Overview

This standard covers a broad range of basic semi-automatic MIG, MAG or flux cored-wire arc welding equipment competences that will prepare you for entry into the engineering or manufacturing sectors, creating a progression between education and employment, or that will provide a basis for the development of additional skills and occupational competences in the working environment.

You will be expected to prepare the welding equipment and to ensure that all leads/cables, shielding gas system, hoses and wire feed mechanisms are securely connected and free from damage. You will also need to obtain and check that all the workholding equipment is in a safe and usable condition.

In preparing to weld, you will need to set and adjust the welding conditions, in line with instructions and/or the welding procedure specification. You must operate the equipment safely and correctly, and make any necessary adjustments to settings in line with your permitted authority, in order to produce the welded joints to the required specification.

On completion of the welding operations, you will be expected to check the quality of the welds using measuring equipment, visual examination and destructive testing techniques, as appropriate to the aspects being checked. You will need to be able to recognise welding defects, to take appropriate action to limit any faults that occur and to ensure that the finished workpiece is within the specification requirements. On completion of the welding activities, you will be expected to return all tools, equipment and workholding devices to their designated location, and to leave the welding equipment and work area in a safe and tidy condition.

Your responsibilities will require you to comply with health and safety requirements and organisational policy and procedures for the welding activities undertaken. You will need to take account of any potential difficulties or problems that may arise with the welding activities, and to seek appropriate help and advice in determining and implementing a suitable solution. You will work under a high level of supervision, whilst taking responsibility for your own actions and for the quality and accuracy of the work that you carry out.

Your underpinning knowledge will provide an understanding of your work, and will enable you to apply appropriate semi-automatic MIG, MAG or flux cored-wire welding techniques safely. You will understand the welding process, and its application, and will know about the equipment, materials and consumables, to the required depth to provide a sound basis for carrying out the activities to the required specification. You will understand the safety precautions required
Preparing and using semi-automatic MIG, MAG and flux cored arc welding equipment

when working with the MIG, MAG or flux cored-wire welding equipment, and with the associated tools and equipment. You will be required to demonstrate safe working practices throughout, and will understand the responsibility you owe to yourself and others in the workplace.

Specific Standard Requirements
Welded joints must be at least 150mm long, using single or multi-run welds (as appropriate), with at least one stop and start included.
SEMPEO2-29 - SQA Unit Code H2M4 04
Preparing and using semi-automatic MIG, MAG and flux cored arc welding equipment

Performance criteria

You must be able to:

P1 work safely at all times, complying with health and safety legislation, regulations and other relevant guidelines
P2 plan the welding activities before you start them
P3 obtain and prepare the appropriate welding equipment and welding consumables
P4 prepare and support the joint, using the appropriate methods
P5 tack weld the joint at appropriate intervals, and check the joint for accuracy before final welding
P6 weld the joint to the specified quality, dimensions and profile
P7 use appropriate methods and equipment to check the quality, and that all dimensional and geometrical aspects of the weld are to the specification
P8 deal promptly and effectively with problems within your control, and seek help and guidance from the relevant people if you have problems that you cannot resolve
P9 shut down and make safe the welding equipment on completion of the welding activities
Preparing and using semi-automatic MIG, MAG and flux cored arc welding equipment

Knowledge and understanding

You need to know and understand:

K1 the safe working practices and procedures to be followed when preparing and using MIG, MAG or flux cored wire arc welding equipment (such as general workshop safety; appropriate personal protective equipment (PPE); fire prevention; protecting other workers from the effects of the welding arc; safety in enclosed/confined spaces; fume extraction/control)

K2 the hazards associated with MIG, MAG or flux cored-wire arc welding (such as live electrical components; poor earthing; the electric arc; fumes and gases; spatter; hot slag and metal; grinding and mechanical metal/slag removal; elevated working; enclosed spaces; slips, trips and falls), and how they can be minimised

K3 the personal protective equipment to be worn for the welding activities (such as correctly fitting overalls; leather aprons; welding gloves/gauntlets; safety boots; head/eye shield with correct shade of filter)

K4 the correct handling and storage of gas cylinders (such as manual handling and use of cylinder trolley, leak detection procedures, relevant BCGA codes of practice, cylinder identification, gas pressures, cylinder and equipment safety features)

K5 how to use and extract information from engineering drawings and related specifications (to include symbols and conventions to appropriate BS or ISO standards) in relation to work undertaken

K6 the semi-automatic MIG, MAG or flux cored wire arc welding process (such as basic principles of fusion welding, power sources, the major parts of the welding equipment and their function)

K7 types, selection and application of electrode wires (such as solid and cored)

K8 reasons for using shielding gases, and the types and application of the various gases

K9 gas pressures and flow rates (in relation to the type of material being welded)

K10 the types of welded joints to be produced (such as lap joints, corner joints, tee joints and butt welds)

K11 terminology used for the appropriate welding positions

K12 how to prepare the materials in readiness for the welding activity (such as ensuring that the material is free from excessive surface contamination - such as rust, scale, paint, oil/grease and moisture; ensuring edges to be welded are correctly prepared - such as made flat, square or bevelled)

K13 how to set up and restrain the joint, and the tools and techniques to be used (such as the use of jigs and fixtures, restraining devices - such as clamps and weights/blocks; setting up the joint in the correct position and...
Preparing and using semi-automatic MIG, MAG and flux cored arc welding equipment

- Tack welding size and spacing (in relation to material thickness)
- Checks to be made prior to welding (such as confirming the correct set-up of the joint; the condition of electrical connections, welding return and earthing arrangements; wire feed mechanisms; gas supply; operating parameters)
- The techniques of operating the welding equipment to produce a range of joints in the various joint positions (such as fine adjustment of parameters; correct manipulation of the welding gun; blending in stops/starts and tack welds)
- Methods/modes of metal transfer and their uses (such as dip' globular, free flight, spray and pulsed)
- How to close down the welding equipment safely and correctly
- How to control distortion (such as welding sequence; deposition technique)
- Problems that can occur with the welding activities (such as causes of distortion and methods of control; effects of welding on materials and sources of weld defects), and how these can be overcome
- The safe working practices and procedures to be adopted when preparing the welds for examination (such as handling hot materials, using chemicals for cleaning and etching, using equipment to fracture welds)
- How to prepare the welds for examination (such as removing surface irregularities; cleaning the weld, polishing and making saw cuts on welds to be break tested)
- How to check the welded joints for uniformity, alignment, position, weld size and profile
- The various procedures for visual examination of the welds for cracks, porosity and slag inclusions (such as dye penetrant, fluorescent penetrant; magnetic particle testing)
- The various procedures for carrying out destructive tests on the welds (such as macroscopic examination, bend tests, nick break tests)
- Methods of removing a specimen of weld from a suitable position in the joint (such as a stop/start position), using a non thermal process (such as hand saws, power saws, abrasive discs)
- How to examine the welds after the tests, and how to check for such defects as the degree of penetration and fusion, inclusions, porosity, cracks, undercut and overlap, uneven and irregular ripple formation
- When to act on your own initiative and when to seek help and advice from others
- The importance of leaving the work area and equipment in a safe condition on completion of the welding activities (such as isolation of electrical supplies; safely storing welding cables and electrode holders; storing electrodes; removing and disposing of waste)
SEMPEO2-29 - SQA Unit Code H2M4 04
Preparing and using semi-automatic MIG, MAG and flux cored arc welding equipment

Additional Information

Scope/range related to performance criteria

You must be able to:
1. Prepare for the MIG, MAG or flux cored-wire arc welding process by carrying out all of the following:
 1.1 adhere to procedures or systems in place for risk assessment, COSHH, personal protective equipment (PPE) and other relevant safety regulations
 1.2 check the condition of, and correctly connect, welding leads/cables, hoses, shielding gas supply and wire feed mechanisms
 1.3 set and adjust the welding conditions/parameters, in accordance with the welding procedure specification
 1.4 prepare the work area for the welding activities (such as positioning welding screens and fume extraction)
 1.5 prepare the materials and joint in readiness for welding (such as cleaning of joint faces, grinding weld preparations, setting up the joint, supporting the joint)
 1.6 make sure the work area is maintained and left in a safe and tidy condition

2. Use manual/semi-automatic welding and related equipment to include one of the following:
 2.1 MIG
 2.2 MAG
 2.3 Flux cored wire welding equipment

3. Use consumables appropriate to the material and application, to include: one of the following wire types:
 3.1 solid wire
 3.2 cored wire
 Plus one of the following types of shielding gas:
 3.3 inert
 3.4 active

4. Produce three of the following welded joints of at least 150mm long, by single or multi-run (as appropriate), with at least one stop and start included:
 4.1 fillet lap joints
 4.2 corner joints
 4.3 Tee fillet joints
4.4 butt joints

5. Produce joints as follows: **one** type of material from the following:
 5.1 carbon steel
 5.2 stainless steel
 5.3 aluminium
And **two** forms of material from the following:
 5.4 plate
 5.5 sheet (less than 3mm)
 5.6 pipe/tube
 5.7 section
 5.8 other forms

6. Weld joints in good access situations in **two** of the following BS EN ISO 6947 positions:
 6.1 Flat (PA)
 6.2 Vertical upwards (PF)
 6.3 Horizontal vertical (PB)
 6.4 Vertical downwards (PG)
 6.5 Horizontal (PC)

7. Check that the welded joint conforms to the specification, by checking **all** of the following:
 7.1 dimensional accuracy
 7.2 size and profile of weld
 7.3 number of runs
 7.4 alignment/squareness

8. Carry out non-destructive testing of the welds, using **one** of the following:
 8.1 dye penetrant
 8.2 fluorescent penetrant
 8.3 magnetic particle

9. Carry out destructive tests on weld specimens using **one** of the following:
 9.1 macroscopic examination
 9.2 nick break test
 9.3 bend tests (such as face, root or side, as appropriate)

10. Identify **all** of the following weld defects:
 10.1 lack of continuity of the weld
 10.2 uneven and irregular ripple formation
 10.3 incorrect weld size or profile
 Plus **four** more of the following:
 10.4 undercutting
 10.5 internal cracks
Preparing and using semi-automatic MIG, MAG and flux cored arc welding equipment

10.6 overlap
10.7 surface cracks
10.8 inclusions
10.9 lack of fusion
10.10 porosity
10.11 lack of penetration

11. Produce welded joints which meet all of the following (with reference to BS 4872 Part 1 Weld test requirements):
 11.1 welds meet the required dimensional accuracy
 11.2 fillet welds are equal in leg length and slightly convex in profile, with the size of the fillet equivalent to the thickness of the material welded
 11.3 the weld contour is linear, of uniform profile, free from excessive undulations, with regular and even ripple
 11.4 the welds are adequately fused, and there is minimal undercut, overlap and surface inclusions
 11.5 weld finishes are built up to the full section of the weld
 11.6 joins at stop/start positions merge smoothly, with no pronounced hump or crater in the weld surface
 11.7 tack welds are blended in to form part of the finished weld, without excessive hump
 11.8 corner joints have minimal burn through to the underside of the joint or, where appropriate, penetration is present to a maximum depth of 3mm for at least 75% of the joint
 11.9 the weld surface is free from cracks, and substantially free from porosity, shrinkage cavities and trapped slag
 11.10 the weld surface and adjacent parent metal is substantially free from arcing or chipping marks
<table>
<thead>
<tr>
<th>Developed by</th>
<th>SEMTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version number</td>
<td>2</td>
</tr>
<tr>
<td>Date approved</td>
<td>December 2011</td>
</tr>
<tr>
<td>Indicative review date</td>
<td>December 2016</td>
</tr>
<tr>
<td>Validity</td>
<td>Current</td>
</tr>
<tr>
<td>Status</td>
<td>Original</td>
</tr>
<tr>
<td>Originating organisation</td>
<td>SEMTA</td>
</tr>
<tr>
<td>Original URN</td>
<td>29</td>
</tr>
<tr>
<td>Relevant occupations</td>
<td>Engineering and manufacturing technologies; Engineering; Blacksmith</td>
</tr>
<tr>
<td>Suite</td>
<td>Performing Engineering Operations Suite 2; Craft (Blacksmithing)</td>
</tr>
<tr>
<td>Key words</td>
<td>engineering, engineering operations, semi-automatic MIG welding equipment, semi-automatic MAG welding equipment, continuous wire welding equipment, flux cored-wire arc welding equipment, manufacturing, shielding gas system, hoses, wire feed mechanisms, Blacksmithing;</td>
</tr>
</tbody>
</table>