

HP2K 48, Software Development: Data Structures (SCQF level 8) 1

SQA Advanced Unit Sspecification: general information

Unit title: Software Development: Data Structures

Unit code: HP2K 48

Superclass: CB

Publication date: August 2017

Source: Scottish Qualifications Authority

Version: 01

Unit purpose

This Unit is designed to enable candidates to become familiar with the data structures and
collection classes in common use within current software development environments. This
knowledge will be supplemented by the coding of collection and/or aggregation associations
using appropriate standard generic collection classes.

The Unit is a mandatory Unit for the SQA Advanced Diploma in Computing: Software
Development and has been designed to enhance candidates’ programming and algorithm
design skills. These skills should help prepare candidates for employment and/or further
study in the field of software development.

On completion of the Unit the candidate should be able to:

1 Describe data representation and storage in computer systems.
2 Describe and use data structures.
3 Describe, develop and use abstract data types.
4 Use Standard Collection classes to implement object oriented designs.

Recommended prior knowledge and skills

Access to this Unit will be at the discretion of the centre, however it is recommended that
candidates should have prior experience of appropriate high-level languages and systems
development. This may be demonstrated by possession of the core SQA Advanced
Certificate Computing Units along with the software development SQA Advanced Unit
Software Development: Developing Small Scale Standalone Applications (HP2N 47).
Alternatively, candidates may have considerable practical work experience and some
appreciation of the role of data structures in program design and program implementation.
Ideally the Unit should be delivered alongside the SQA Advanced Unit Software

Development: Object Oriented Programming (HP2L 48).

SQA Advanced Unit Specification

HP2K 48, Software Development: Data Structures (SCQF level 8) 2

Credit points and level

2 SQA Credits at SCQF level 8: (16 SCQF credit points at SCQF level 8*)

*SCQF credit points are used to allocate credit to qualifications in the Scottish Credit and
Qualifications Framework (SCQF). Each qualification in the Framework is allocated a number of
SCQF credit points at an SCQF level. There are 12 SCQF levels, ranging from National 1 to
Doctorates.

Core Skills

Opportunities to develop aspects of Core Skills are highlighted in the Support Notes of this
Unit specification.

There is no automatic certification of Core Skills or Core Skill components in this Unit.

Context for delivery

If this Unit is delivered as part of a Group Award, it is recommended that it should be taught
and assessed within the subject area of the Group Award to which it contributes.

SQA Advanced Unit Specification

HP2K 48, Software Development: Data Structures (SCQF level 8) 3

Unit specification: statement of standards

Unit title: Software Development: Data Structures

Unit code: HP2K 48

The sections of the Unit stating the Outcomes, Knowledge and/or Skills and Evidence
Requirements are mandatory.

Outcome 1

Describe data representation and storage in computer systems.

Knowledge and/or Skills

♦ Representation of simple and structured data types

♦ Static and dynamic memory allocation

♦ Standard File types including compression, images, sound and video

♦ XML data files

Evidence Requirements

Candidates will need to provide evidence to demonstrate their Knowledge and/or Skills by
showing that they can describe:

♦ the representation of at least three simple data types (eg character, integer, floating

point, Boolean, etc.) relative to the programming language used

♦ the representation of structured data types including string, record, table, one-
dimensional array and two-dimensional array

♦ static and dynamic memory allocation

♦ at least two Standard File types for images, sounds, video or compression

♦ XML data file structure

Outcome 1 should be assessed using a closed-book knowledge based assessment such as
an objective test that covers all of the requirements outlined in the Evidence Requirements
for the Outcome. Suggested approaches are outlined in the Support Notes, Guidance on the
assessment of this Unit.

SQA Advanced Unit Specification

HP2K 48, Software Development: Data Structures (SCQF level 8) 4

Outcome 2

Describe and use abstract data structures.

Knowledge and/or Skills

♦ Array data structures

♦ Linked List data structures

♦ Binary Tree data structure

♦ Hash Table data structure

♦ Searching and sorting algorithms

♦ Insertion and deletion algorithms

Evidence Requirements

Most of the evidence for this Outcome will be obtained from the practical assessment
described in the Evidence Requirements for the Unit.

In addition candidates will need to provide evidence to demonstrate their Knowledge and
Skills by showing that they can:

♦ step through three data structure algorithms (these must include at least one sort and

one search algorithm)

This assessment must be conducted under supervised open-book conditions and the
questions presented must change on each assessment occasion. The assessment may be
conducted as three separate half hour exercises or as a single assessment with three
questions. Possible approaches are described in the assessment guidelines.

Outcome 3

Describe, develop and use abstract data types.

Knowledge and/or Skills

♦ Concept of an Abstract Data Type (ADT)

♦ Concept of a range of ADTs including Stack, Queue, Set, List and Map

♦ Develop Interfaces (method signatures) for a range of ADTs including Stack, Queue,
Set, List and Map

♦ Implement a Stack, Queue and List using a given array data structure

♦ Implement a Stack, Queue and List using a given linked list data structure

Evidence Requirements

See Evidence Requirements for the Unit.

SQA Advanced Unit Specification

HP2K 48, Software Development: Data Structures (SCQF level 8) 5

Outcome 4

Use Standard Collection classes to implement object oriented designs.

Knowledge and/or Skills

♦ Concept of Generics

♦ Inserting and deleting from collections

♦ Iterating through Collections

♦ Implementing associations using standard collection classes

♦ Implementing a Map using standard collection classes

♦ Implementing a Set using standard collection classes

♦ Testing implemented code.

Evidence Requirements

See Evidence Requirements for the Unit.

Evidence Requirements for the Unit

As an alternative to traditional assessment methods (eg paper-based), Candidates can
provide a digital record of evidence to demonstrate Knowledge and/or Skills. Suggested
approaches are outlined in the Support Notes, Guidance on the assessment of this Unit.

Outcome 1

This Outcome should be assessed using a closed-book knowledge based assessment such
as an objective test that covers all of the requirements outlined in the Evidence
Requirements for the Outcome.

Outcome 2 (partial)

The candidate’s ability to follow algorithms should be assessed using a supervised open-
book assessment as described in the Evidence Requirements for the Outcome.

Outcomes 2 (partial), 3 and 4

These Outcomes should be assessed using the practical based assessment for the Unit
described below.

SQA Advanced Unit Specification

HP2K 48, Software Development: Data Structures (SCQF level 8) 6

Practical Based Assessment

Candidates will need to provide evidence to demonstrate their Knowledge and/or Skills by
showing that they can:

♦ develop interfaces (method signatures) for two ADTs selected from Stack, Queue, Set,

List and Map

♦ use an Array data structure to implement an ADT selected from Stack, Queue or List

♦ use a Linked List data structure to implement an ADT selected from Stack, Queue or
List

♦ use standard collection classes to implement a Map or a Set

♦ use standard collection classes to implement collection and/or aggregation associations

♦ implement code that iterates through data stored in standard collection classes

♦ test implemented code using given test plans

This assessment should be conducted under open-book conditions and may well consist of
a series of implementation completion exercises conducted during the delivery of the Unit.
Candidates should be given the designs and partial classes to allow them to concentrate on
implementing the associations and corresponding methods.

SQA Advanced Unit Specification

HP2K 48, Software Development: Data Structures (SCQF level 8) 7

Unit specification: support notes

Unit title: Software Development: Data Structures

This part of the Unit specification is offered as guidance. The support notes are not
mandatory.

While the exact time allocated to this Unit is at the discretion of the centre, the notional
design length is 80 hours.

Guidance on the content and context for this Unit

This Unit is designed to enable Candidates to become familiar with the data structures and
collection classes in common use within current software development environments. This
knowledge will be supplemented by the coding of collection and/or aggregation associations
using appropriate standard generic collection classes. The Unit is a mandatory Unit for the
SQA Advanced Diploma in Computing: Software Development and ideally should be
delivered in tandem with the SQA Advanced Unit Software Development: Object Oriented
Programming (HP2L 48).

The Unit may be used as a stand-alone Unit within other frameworks but should be restricted
to courses at SCQF level 8 or equivalent within the disciplines of Computer Science or
Information Systems.

Outcome 1

The first Outcome provides an opportunity to study how various data types are represented
and stored in computer systems. The range of primitives should cover integers, floating point
numbers, characters and Boolean as appropriate to the implementation language used. The
representation of structured data types should include strings, records, tables, one-
dimensional arrays and two-dimensional arrays. Candidates should be familiarised to
common standards such as IEEE 754 for floating points as well as ASCII and Unicode
standards for characters. The difference between static and dynamic memory allocation
should be described. Candidates should be introduced to the concept of file storage
including text and binary files. They should be aware of the purpose of common image,
audio, video and compression file standards.

Outcome 2

The second Outcome concentrates on a range of data structures commonly used within
software development environments. Candidates should be introduced to both linear and
circular array data structures, single and double linked list data structures, binary tree data
structures and hash table data structures. The Outcome also looks at some of the common
algorithms used with data structures to add, remove and sort items within a data structure as
well as how to search for data. The searching algorithms covered should cover linear, binary
and hash table searching techniques to illustrate how the efficiency of searches can be
dependent on the underlying data structure. The sorting algorithms should cover an
appropriate range (eg contrast bubble and selection sorts with the merge and quick sorts) to
illustrate how the time efficiency can be improved at the expense of increased space
complexity. Candidates should be introduced to the concept of recursive algorithms to
enable them to understand their advantages and disadvantages as compared to iterative
algorithms.

SQA Advanced Unit Specification

HP2K 48, Software Development: Data Structures (SCQF level 8) 8

Outcome 3

The third Outcome introduces the Candidate to the concept of an abstract data type and how
an ADT defines the method signatures rather than the internal workings, reinforcing the
concept of encapsulation. Candidates should be given the opportunity to implement a range
of common collection ADTs using more than one data structure.

Outcome 4

The final Outcome introduces Candidates to the concept of generics in order to allow them
to understand how standard generic collection classes can be used to implement collection
and aggregation associations. They should be taught how to iterate through collections and
how to select appropriate collection classes to implement associations dependent on the
scenario. The scenarios selected should include scenarios that would relate to the ADTs
introduced in Outcome 3.

This Unit covers some of the skills described for a pre-entry/junior technician role in the
National Occupational Standards — IT and Telecoms (2009). The main areas covered
correspond to disciplines 4.7 Systems Design, 5.1 Systems Development, 5.2 Software
Development and 5.3 IT/Technology Solution Testing. There are also ample opportunities
within the Unit to address a range of skills at both foundation and intermediate level that are
described in the National Occupational Standards for IT Users v3. The most likely area to be
covered would be IT Software Fundamentals and Using the Internet.

SQA Advanced Unit Specification

HP2K 48, Software Development: Data Structures (SCQF level 8) 9

Guidance on the delivery of this Unit

Although this Unit has been designed to be programming language independent, it will
require the use of an object oriented programming environment that has an appropriate
generic collection class library. At the time of writing Java or any of the.Net languages that
support the.net generic collection class library would be appropriate.

Outcome 1

This Outcome should be delivered first as it provides candidates with the fundamental
concepts of how data is stored within computer systems. This knowledge will help prepare
Candidates for the later Outcomes.

Candidates should be introduced to both signed and unsigned integer data types and be
made aware of the potential problems of type conversion between the two. The use of
standards in defining how data is stored should be emphasised to encourage candidates to
think about cross platform compatibility. Candidates should be aware of how floating point
numbers are stored but should not be expected to memorise the conversion methodology.
Candidates should be aware of how the storage of user defined data types is dependent on
the simpler types of the record fields. Strings should be introduced by illustrating how
characters can be stored using ASCII or Unicode (specifically UTF-16) and then introducing
the concept of character arrays. String classes could then be covered by utilising the debug
facility of the development environments to allow candidates to view the component
attributes. The additional methods provided can be highlighted using the environment’s
intellisense options (if available). One possible method of introducing 2d arrays is by looking
at bitmap images — this could then also lead on to standard bitmap file types such as JPEG.
The differences between text and binary files can be highlighted by illustrating how text files
are readily readable by text editors and/or from memory dumps as compared to how binary
files need to be opened by an application that ‘knows’ how the data is stored. The range and
purpose of standard file types should include standard bitmap image, vector image, sound,
video and compression formats. The basic format of xml data documents should be
introduced to illustrate how this file format allows data to be transferred in a compatible
manner.

Outcomes 2 and 3

It would make sense to deliver these two Outcomes in tandem. A possible approach would
be to start by looking at linear array data structures and using implementation exercises to
allow candidates to build a linear array data structure for a simple data type (integer or
character). The linear and binary search techniques could then be illustrated by using both
paper-based tracing exercises and implementation exercises. This also allows you to
introduce the big O notation for analysing the efficiency for algorithms. Graphs could be used
to contrast the time taken for the worst case search for both the linear (directly proportional
to size O(n)) and the binary search (logarithmically proportional to size O(log n)). It might be
sensible to introduce the concept of a hash table here to let candidates see how closed hash
tables allow O(1) searching algorithms. The concept of a circular array data structure could
then be introduced and an implementation exercise given out to those who are ahead,
allowing consolidation time for any candidates who are struggling.

SQA Advanced Unit Specification

HP2K 48, Software Development: Data Structures (SCQF level 8) 10

This could be followed by looking at the concept of an ADT and using implementation
exercises to build a simple ADT such as a Date or Weight class. If C# is used as the
implementation exercise, this could be built using a struct. This option would also allow you
to emphasise the difference between by reference and by value parameter passing. The
concept of a Stack and a Queue could then be introduced. Candidates could use
implementation exercises to develop interfaces for a Stack and Queue of integers (or
characters) and then produce classes that implement the interfaces and use the linear array
data structure developed earlier. This would allow candidates to understand the concept of
interfaces preparing them for using standard collection class libraries. It would also be
possible to cover some of the assessment criteria for the practical based assessment.

The concept of a sorted list could then be introduced, allowing you to cover the sorting
algorithms. The simpler in place O(n) sorting algorithms (eg Bubble and Selection) could be
demonstrated using a mixture of animations and implementation exercises. The more
complex O(log n) algorithms (eg merge and quick sort) could be demonstrated by using
animations to illustrate the vastly improved time efficiency. This is also an opportunity to
introduce the concept of recursive algorithms to help explain the increased space
complexity. One method of doing this would be to look at an iterative and a recursive factoral
algorithm. Both could be coded and then stepped through using the debug facilities in the
chosen development environment allowing the candidates to observe the recursive methods
being pushed onto the dynamic memory stack. The assessment criteria for part b of the
knowledge based assessment could be covered here.

The concept of a linked list data structure could be introduced by looking at how they work
(reinforcing the concept of dynamic memory allocation) and then using implementation
exercises to build a single linked list (SLL) data structure for a simple data type (integer or
character). This data structure could then be compared to the linear array data structure to
illustrate the advantages and disadvantages of both data structures. It could then be used to
replace the linear array data structure used earlier to implement a Stack. This will reinforce
the concept of an ADT by illustrating how the method signatures remain the same although a
different data structure has been used in the implementation. You could then discuss how
the SLL would not be suitable for a implementing a Queue and then introduce the concept of
a double linked list (DLL). This again gives an opportunity for consolidation by allowing those
that are ahead to implement a DLL data structure whilst allowing consolidation time for any
candidates who are struggling. Candidates could then implement a Queue using a given
DLL data structure that implements the Queue interface developed earlier. Again there are
opportunities here to cover some of the assessment criteria for the practical based
assessment.

Perhaps the best way to introduce the concept of a tree data structure is to use an
implementation exercise where the candidates develop a binary search tree for holding a
simple ordinal data type (eg integer or character). This could be reinforced by using
animations to illustrate how they work.

The concept of a Set and a Map ADT could be introduced at this point by using animations.
These could then be implemented later once the candidates are familiar with the generic
standard class libraries.

There are many resources available on the web that could be used to help illustrate the
concepts covered in these Outcomes. Perhaps one of the most useful starting points is the
NIST Dictionary of Algorithms and Data Structures.

http://xlinux.nist.gov/dads/

SQA Advanced Unit Specification

HP2K 48, Software Development: Data Structures (SCQF level 8) 11

Outcome 4

The final Outcome concentrates on providing candidates with the skills and knowledge to
use the standard collection classes provided with development environments. Candidates
should be introduced to the concept of generics before starting to use the libraries. This also
allows you to illustrate how generics can be used to develop more powerful ADTs that can
be used for any data types in a type safe manner. You could illustrate this by demonstrating
how the standard class libraries could be used to implement a Set and a Map.

Perhaps the most sensible manner to approach this Outcome is to work through some
examples starting from simple class diagrams showing a single collection or aggregation
association. Candidates could then undertake completion exercises where they are given
the classes and then implement the associations and related methods.

There are opportunities to use some of these exercises as part of the assessment criteria for
the practical based assessment.

Guidance on the assessment of this Unit

All of the assessments for this Unit could be undertaken using e-assessment. The closed-
book assessment for Outcome 1 lends itself to a standard online objective assessment. The
assessment for Outcome 2 (under supervised conditions) could make use of e-documents.
The practical assessment for the Unit could be undertaken using an e-portfolio with links to
the completed implementation exercises and test data.

Assessment Guidelines

Outcome 1 — closed-book Knowledge Based Assessment

This closed-book assessment covers some the concepts studied in Outcomes 1 and could
be conducted using a knowledge based assessment such as a closed-book objective test
consisting of 30 questions with a one hour maximum time duration. The assessment should
include a range of questions covering each of the topics below:

♦ Minimum of six questions covering unsigned integers, signed integers, ASCII, Unicode,

floating point numbers and Boolean

♦ Minimum of five questions covering the representation of structured data types including
string, record, table, one-dimensional array and two-dimensional array

♦ Minimum of two questions covering static and dynamic memory allocation

♦ Minimum of four questions covering standard file types for images, sounds, video and
compression

♦ Minimum of two questions covering XML data file structure

♦ Minimum of four questions covering data structures including Arrays, Linked Lists,
Binary Tree and Hash Table

The questions presented should change on each assessment occasion and care should be
taken to ensure that there is an appropriate mix of question cognitive levels for an SCQF
level 8 Unit. A range of objective question types could be use although it is unlikely that
simple true/false questions would be appropriate.

SQA Advanced Unit Specification

HP2K 48, Software Development: Data Structures (SCQF level 8) 12

The assessment should be undertaken in supervised conditions and is closed-book. A
Candidate should complete this assessment within one hour. Candidates may not bring to
the assessment event any notes, textbooks, handouts or other material.

Candidates should answer at least 18 of the questions correctly to pass the assessment.

An alternative approach to this assessment would be to use a closed-book short response
style assessment abiding by the Evidence Requirements.

Outcome 2 Assessment under Supervised Conditions

One approach to this assessment would to use a series of three desk checking exercises
covering at least one searching algorithm and at least one sorting algorithm. Candidates
should be given the algorithm and data set. Each desk checking exercise should have a
maximum duration of 30 minutes.

An alternative approach would be to use the debug facilities within the chosen development
environment to allow the candidates to step through implementations of the algorithms. They
could use the trace to count the number of comparisons and/or swaps as appropriate to the
algorithms. Some candidates may well realise that they could edit the code to do this and
this approach should be encouraged. The algorithms used must include at least one
searching and at least one sorting algorithm. Candidates could provide recordings of the
traces as evidence. It is envisaged that each trace would take no longer than 30 minutes.

This assessment must be undertaken in supervised conditions.

Practical Based Assessment

The practical based assessment for the Unit could be undertaken by using a series of
development exercises that the candidates build into a portfolio of evidence. The guidance
on delivery section illustrates where these exercises could be interspersed with the learning
process. A possible approach would be to split the assessment into four exercises as
detailed below.

♦ Develop interfaces (method signatures) for two ADTs selected from Stack, Queue, Set,

List and Map

During the delivery, candidates could be shown how to implement interfaces for one or
more of the ADTs and then be given an exercise where they have to develop interfaces
for two ADTs given the static model. The method signatures developed for the
interfaces should be kept to the minimum required to identify the specific ADT, eg for a
Stack this should include pop and push. This exercise should take no more than one
hour.

SQA Advanced Unit Specification

HP2K 48, Software Development: Data Structures (SCQF level 8) 13

♦ Use an Array data structure to implement an ADT selected from Stack, Queue or List.

This exercise should be given after the candidates have developed an array data
structure during class based activities. They could then develop a class that uses the
array data structure and implements one of the ADTs developed earlier. Candidates
should be given the static model. This exercise should take no more than one hour.

♦ Use a Linked List data structure to implement an ADT selected from Stack, Queue or
List.

This exercise should be given after the candidates have developed a linked list data
structure during class based activities. They could then develop a class that uses the
linked list data structure and implements one of the ADTs developed earlier. Candidates
should be given the static model and the exercise should take no more than one hour.

♦ Use standard collection classes to implement a Map or a Set.
♦ Use standard collection classes to implement collection and/or aggregation

associations.
♦ Implement code that iterates through data stored in standard collection classes.
♦ Test implemented code using given test plans.

This exercise should be given at the end of the teaching process, allowing the candidate
to consolidate their understanding and skills. The exercise could take the form of a
completion exercise where the candidates are given a starter project that might well
include the GUI. The candidates should be given an appropriate UML model that will
allow them to use standard collection classes to implement a relatively simple problem.
Two possible scenarios that could be used would to develop a candidate database or
address book.

Online and Distance Learning

It would be perfectly feasible to develop a range of blended learning material to support
distance learners. Online technology such as e-learning objects and links from virtual
learning environments could be used support this type of delivery. Support for distance
learners could be provided by both synchronous and asynchronous communication
technologies such as the use of virtual classrooms and forums.

Part A of the knowledge based assessment could be delivered using an online objective
assessment and part B could make use of video to record stepping through the algorithms.
The practical based assessment could make use of an E-portfolio. Care would need to be
taken to ensure the authenticity of assessments undertaken by distance learners.

SQA Advanced Unit Specification

HP2K 48, Software Development: Data Structures (SCQF level 8) 14

Opportunities for the use of e-assessment

E-assessment may be appropriate for some assessments in this Unit. By e-assessment we
mean assessment which is supported by Information and Communication Technology (ICT),
such as e-testing or the use of e-portfolios or social software. Centres which wish to use
e-assessment must ensure that the national standard is applied to all candidate evidence
and that conditions of assessment as specified in the Evidence Requirements are met,
regardless of the mode of gathering evidence. Further advice is available in SQA Guidelines
on Online Assessment for Further Education (AA1641, March 2003).

Opportunities for developing Core Skills

Although there is no automatic certification of Core Skills or Core Skill components in this
Unit, there are opportunities for developing Problem Solving skills at SCQF level 6.

Equality and inclusion

This unit specification has been designed to ensure that there are no unnecessary barriers
to learning or assessment. The individual needs of learners should be taken into account
when planning learning experiences, selecting assessment methods or considering
alternative evidence.

Further advice can be found on our website www.sqa.org.uk/assessmentarrangements.

http://www.sqa.org.uk/assessmentarrangements

SQA Advanced Unit Specification

HP2K 48, Software Development: Data Structures (SCQF level 8) 15

History of changes to Unit

Version Description of change Date

 Copyright SQA 2012, 2017

This publication may be reproduced in whole or in part for educational purposes provided
that no profit is derived from reproduction and that, if reproduced in part, the source is
acknowledged.

SQA acknowledges the valuable contribution that Scotland’s colleges have made to the
development of SQA Advanced Qualifications.

FURTHER INFORMATION: Call SQA’s Customer Contact Centre on 44 (0) 141 500 5030 or
0345 279 1000. Alternatively, complete our Centre Feedback Form.

https://www.sqa.org.uk/sqa/77338.html?id=2

SQA Advanced Unit Specification

HP2K 48, Software Development: Data Structures (SCQF level 8) 16

General information for candidates

Unit title: Software Development: Data Structures

Data structures are used in all but the simplest developments and hence are a topic that you
will need to understand if you want to develop software applications. The Unit starts by
allowing you to explore how different types of data are stored in computer systems and how
the use of standards allows data to be transferred from one system to another system.

The Unit then introduces you to a range of data structures that can be used to store
collections of data and illustrates how these can be used to implement some common
abstract data types such as Queues and Lists. You will also be shown how the efficiency of
searching for and sorting data can be improved using a range of algorithms. This should
help you enhance your own skills in using and developing algorithms.

The final Outcome of the Unit will allow you to further enhance your programming skills by
teaching you how to use the generic collection class libraries provided in development
environments. These skills are essential if you want to be able to program object oriented
designs.

The Unit is assessed using three assessments. The first assessment is a knowledge based
assessment that helps to ensure that you have the background knowledge required to
develop skills in using data structures. The second assessment looks at your ability to follow
an algorithm. The final assessment consists of a number of implementation exercises that
enable you to develop your implementation skills.

