT .. UNTIL ..

Fixed repetition: REPEAT .. TIMES .. END REPEAT

Iteration: FOR .. FROM .. TO .. DO .. END FOR

 FOR .. FROM .. TO .. DO .. STEP .. END FOR

FOR EACH .. FROM .. DO .. END FOR EACH

Input / output: RECEIVE .. FROM ..

(including files) DECLARE .. AS .. INITIALLY FROM ..

SEND .. TO ..

File Operations: OPEN ..

CLOSE ..

CREATE ..

Operations: -, +, *, /, ^, MOD, &

Comparisons: =, ≠, <, ≤,, >, ≥

Logical operators: AND, OR, NOT

Subprograms: id(parameters)

Where required, subprograms may be presented in the following formats:

PROCEDURE id (parameters)

commands

END PROCEDURE

FUNCTION id(parameters) RETURNS type

commands

RETURN expression

END FUNCTION

< .. > is used to indicate an elision — a code fragment expressed in English, not

in the formal reference language

is used to indicate comments

