Overview

This standard covers a broad range of basic computer numerical control (CNC) turning competences that will prepare you for entry into the engineering or manufacturing sectors, creating a progression between education and employment, or that will provide a basis for the development of additional skills and occupational competences in the working environment.

In preparing the machine, you will be expected to select the appropriate workholding devices, and to mount and secure them to the machine spindle. You will be required to select the appropriate cutting tools, to mount and secure them to the appropriate tool holding devices, and to place the cutting tools in the relevant positions within the tool posts, turrets, slides or tool change magazine/carousel, where this is applicable.

You will need to ensure that all the tools have been allocated a relevant tool number, and that the relevant data on their co-ordinates and datum positions is entered into the operating program and machine. This will involve loading and checking component programs, checking for errors/faults, and editing and saving program changes. You will also be required to adjust the machine tool equipment and program, following editing procedures, to achieve component specification. You will be expected to produce components that combine a number of different features, such as parallel, stepped and tapered diameters, drilled, bored and reamed holes, internal and external threads, and special forms/profiles.

During, and on completion of, the turning operations, you will be expected to check the quality of the workpiece, using measuring equipment appropriate to the aspects being checked and the tolerances to be achieved. On completion of the turning activities, you will be expected to remove all cutting tools and workholding devices, and to leave the machine and work area in a safe and tidy condition.

Your responsibilities will require you to comply with health and safety requirements and organisational policy and procedures for the CNC turning activities undertaken. You will need to take account of any potential difficulties or problems that may arise with the turning activities, and to seek appropriate help and advice in determining and implementing a suitable solution. You will work under a high level of supervision, whilst taking responsibility for your own actions and for the quality and accuracy of the work that you produce.

Your underpinning knowledge will provide an understanding of your work, and will enable you to apply appropriate CNC setting and turning techniques safely.
You will understand the CNC turning process, and its application, and will know about the equipment, workholding devices, tooling, machine operating programs and setting-up procedures, to the required depth to provide a sound basis for carrying out the turning activities to the required specification.

You will understand the safety precautions required when working with the CNC lathe, and with its associated tools and equipment. You will be required to demonstrate safe working practices throughout, and will understand the responsibility you owe to yourself and others in the workplace.

Specific Standard Requirements
In order to prove your ability to combine different turning operations, at least one of the machined components produced must be of a significant nature, and must have a minimum of **five** of the features listed in scope 5.
Performance criteria

You must be able to:

P1 work safely at all times, complying with health and safety legislation, regulations and other relevant guidelines
P2 plan the CNC machining activities before you start them
P3 load/input the program to the machine controller and check the program for errors using the approved procedures
P4 mount and set the required workholding devices, workpiece and cutting tools
P5 check that all safety mechanisms are in place, and that the equipment is set correctly for the required operations
P6 run the operating program, and check and adjust the machine tool speeds, feeds and operating parameters to achieve the component specification
P7 measure and check that all dimensional and geometrical aspects of the component are to the specification
P8 deal promptly and effectively with problems within your control, and seek help and guidance from the relevant people if you have problems that you cannot resolve
P9 shut down the equipment to a safe condition on completion of the machining activities
Knowledge and understanding

You need to know and understand:

K1 the safe working practices and procedures to be followed when preparing and using CNC lathes (such as ensuring the correct isolation of the machine before mounting workholding devices and tooling; fitting and adjusting machine guards; ensuring that the workpiece is secure and tooling is free from the workpiece before starting the machine)

K2 the hazards associated with the using CNC lathes, (such as automatic machine operations, power operated chucks, revolving/moving parts of machinery, airborne and hot metal particles, sharp cutting tools, and burrs and sharp edges on components), and how they can be minimised

K3 the personal protective equipment (PPE) to be worn for the CNC turning activities (such as correctly fitting overalls and safety glasses; ensuring that, if you have long hair, it is tied back or netted; and removing any jewellery or other items that can become entangled in the machinery)

K4 the safety mechanisms on the machine (such as emergency stop buttons, emergency brakes), and the procedure for checking that they function correctly

K5 the correct operation of the various hand and automatic modes of machine control (such as program operating and control buttons)

K6 how to stop the machine in both normal and emergency situations, and the procedure for restarting after an emergency

K7 how to use and extract information from engineering drawings or data and related specifications (to include symbols and conventions to appropriate BS or ISO standards) in relation to work undertaken

K8 how to interpret first and third angle drawings, imperial and metric systems of measurement, absolute and incremental systems, workpiece zero/reference points and system of tolerancing

K9 the computer coding language used in CNC programs, with regard to machine axes, positional information, machine management and auxiliary/miscellaneous functions

K10 how to set the machine controller in the program and editing mode, and how to enter or download the prepared program

K11 how to deal with error messages and faults on the program or equipment

K12 the range of workholding methods and devices that are used on CNC lathes

K13 why it is important to set the workholding device in relationship to the machine datums and reference points

K14 the methods of setting the workholding devices, and the tools and equipment that can be used

K15 the range of cutting tools that are used on CNC lathes, and typical applications

K16 how to check that the cutting tools are in a safe and serviceable
Preparing and using CNC turning machines

condition
K17 the use of tungsten carbide, ceramic and diamond indexible tips, and the factors that determine their selection and use (such as the condition of material supplied, hardness of the material, the cutting characteristics of the material, tolerances to be achieved, component surface finish and specifications)

K18 the various tool holding devices that are used, and the methods of correctly mounting and securing the cutting tools to the tool holders

K19 the advantages of using pre-set tooling, and how to set the tooling by using setting jigs/fixtures

K20 the use of tool posts, magazines and carousels, and how to position and identify the tools in relationship to the operating program

K21 how to place the machine into the correct operating mode, and how to access the program edit facility in order to enter tooling data (such as tool datums, positions, lengths, offsets and radius compensation)

K22 how to conduct trial runs using single block run, dry run, and feed and speed override controls

K23 the items that you need to check before allowing the machine to operate in full program run mode

K24 factors that affect the feeds and speeds that can be used, and why these may need to be adjusted from the program setting (such as type and condition of material, workholding method, tooling used, tolerance and finish to be achieved)

K25 the application of cutting fluids with regard to a range of different materials, and why some materials do not require the use of cutting fluids

K26 how to save the completed programs in the appropriate format, and the importance of storing programs and storage devices safely and correctly, away from contaminants and possible corruption

K27 typical problems that can occur with the CNC turning activities, and what to do if they occur

K28 when to act on your own initiative and when to seek help and advice from others

K29 the importance of leaving the work area and machine in a safe condition on completion of the activities (such as correctly isolated, operating programs closed or removed, cleaning the machine, ensuring that any spilt cutting fluids are correctly dealt with and disposing of waste)
Additional Information

Scope/range related to performance criteria

You must be able to:

1. Ensure that you apply all of the following checks and practices at all times during the turning activities:
 1.1 adhere to procedures or systems in place for risk assessment, COSHH, personal protective equipment (PPE) and other relevant safety regulations
 1.2 machine guards are in place and correctly adjusted
 1.3 components are held securely (without damage or distortion)
 1.4 cutting tools are maintained in a suitable/safe condition
 1.5 the work area is maintained and left in a safe and tidy condition

2. Position and secure workpieces, using two of the following workholding methods and devices:
 2.1 chucks with hard jaws
 2.2 chucks with soft jaws
 2.3 fixtures
 2.4 drive centres
 2.5 collet chucks
 2.6 faceplates
 2.7 magnetic/pneumatic devices
 2.8 other workholding devices

3. Select and mount the appropriate tool holding device and six of the following types of cutting tool:
 3.1 roughing tool
 3.2 screw-thread tool
 3.3 centre drills
 3.4 reamers
 3.5 finishing tool
 3.6 profiling tools
 3.7 twist/core drills
 3.8 maxi-tipped drills
 3.9 parting-off tool
 3.10 form tools
 3.11 boring tools
 3.12 carbide insert drills

4. Prepare the tooling for operation by carrying out all the following
Preparing and using CNC turning machines

activities, as applicable to the machine type:

4.1 positioning tools in the correct location in the tool posts, turrets, magazine or carousel
4.2 checking the tool numbers in relation to the CNC program
4.3 entering relevant tool data (such as tool lengths, tool offsets, radius compensation) into the CNC program or control system, as appropriate
4.4 pre-setting tooling using setting jigs/fixtures
4.5 setting tool datum
4.6 saving changes to the program

5. Produce machined components that combine different operations and have features that cover all of the following:
 5.1 parallel diameters
 5.2 stepped diameters
 5.3 flat face
 5.4 drilled holes
 5.5 chamfers and radii
 Plus four more from the following
 5.6 tapered diameters
 5.7 external profiles
 5.8 parting-off
 5.9 internal screw threads
 5.10 undercuts
 5.11 reamed holes
 5.12 eccentric diameters
 5.13 bored holes
 5.14 internal profiles
 5.15 tapped holes
 5.16 external screw threads

6. Confirm that the machine and program operate safely and correctly, by checking all of the following:
 6.1 datums for each machine axis are set in relation to all equipment and tooling used
 6.2 the machining carried out meets the drawing specification
 6.3 tool change positions are safe and clear of the workpiece and machine equipment
 6.4 the correct tools are selected at the appropriate points in the program
 6.5 tool offsets are correctly entered
 6.6 tool cutter paths are executed safely and correctly
 6.7 auxiliary/miscellaneous functions operate at the correct point in the program (cutter start/stop, coolant flow)
 6.8 programs have been saved in the appropriate format
7. Machine components made from two of the following types of material:
 7.1 low carbon/mild steel
 7.2 cast iron
 7.3 plastic or composite
 7.4 high carbon steel
 7.5 brass/brass alloys
 7.6 aluminium/aluminium alloys
 7.7 other specific material

8. Carry out the necessary checks for accuracy, to include all of the following:
 8.1 external diameters
 8.2 parallelism/cylindricity
 8.3 linear dimensions (such as lengths, depths)
 8.4 surface finish
 Plus four more from the following:
 8.5 internal diameters
 8.6 concentricity/coaxiality
 8.7 bore/hole size/fit
 8.8 grooves/undercuts (such as position, width, depth)
 8.9 angle/taper
 8.10 eccentricity
 8.11 thread fit
 8.12 ovality

9. Use all of the following measuring equipment during the machining and checking activities:
 9.1 external micrometers
 9.2 dial test indicators (DTI)
 9.3 Vernier/digital/dial callipers
 9.4 surface finish equipment (such as comparison plates, machines)
 Plus four more of the following:
 9.5 rules
 9.6 bore/hole gauges
 9.7 internal micrometers
 9.8 thread gauges (such as ring, plug, profile)
 9.9 depth micrometers
 9.10 plug gauges
 9.11 depth Verniers
 9.12 radius/profile gauges
 9.13 slip gauges
 9.14 protractors
 9.15 coordinate measuring machine (CMM)

10. Produce components to all of the following quality and accuracy standards, as applicable to the operation:
| 10.1 | components to be free from false tool cuts, burrs and sharp edges |
| 10.2 | general dimensional tolerance +/- 0.25mm or +/- 0.010” |
| 10.3 | there must be one or more specific dimensional tolerances within +/- 0.1mm or +/- 0.004” |
| 10.4 | surface finish 63 μin or 1.6μm |
| 10.5 | reamed holes within H8 |
| 10.6 | screw threads BS medium fit |
| 10.7 | angles/tapers within +/- 0.5 degree |
Developed by
SEMTA

Version number
2

Date approved
December 2011

Indicative review date
December 2016

Validity
Current

Status
Original

Originating organisation
SEMTA

Original URN
15

Relevant occupations
Engineering and manufacturing technologies; Engineering;

Suite
Performing Engineering Operations Suite 2

Key words
engineering, engineering operations, CNC turning machines, manufacturing, cutting tools, tool holding devices, tool posts, turrets, tool change, operating program