

National Qualifications RESOURCE

X823/77/11

Engineering Science

Marking Instructions

Please note that these marking instructions have not been standardised based on candidate responses. You may therefore need to agree within your centre how to consistently mark an item if a candidate response is not covered by the marking instructions.

General marking principles for Advanced Higher Engineering Science

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.

- (a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
- (b) If a candidate response does not seem to be covered by either the principles or detailed marking instructions, and you are uncertain how to assess it, you must seek guidance from your team leader.
- (c) Where a candidate makes an error at an early stage in a multi-stage calculation, award marks for correct follow-on working in subsequent stages. Do not award marks if the error significantly reduces the complexity of the remaining stages. Apply the same principle in questions which require several stages of non-mathematical reasoning.
- (d) SQA presents all units of measurement in a consistent way, using negative indices where required (for example ms⁻¹). Candidates can respond using this format, or solidus format (m/s), or words (metres per second), or any combination of these (for example metres/second).
- (e) For numerical questions, candidates should round their answers to an appropriate number of significant figures. However, award marks if their answer has up to two figures more or one figure less than the expected answer.
 Note for 2021 only: to support teachers and lecturers in applying the marking instructions for internal assessment in session 2020-21, final answers are shown as the final calculated answer, but are not given to the appropriate number of significant figures. A candidate's answer (whether given to the correct number of significant figures or not) can be awarded marks as detailed in the marking instructions, ie there is no requirement (in this assessment, this session) to round to the correct number of significant figures to be awarded full marks.
- (f) Unless a numerical question specifically requires candidates to show evidence of their working, award full marks for a correct final answer (including unit) on its own.
- (g) Award marks where a labelled diagram or sketch conveys clearly and correctly the response required by the question.
- (h) Award marks regardless of spelling if the meaning is unambiguous.
- (i) Candidates can answer programming questions in any appropriate programming language. Award marks where the intention of the coding is clear, even where there are minor syntax errors.
- (j) For 'Explain' questions, only award marks where the candidate goes beyond a description, for example by giving a reason, or relating cause to effect, or providing a relationship between two aspects.
- (k) Where separate space is provided for rough working and a final answer, only award marks for the final answer. Ignore all rough working.

Marking instructions for each question

Section 1

Q	uestio	n	Expected response	Max mark	Additional guidance
1.	(a)		$12 = -10k\left(\frac{5}{R} + \frac{5}{2R} + \frac{5}{4R}\right) \times \left(-\frac{10k}{10k}\right)$ $12 = 50k\left(\frac{4}{4R} + \frac{2}{4R} + \frac{1}{4R}\right)$ $12 = 50k\left(\frac{7}{4R}\right)$ $12 = \frac{350k}{4R}$ $R = \frac{350k}{48}$ $R = 7 \cdot 29 \dots k\Omega$ $R_2 = 7 \cdot 3 \ k\Omega$ $R_1 = 14 \cdot 6 \ k\Omega, \ R_0 = 29 \cdot 2 \ k\Omega$	3	1 mark Substitution into summing formula with three resistances represented as multiples of R . 1 mark Correct calculation of R . 1 mark State values for each resistor Recognise the MSB so that $R_0 = 4R$ and $R_2 = R$. R ₁ and R ₀ are exact multiples of R ₂ , defined in the first equation.
	(b)		8 values	1	
2.	(a)		An 'oncost' is a cost associated with the meeting of statutory requirements (such as pension contributions and NI contributions for workers during a project). A 'direct cost' is a cost that can be attributed wholly to a cost centre within the management of a project (an example being the purchase of materials for the construction of a bridge).	2	1 mark Definition of 'oncost'. 1 mark Definition of 'direct cost'.

Q	Question		Expected response	Max mark	Additional guidance
2.	(b)		0 A 3 1 1 3 4 0 B 2 4 2 6 0 C 4 0 C 4	3 D 8 3 G 5 11 4 E 11 0 4 7 11	
			Critical path: C, E, F, G		 1 mark Complete the diagram to show the interdependencies between nodes. 1 mark Complete the LFT, LST and float entries. Note: Key point of understanding for second mark is at node A; LFT depends on EFTs of both D and E so lower value must be selected. If this selection has been made, then award this mark. 1 mark Identify the critical path
3.	(a)		A sine wave	1	
	(b)		Minimum frequency $C_{max} = \frac{1}{2 \times \pi \times 10 \times 10^{3} \times 1.5 \times 10^{3}}$ $= 10.610 \times 10^{-9}$ $= 11nF$ Maximum frequency $C_{min} = \frac{1}{2 \times \pi \times 25 \times 10^{3} \times 1.5 \times 10^{3}}$ $= 4.2441 \times 10^{-9}$ $= 4.2nF$ Range of values 4.2nF Range of values	2	 1 mark Calculate maximum capacitance value. 1 mark Calculate minimum capacitance value.

Q	uestic	on	Expected response	Max mark	Additional guidance
4.			$\delta = \frac{FL^3}{3El}$ $2 \cdot 1 = \frac{F \times 18^3}{3 \times 0.9 \times 10^3 \times 6.75}$ $F = \frac{2 \cdot 1 \times 3 \times 0.9 \times 10^3 \times 6.75}{18^3}$ $= 6 \cdot 6N$	3	 1 mark Deflection of cantilevered beam under the action of a point load, equation from data booklet. E value from data booklet. 1 mark Max deflection is 2.1mm. Correct substitution of values (of correct magnitude) in relation to unknown F. 1 mark Answer with correct units. Note: Candidate use of 0.9 for E would gain first mark, but not second mark. Final answer of 6.6 mN would gain follow through mark (2 marks maximum)
5.	(a)	(i)	It is necessary to step the voltage up using transformers to very-high tension e.g., 400 kV or 132 kV to reduce transmission I^2R (power losses). Very-high tension requires expensive infrastructure to enable safe transmission, which is mainly done over-ground, spanning long distances in typically rural areas. This is not safe in more built-up areas and so voltages must be stepped down using step-down transformers to allow for underground cabling or less intrusive, smaller, overhead lines.	2	1 mark Explain the need to step up voltage to reduce I^2R line power loss. 1 mark Explain that voltage needs to be stepped down to allow cabling to be run under ground or unobtrusively over ground in built-up areas. Tension is commonly used terminology, but its use is not necessary for the first mark
		(ii)	Typical customers at point A are heavy industrial users who require the 132 kV supply. At point B, smaller, industrial customers will use the 33 kV supply, while point C represents domestic customers and small businesses using one of the phases of the 415 V supply (at 230 V).	1	1 mark Give examples of typical customers for the various voltages supplied at A, B and C. Accept 2 out of 3 instances for the mark.

ne the current flow in the om the transformer. The the resistive power loss
-
e cable.
ne the transmission y.
, .

Q	Question		Expected response	Max mark	Additional guidance
6.			KCL around Node D $I_{DB} + I_{DC} + I_{AD} = 0$ $\frac{V_{D} - V_{B}}{12 \times 10^{3}} + \frac{V_{D} - 0}{3 \times 10^{3}} + \frac{V_{B} - 75}{6 \times 10^{3}} = 0$ $-\frac{V_{B}}{12 \times 10^{3}} + V_{D} \left(\frac{1}{12 \times 10^{3}} + \frac{1}{3 \times 10^{3}} + \frac{1}{6 \times 10^{3}}\right)$ $= \frac{75}{6 \times 10^{3}}$ $-\frac{V_{B}}{12 \times 10^{3}} + V_{D} \left(\frac{1}{12 \times 10^{3}} + \frac{4}{12 \times 10^{3}} + \frac{2}{12 \times 10^{3}}\right)$ $= \frac{150}{12 \times 10^{3}}$ $-\frac{V_{B}}{12 \times 10^{3}} + V_{D} \left(\frac{7}{12 \times 10^{3}}\right) = \frac{150}{12 \times 10^{3}}$ Multiply through by 12000 $-V_{B} + 7V_{D} = 150$ equation 1	5	 1 mark KCL statements at D 1 mark KCL statements at B 1 mark For equation 1 and equation 2 1 mark For correct use of elimination method or substitution method 1 mark For calculation of current through 12kΩ resistor

Question Expected respon	se Max mark	Additional guidance
6. KCL around Node B $I_{BC} + I_{AB} + I_{DB} = 0$ $\frac{V_B - 0}{40 \times 10^3} + \frac{V_B - 75}{60 \times 10^3} + \frac{V_B - V_D}{12 \times 10^3} = 0$ $V_B \left(\frac{1}{40 \times 10^3} + \frac{1}{60 \times 10^3} + \frac{1}{12 \times 10^3} - V_D \left(\frac{1}{120 \times 10^3}\right) = \frac{75}{60 \times 10^3}$ $V_B \left(\frac{3}{120 \times 10^3} + \frac{2}{120 \times 10^3} + \frac{10}{120 \times 10^3}\right)$ $V_B \left(\frac{15}{120 \times 10^3}\right) = V_D \left(\frac{10}{120 \times 10^3}\right)$ Multiply through by 120000 $15V_B - 10V_D = 150$ equation Multiply equation 1 by 15 $-15V_B + 105V_D = 2250$ equa Add equations 1 and 2 $15V_B - 10V_D = 150$ $-15V_B + 105V_D = 2250$ $95V_D = 2400$ $V_D = 25 \cdot 263V$ Substitute V_D in equation 1 $-V_B + 7 \times 25 \cdot 256 = 150$ $V_B = 26 \cdot 842V$ $I_{DB} = \frac{26 \cdot 842V}{12000}$ $I_{DB} = 131.583 \times 1$ $I_{DB} = 100 \mu A$	$\frac{110^{3}}{10^{3}}$	Note: A solution that correctly calculates V_{B} and V_{D} but not current I_{DB} scores 4 marks maximum

Q	uestio	n	Expected response	Max mark	Additional guidance
7.	(a)		To find vertical reaction at end B, take moments about A. $\sum M_{A} = 0$ (clockwise moments are positive) $(20 \times 1) + (5 \times \frac{3^{2}}{2}) + (30 \times 4) - (R_{B} \times 5) = 0$ $R_{B} = 32 \cdot 5 kN$ To find vertical reaction at end A (R_A). $\sum F_{y} = 0$ ('up' forces are positive) $R_{A} - 20 - (5 \times 3) - 30 + 32 \cdot 5 = 0$ $R_{A} = 32 \cdot 5 kN$ Working from left to right, forces on section, SF vertically down are positive, anticlockwise moments are positive. Shear force diagram	4	<pre>Shear force diagram 1 mark Reactions at supports A and B. Note: Follow through if reactions have not been calculated correctly. 1 mark Effect of UDL (slope 5 kNm⁻¹ for 0<x<3 (3<x<4="" 1="" 4<x<5="" constant="" effect="" force="" loads.="" m).="" m).<="" m,="" mark="" of="" point="" pre="" shear="" two=""></x<3></pre>
			50 40 30 20 10 0 -10 -20 -30 -40 -50	2 positi	3 5 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Q	Question		Expected response						Max mark		Additional guidance
7.	7. (b)		Bending Moment Bending Moment, working from end A, 1 < x < 3 $M - 32 \cdot 5x + 5\frac{x^2}{2} + 20(x - 1) = 0$ $M = 32 \cdot 5x - 5\frac{x^2}{2} - 20(x - 1)$ Clockwise moments are positive. Working from end A, $3 < x < 4$ $M - 32 \cdot 5x + 5(3)(x - 1 \cdot 5) + 20(x - 1) = 0$ $M = 32 \cdot 5x - 15(x - 1 \cdot 5) - 20(x - 1)$							 1 mark Bending x = 2 m. 1 mark Bending x = 3 m. 1 mark 	moment for $x = 2.5$ m and
						I	Positior	1		1	From left-hand end (A)
				0	1	2	2.5	3	4	5	m
			BM	0	30	35	35.6	35	32.5	5 0	kNm
	(c)								2	1 mark Paraboli 1 mark	g moment diagram ic for 0 <x<3 m.<br="">line for 3<x<4 4<x<5<="" and="" th=""></x<4></x<3>
			BM, bending	moment (kN)		- 1		2	positio	 	4 5

Section 2

Q	uestior	n	Expected response	Max mark	Additional guidance
8.	(a)		Condition 1: extended arm Consider as a cantilever beam. Maximum moment at the built-in end. Take moments at the built-in end. $M_{shoulder} = -490 \times 2 - 44 \times \frac{1 \cdot 9^2}{2}$ $= -1 \cdot 05942 kNm$ Condition 2: reaction force on end of arm sufficient to lift rover. Moment at 2m from the drill reaction force, $M_{shoulder} = 3 \cdot 61 \times 10^3 \times 2 \cdot 0$ $= 7 \cdot 22 kNm$ OR Moment at 2.25m from the rear (right-hand) wheel $M_{shoulder} = -10 \cdot 3 \times 10^3 \times (4 \cdot 25 - 2 \cdot 0 - 1)$ $= 7 \cdot 2245 kNm$ Largest bending moment is associated		
			Largest bending moment is 7.22 kNm		

Q	uestic	n	Expected response	Max mark	Additional guidance
8.	(b)		Calculation of wall thickness based on a moment on a beam of $6.55 kNm = 6.55 \times 10^6 Nmm.$ $\sigma = \frac{My}{l}, \qquad l = \frac{My}{\sigma}$ $y = \frac{D}{2}, \qquad l = \frac{\pi}{64}D^4$ D is the external diameter and $dis the internal diameter.\sigma = \frac{1000}{1.25} = 800 Nm^{-2}l = \frac{My}{\sigma} = \frac{6.55 \times 10^6 \times \frac{50}{2}}{800}l = 204.6875 \times 10^3 mm^4l = \frac{\pi}{64}(D^4 - d^4)\frac{\pi}{64}d^4 = \frac{\pi}{64}D^4 - l\frac{\pi}{64}d^4 = \frac{\pi}{64} \times 50^4 - 204.6875 \times 10^3\frac{\pi}{64}d^4 = 102.108 \times 10^3d = 37.977mmt = \frac{1}{2}(D - d)= \frac{1}{2}(50 - 37.977) = 6.011$	4	 1 mark Maximum stress occurs when y is the greatest, at D/2 Bending moment and y substituted correctly. 1 mark Use correct stress and determine required value of "I" (second moment of area). 1 mark Calculate required inner diameter. 1 mark Determine wall thickness. Candidates should receive marks for working through any incorrect bending moment and may be awarded up to (4 marks).
			Required wall thickness: 6 mm		

Q	uestion	Expected response	Max mark	Additional guidance
8.	(c)	On Mars gravity is 0.38 g thus the magnitude of the bending moment is reduced as the loads, and by extension the working stresses, are 	2	 1 mark Effect on UTS of lower temperature, effect on working stress of lower gravity. 1 mark Explanation of how both increase the factor of safety compared to operation on earth.
	(d)	$RC = 20 \times 10^{3} \times 100 \times 10^{-6} = 2$ $V_{A} = -\frac{1}{2} \int (2 - 0 \cdot 2t) dt$ $V_{A} = -\frac{1}{2} (2t - 0 \cdot 1t^{2}) + C$ When t=0, V _A = 0, so C = 0 $V_{A} = -t + 0.05t^{2}$	2	1 mark Integration to produce expression for V_A . This mark is available for $-(2t - 0 \cdot 1t^2)$ The inversion is recognised, and the function of t is integrated, but the RC factor is omitted. 1 mark Find V_A by applying the condition for its value when $t = 0$ Note that this mark is not available if 1. if the integration is completed but without consideration of the initial condition (no constant of integration C) and/or 2. if the RC time constant has been omitted.

Que	estion	Expected response	Max mark	Additional guidance
8. ((e)	2 -0 -1 -0 -2 -0 -3 -0 -4 -0 -5 -1 0 -1 5 -1 0 -1 5 -1 0 -2 -0 -3 -0 -4 -0 -5 -1 0 -1 5 -1 0 -1 5 -1 0 -1 -1 0 -1 -1 0 -1 -1 0 -1 0	3	1 mark Inverted sum 1 mark Curve and straight sections 1 mark Plot values t = 0, 4 V t = 6, 5.8 V t = 10, 5 V t = 15, 5V

Question		Expected response	Max mark	Additional guidance
8. ((f)	From the graph $V_{GS} = 3.9V$ $I_D = 920\mu A$ $V_S = 920 \times 10^{.6} \times 1.5 \times 10^3$ $V_S = 1.38V$ $V_G = 1.38 + 3.9$ $V_G = 5.28 \vee$ $\frac{R_1}{R_2} = \frac{18 - 5 \cdot 28}{5 \cdot 28}$ $R_I = 2.409 \times R_2$ Using the design rule $\frac{1}{R_T} = \frac{1}{2.409R_2} + \frac{1}{R_2}$ Working with all resistances in k Ω $\frac{1}{100} = \frac{1}{2.409R_2} + \frac{1}{R_2}$ $\frac{1}{100} = \frac{3.409}{2.409R_2}$ $R_2 = 141.509 \dots$ $R_1 = 141.509 \dots \times 2.409$ $R_1 = 340k\Omega$, $R_2 = 140k\Omega$	5	1 mark Determine suitable value for V_{GS} and I_D from graph 1 mark Calculate V_S 1 mark Calculate V_G (if V_G is the value of V_{GS} from the graph do not award this mark) 1 mark Calculate resistor ratio. 1 mark Calculate resistor ratio. 1 mark Calculate correct values for R_1 and R_2 Note: V_{GS} – theoretically $3 \cdot 92V\left(\frac{k}{2} = 250 \times 10^{-6} AV^{-2}\right)$ Accept $V_{GS} = 3 \cdot 9V - 3 \cdot 95V$ Accept $V_{GS} = 3 \cdot 9V - 3 \cdot 95V$ Accept $I_{DS} = 910\mu A - 930\mu A$ Within these ranges $141kQ \le R_1 \le 142kQ$ $342kQ \ge R_2 \ge 337kQ$ Both ranges will round to $R_1 = 340kQ, R_2 = 140kQ$

Question		n	Expected response	Max mark	Additional guidance
9.	(a)		T = Fr $T = (15700 - 14200) \times \frac{1 \cdot 2}{2}$ = 900 Nm $F_{t} = \frac{1}{r_{g}} = \frac{20^{\circ}}{(0.3)} = 6 \times 10^{3} \text{ N}$ $F_{t} = F_{t} \tan \theta$ $= 6 \times 10^{3} \tan 20^{\circ}$ $= 2 \cdot 18 \dots \text{ kN}$ $= 2 \cdot 2 \text{ kN}$	3	The torque at the gear must be equal and opposite to the torque applied by the loads on the pulley. 1 mark Calculate the net torque on the pulley. The gear force F_g can be resolved into a tangential (horizontal), F_t , force and a radial (vertical), F_r , force which are related by the fixed pressure angle of 20°. Tangential force provides the balancing torque. 1 mark Calculate the tangential component of the gear force. 1 mark Calculate the radial component of the gear force.
	(b)		The gear force is an action force from a gear pair and therefore acts in the direction of rotation. This means that the gear and the pulley (they are connected) is rotating in a counterclockwise direction, therefore the lift is being raised.	2	 1 mark Gear force is an 'action' force in the direction of rotation – it produces the driving torque. 1 mark Gear and pulley turn in the direction of the driving torque – anticlockwise.

Question	Expected response	Max mark	Additional guidance
9. (C)	not to scale y reactions in x-y plane z reactions in x-z plane $33591 N$ $37400 N$ R_{By} R_{By} To find the force at end B, take moments about end A, $\sum M_A = 0$ Moments of forces in vertical plane $(x-y)$ $-(13612 \times 0.1) + (33591 \times 0.4) - (R_{By} \times 0.7) = 0$ $R_{By} = 17250.28N$ Moments of forces in horizontal plane $(x-z)$ $(37400 \times 0.1) - (10041 \times 0.4) - (R_{Bz} \times 0.7) = 0$ $R_{Bz} = -394 \cdot 85N$ Reaction at B, $R_B = \sqrt{R_{By}^2 + R_{Bz}^2}$ $R_B = \sqrt{(17250 \cdot 28)^2 + (-394 \cdot 85)^2}$ $= 17254 \cdot 798N$	4	 1 mark Resolve the pulley and gear forces. The vertical 33591 N force is comprised of the 23550 N force due to the lift and the vertical component at 45° of the counterweight, 10041 N. 1 mark Calculate bearing load in the vertical plane. 1 mark Calculate bearing load in the horizontal plane. If moment equilibrium is written correctly for both planes, but one or both reactions are miscalculated, then award second mark but not third mark. 1 mark Calculate magnitude of bearing load. This mark is available as follow through if moments have been attempted in both planes.

Question		n	Expected response	Max mark	Additional guidance
9.	(d)		For equilibrium $T = T_{L}$ $(600 + 2n) = 80\sqrt{n}$ $(600 + 2n)^{2} = 6400n$ $360000 + 2400n + 4n^{2} = 6400n$ simplify $n^{2} - 1000n + 90000 = 0$ Solve the quadratic equation for roots of n, $n = \frac{-(-1000) \pm \sqrt{(-1000)^{2} - (4 \times 1 \times 90000)}}{2 \times 1}$ $n = \frac{1000 \pm 800}{2} = 100 \text{ or } 900 \text{ rev min}^{-1}$	3	1 mark Recognise that system is in equilibrium so torques must balance. $T = T_L$ OR $(600 + 2n) = 80\sqrt{n}$ 1 mark Rearrange to form quadratic. 1 mark Rearrange to form quadratic. 1 mark Solve for two possible running speeds with units. Note: $n^2 - 1000n + 90000 = 0$ $\Rightarrow (n^2 - 100)(n - 900) = 0$ $\Rightarrow n - 100 = 0$ OR $n - 900 = 0$ n = 100 OR $n = 900$
	(e)		$M_{a} = \frac{4029 - 1664}{2 \cdot 5} = 946$ $M_{i} = \frac{3357 - 1259}{2.5} = 839 \cdot 2$ Gain error = 946 / 839 \cdot 2 = 1 \cdot 127 Gain error = 1 \cdot 13	3	 1 mark Calculate <i>Ma.</i> 1 mark Calculate <i>Mi.</i> 1 mark Calculate the gain error.
	(f)		In the first program the status <i>flag</i> is overwritten every time a new button is pressed. In the second program a bitwise OR operation ensures that the status of each bit is not overwritten. Example: 10001100 00000001 will give 10001101	2	 1 mark Identify that <i>flag</i> is overwritten each time 1 mark Recognise that bitwise OR operation allows <i>flag</i> to be updated without overwriting previous bits

[END OF MARKING INSTRUCTIONS]