
HY2C 46, Computer Programming (SCQF level 6) 1

National Unit Specification

General information

Unit title: Computer Programming (SCQF level 6)

Unit code: HY2C 46

Superclass: CB

Publication date: May 2018

Source: Scottish Qualifications Authority

Version: 02

Unit purpose

The purpose of this unit is to develop learners’ programming skills, and deepen their
knowledge of programming concepts and techniques. Previous programming experience is
desirable, but is not essential. However, it would be beneficial for learners to have achieved
HY2C 45 Computer Programming at SCQF level 5.

This is a non-specialist unit, suitable for a wide range of learners. It is designed for
learners who want to gain intermediate programming skills for vocational purposes, and for
learners who wish to appreciate programming for academic or personal reasons. It is
particularly suitable for learners with an interest in STEM and computer science.

Learners will gain a range of practical skills and acquire relevant underpinning knowledge.
They will learn how to write code in a high-level language and appreciate programming
concepts and techniques, and develop their computational thinking skills. Learners will gain
knowledge of programming concepts and programming techniques, and skills in computer
programming in a contemporary high-level language.

On completion of this unit, learners will know how to write significant programs to solve real-
world problems. Learners will be able to apply programming concepts by implementing them
in a programming environment.

Learners may progress to a wide range of software development or programming
qualifications at SCQF level 7, such as GF3E 15 HNC Computing or GM09 15 HNC
Computer Games Development.

HY2C 46, Computer Programming (SCQF level 6) 2

National Unit Specification: General information (cont)

Unit title: Computer Programming (SCQF level 6)

Outcomes

On successful completion of the unit, the learner will be able to:

1 Write algorithms to solve complex problems.
2 Explain programming concepts.
3 Write a complex computer program.

Credit points and level

1 National Unit credit(s) at SCQF level 6: (6 SCQF credit points at SCQF level 6).

Recommended entry to the unit

Entry is at the discretion of the centre and no previous knowledge or programming
experience is required, but it is recommended that learners have some programming skills
and possess a basic level of ICT skills in using a computer within a modern operating
system. It would be advantageous if learners have completed HY2C 45 Computer
Programming at SCQF level 5.

Core Skills

Complete Core Skill None

Core Skill component Critical Thinking at SCQF level 6
 Planning and Organising at SCQF level 6

There are also opportunities to develop aspects of Core Skills which are highlighted in the
Support Notes of this Unit specification.

Context for delivery

If this unit is delivered as part of a group award, it is recommended that it should be taught
and assessed within the subject area of the group award to which it contributes.

Equality and inclusion

This unit specification has been designed to ensure that there are no unnecessary barriers to
learning or assessment. The individual needs of learners should be taken into account when
planning learning experiences, selecting assessment methods or considering alternative
evidence.

Further advice can be found on our website www.sqa.org.uk/assessmentarrangements.

http://www.sqa.org.uk/assessmentarrangements

HY2C 46, Computer Programming (SCQF level 6) 3

National Unit Specification: Statement of standards

Unit title: Computer Programming (SCQF level 6)

Acceptable performance in this unit will be the satisfactory achievement of the standards set
out in this part of the unit specification. All sections of the statement of standards are
mandatory and cannot be altered without reference to SQA.

Where evidence for outcomes is assessed on a sample basis, the whole of the content listed
in the performance criteria section must be taught and available for assessment. Learners
should not know in advance the items on which they will be assessed and different items
should be sampled on each assessment occasion.

Outcome 1

Write algorithms to solve complex problems.

Performance criteria

(a) Describe techniques for writing algorithms
(b) Create algorithms by breaking down complex problems into logical steps using stepwise

refinement
(c) Represent sequence, selection, iteration, subroutines and recursion using algorithms
(d) Explain the concept of algorithmic efficiency
(e) Refine an algorithm to improve its efficiency

Outcome 2

Explain programming concepts.

Performance criteria

(a) Explain the concept of syntax and semantics
(b) Explain the concepts of data types and data structures including abstract data structures
(c) Explain the concepts of instructions, sequence, selection, iteration, subroutines and

recursion
(d) Explain the correct construction of expressions, including operators, assignment

statements and the order of evaluation
(e) Explain the correct use of arithmetic, relational and logical operators
(f) Explain the concepts of program testing and debugging
(g) Explain the purpose of internal documentation

Outcome 3

Write a complex computer program.

Performance criteria

(a) Implement data structures, including abstract data structures, in code
(b) Implement an algorithm in code
(c) Implement expressions in code
(d) Implement subroutines in code
(e) Document code internally
(f) Combine instructions, sequences, selections and iterations to create a complete,

working program, which accurately implements an algorithm
(g) Test and debug code to eliminate significant errors

HY2C 46, Computer Programming (SCQF level 6) 4

National Unit Specification: Statement of standards (cont)

Unit title: Computer Programming (SCQF level 6)

Evidence requirements for this unit

Learners will need to provide evidence to demonstrate the performance criteria across all
outcomes.

Evidence is required to demonstrate that learners have achieved all outcomes and
performance criteria. Assessors should use their professional judgement, subject knowledge
and experience, and understanding of their learners to determine the most appropriate ways
to generate evidence and the conditions and contexts in which they are used.

The evidence requirements for this unit will consist of two types of evidence: knowledge
evidence and product evidence.

The knowledge evidence relates to Outcomes 1 and 2. It will comprise explicit knowledge
(such as knowledge of syntax and semantics) and underpinning knowledge (such as
knowledge of data structures). Evidence for all performance criteria must be produced,
except when sampling is used. The evidence may be written or oral or a combination of
these. Evidence may be captured, stored and presented in a range of media (including audio
and video) and formats (analogue and digital).

The knowledge evidence should demonstrate an understanding of the following concepts:

 Techniques for writing algorithms (such as flowcharts, pseudocode, etc)

 Algorithmic efficiency

 Syntax and semantics

 Data types, data structures (including abstract data structures)

 Instructions, sequence, selection, iteration, subroutines and recursion

 Correct construction of expressions, including operators, assignment statements and the
order of evaluation

 Correct use of arithmetic, relational and logical operators

 Program testing and debugging

 The purpose of internal documentation

Sampling of knowledge is permissible in certain contexts, such as when traditional testing is
used to generate the evidence. When sampling is used, the sampling frame must be broad
enough to ensure that every outcome (but not necessarily every performance criterion) is
included. In this circumstance, the test must be carried out under controlled, supervised and
timed conditions, without access to reference materials. Where traditional testing is used, this
must be carried out in a single assessment occasion (‘sitting’) and an appropriate pass mark
should be set. Where re-assessment is required, it should contain a significantly different
sample from that previously used.

The product evidence will relate to Outcomes 1 and 3, and take the form of at least one
complex algorithm and at least one complex program. It will demonstrate the learner’s
computational thinking skills by creating an algorithm to solve a complex problem, and will
demonstrate the learner’s understanding of key programming concepts and coding skills in
the creation of code. This evidence may be produced over the life of the unit, under loosely
controlled conditions (including access to reference materials).

HY2C 46, Computer Programming (SCQF level 6) 5

National Unit Specification: Statement of standards (cont)

Unit title: Computer Programming (SCQF level 6)

The product evidence is required to demonstrate that the learner can:

 create at least one large, complex algorithm to represent the solution to a complex
problem

 refine at least one algorithm to make it more efficient

 create at least one large program based on the algorithm(s)

 use variables and naming conventions correctly

 use at least four different data types

 use at least one data structure, which must include an abstract data structure, such as
an array or list

 implement at least two different arithmetic operators

 implement at least two assignment operators

 implement at least two relational operators

 implement at least two logical operators

 implement sequence and iteration with at least two different types of loops

 use subroutines (which could be, for example, functions, procedures, methods,
behaviours or actions, depending on the programming language)

 implement parameter passing in and out of subroutines (the out could be return values)

 appropriate internal documentation

The problems to be solved must be complex. Their solution should require relatively lengthy
algorithms and significant (and complex) coding.

The product evidence may be generated in supervised or unsupervised conditions, with
access to learning materials (open-book). When evidence is produced in uncontrolled or
loosely controlled conditions, it must be authenticated. The Guide to Assessment provides
further advice on methods of authentication. It is expected that the evidence will be submitted
electronically.

The SCQF level (Level 6) of this unit provides additional context on the nature of the required
evidence and the associated standards. The SCQF level descriptors should be used
(explicitly or implicitly) when making judgements about the evidence.

The support notes provide specific examples of instruments of assessment that could be
used to generate the required evidence (see Guidelines on Approaches to Assessment).

https://1drv.ms/b/s!Av71_tveB0_uhYc69E0UUaShMul9Zw

HY2C 46, Computer Programming (SCQF level 6) 6

National Unit Support Notes

Unit title: Computer Programming (SCQF level 6)

Unit support notes are offered as guidance and are not mandatory.

While the exact time allocated to this unit is at the discretion of the centre, the notional
design length is 40 hours.

Guidance on the content and context for this unit

The purpose of this unit is to introduce or expand learner’s skills in problem solving using
algorithms (computational thinking), as well as the key common intermediate concepts
underpinning all programming languages. Learners will be given the opportunity to develop
skills, knowledge and understanding in computational thinking and programming concepts,
and to implement those programming concepts and techniques, while taking a problem from
inception to solution.

This unit is intended for learners studying any type of computing and is particularly suitable
for learners who want to progress to, or who are on, Computer Science courses or related
courses, such as Software Development or Games Development. It is suitable for learners
who have little or no experience of programming, but will also be valuable for those with
previous experience of programming.

The unit covers the following knowledge and skills: algorithms, flowcharts, variables, data
types, arithmetic operators, assignment operators, relational operators, logical operators,
sequence, selection, iteration, recursion, data structures (arrays), subroutines, parameter
passing, comments, naming conventions, testing and debugging.

Although the focus is on acquiring programming skills that are transferrable and can apply to
all programming languages, it is anticipated that learners will gain experience in one or two
modern programming languages and Integrated Development Environments (IDE).

The type of problems set for learners and the development environment they will use are at
the discretion of the centre and will vary depending on the resources available to the centre.
If it is delivered as part of an award, the problems set and development environment may
reflect the subject area of the award and the emphasis individual centres have placed on that
award. The chosen language could be Python, Basic, JavaScript, Java, C#, C++, and the
IDE could be Visual Studio; however, any other modern programming language and
environment, which make use of the programming concepts that must be covered, would be
acceptable.

It is recommended that centres produce a brief for the learners, stating the problems to solve
and the development environment or environments available to them. It is up to centres as to
how prescriptive and specific the brief should be in terms of the problems set and the
development environments they can make use of. It is anticipated that most centres will
recommend a single development environment for learners to use.

HY2C 46, Computer Programming (SCQF level 6) 7

National Unit Support Notes (cont)

Unit title: Computer Programming (SCQF level 6)

Please note that the following guidance, relating to specific outcomes, does not seek to
explain each performance criterion, which is left to the professionalism of the teacher. It
seeks to clarify the statement of standards where it is potentially ambiguous. It also focuses
on non-apparent teaching and learning issues that may be over-looked, or not emphasised,
during unit delivery. As such, it is not representative of the relative importance of each
outcome or performance criterion.

Outcome 1

This outcome covers computational thinking by teaching learners how to create algorithms,
by breaking down intermediate problems into logical steps. These problems should be set at
an appropriate level for students studying at SCQF level 6. Learners will produce flowcharts,
which can be based on the algorithms they create. Learners will learn how to refine
algorithms and/or flowcharts to make them more efficient.

Outcomes 2 and 3

Outcome 2 covers intermediate programming concepts, including variables, naming
conventions, data types, arithmetic operators, assignment operators, relational operators,
logical operators, sequence, selection, iteration, data structures (arrays), subroutines,
parameter passing and comments.

The same programming concepts are covered in Outcome 3, but whereas in Outcome 2
learners are expected to gain an understanding of these concepts, in Outcome 3 they must
be able to implement them in short programs based on algorithms, as well as testing and
debugging those programs.

Guidance on approaches to delivery of this unit

It is anticipated that learners would complete the outcomes sequentially, so they would
complete Outcome 1, before moving onto Outcome 2, before finally moving onto Outcome 3.
However, that does not mean that they should only cover the knowledge and skills required
for each individual outcome before attempting the summative assessment for each outcome.
It is anticipated that the knowledge and skills required for Outcome 1 will be covered first and
that summative assessment may occur at that point before moving onto Outcome 2.
However, it is expected that learners will cover the knowledge and skills required for
Outcomes 2 and 3, before attempting the summative assessments for both those outcomes.

For Outcome 1, learners should learn how to create algorithms to solve complex problems.
This requires looking at how problems can be broken down into logical steps, which is
computational thinking. They should also look at how solutions to problems (aka, algorithms)
can be displayed as flowcharts and how algorithms can be refined to be more efficient. The
problems set do not need to be computing problems; in fact, initially, it would make sense to
look at problems that they are familiar with, such as how to get from home to college, etc.
Flowcharts will allow them to think more about selection, sequence and iteration (loops), and
to express those concepts.

For Outcomes 2 and 3, learners should learn about the programming concepts, techniques
and skills mentioned in the content section. They should spend most of their time learning
about each concept and then putting it into practice in the chosen programming language.
Algorithms should be provided to them, which they should be tasked with turning into code.

HY2C 46, Computer Programming (SCQF level 6) 8

National Unit Support Notes (cont)

Unit title: Computer Programming (SCQF level 6)

A suggested distribution of time, across the outcomes, is:

Outcome 1: 10 hours
Outcome 2: 14 hours
Outcome 3: 16 hours

Summative assessment may be carried out at any time. However, when testing is used (see
evidence requirements) it is recommended that this is carried out towards the end of the unit
(but with sufficient time for remediation and re-assessment). When continuous assessment is
used (such as the use of a web log), this could commence early in the life of the unit and be
carried out throughout the life of the unit.

There are opportunities to carry out formative assessment at various stages in the unit. For
example, formative assessment could be carried out on the completion of each outcome to
ensure that learners have grasped the knowledge contained within it. This would provide
assessors with an opportunity to diagnose misconceptions, and intervene to remedy them
before progressing to the next outcome.

Guidance on approaches to assessment of this unit

Evidence can be generated using several types of assessment. The following are
suggestions only. There may be other methods that would be more suitable to learners.
Assessment evidence is required at all stages and outcomes. It must be documented and
recorded electronically, or in written/printed form. However, centres are encouraged to look
at alternate approaches making use of modern technology.

One approach to assessment is the use of selected response questions and a practical
assignment as the instruments of assessment. The selected response questions would
generate the knowledge evidence. The practical assignment would generate the product
evidence.

The selected response questions could take the form of a test that samples across
Outcomes 1 and 2. For example, the test could comprise 30 multiple-choice questions, with
five covering Outcome 1 and 25 covering Outcome 2. An appropriate pass mark would be
set. The resulting evidence would be the learners’ (marked) responses. If this form of
assessment is used, it should be carried out under supervised, closed-book conditions. It can
be carried out via a digital online assessment or a paper-based one (although a digital online
test is preferred).

Alternatively, the evidence could be generated by using a smaller number of short-answer
questions, which could be written or oral. These questions could cover multiple concepts in
each question and, therefore, may not require as many questions. Evidence could also be
generated by oral questioning and explanations of key programming concepts, as
demonstrated in the program(s) created for Outcome 3. In this case, the learner would create
the program first and would then answer questions on the code to demonstrate a full
understanding of the concepts. In this circumstance, all three outcomes would be assessed
as one large assignment.

A final approach would be a combination of short-answer questions and multiple-choice
questions. The short answer questions need not be written or carried out online; they could
be verbal questions and answers, which could be evidenced by a recording or a checklist.

HY2C 46, Computer Programming (SCQF level 6) 9

National Unit Support Notes (cont)

Unit title: Computer Programming (SCQF level 6)

If a traditional test is used to assess the learner’s knowledge and understanding, this test
should be timed and should be completed in a single assessment occasion (‘sitting’) and an
appropriate pass mark be set. Where re-assessment is required, it should contain a different
sample from that previously used. If a multiple-choice test is selected, then it is
recommended that it should be completed within an hour, and should have a pass mark of
60%.

The practical assignment could take the form of a task requiring learners to solve one, large,
relatively complex problem. The task could require learners to create a flowchart to represent
the solution to the problem (or, more likely, several flowcharts representing the solution to
various sub-problems) and then write the corresponding code. The resulting evidence would
be the flowchart(s) and source code. Suitable problems include:

 sorting and searching programs

 encrypting and decrypting a program

 machine learning program (such as learning to play simple games eg, noughts and
crosses)

 simple computer game

 spellchecking a text file

Whatever problem is set, learners must evidence the minimum product evidence
requirements.

The amount of control will vary from context to context. However, in every case, the
conditions of assessment must be controlled to some extent. Where the amount of control is
low, the amount of authentication should rise. It is not acceptable to produce evidence in
lightly controlled conditions with little authentication.

Authentication may take various forms including, but not limited to, oral questioning and
plagiarism checks. Some forms of evidence generation (such as video recordings) have
intrinsic authentication and would require no further means of verification. Where evidence is
not generated under closely controlled conditions (for example, out of class), then a
statement of authenticity should be provided by the learner to verify the work as their own,
and state any necessary sources and permissions.

Centres are reminded that prior verification of centre-devised assessments would help to
ensure that the national standard is being met. Where learners experience a range of
assessment methods, this helps them to develop different skills that should be transferable to
work or further and higher education.

Formative assessment could be used to assess learners’ knowledge at various stages
throughout the life of the unit. An ideal time to gauge their knowledge would be at the end of
each outcome. This assessment could be delivered through an item bank of
selected-response questions, providing diagnostic feedback to learners.

HY2C 46, Computer Programming (SCQF level 6) 10

National Unit Support Notes (cont)

Unit title: Computer Programming (SCQF level 6)

Opportunities for e-assessment

E-assessment may be appropriate for some assessments in this unit. By e-assessment we
mean assessment which is supported by Information and Communication Technology (ICT),
such as e-testing or the use of e-portfolios or social software.

Centres which wish to use e-assessment must ensure that the national standard is applied to
all learner evidence and that conditions of assessment as specified in the evidence
requirements are met, regardless of the mode of gathering evidence. The most up-to-date
guidance on the use of e-assessment to support SQA’s qualifications is available at
www.sqa.org.uk/e-assessment.

Opportunities for developing Core and other essential skills

This unit will provide opportunities for learners to develop Core Skills in Problem Solving and
Information and Communication Technology at SCQF level 6.

The Processing Information component of Information and Communication Technology could
be developed in Outcome 3, where the learner has to create a computer program.

All three components of Problem Solving (Critical Thinking, Planning and Organising,
Reviewing and Evaluating) could be developed in Outcome 1, where the learner has to
create and refine algorithms to solve problems. Aspects of Problem Solving could be
developed further in Outcome 3, where the learner has to implement an algorithm into code
and then test and debug it. It is highly likely that once an algorithm is translated into code,
problems will appear requiring refinements to the algorithm/approach.

This Unit has the Critical Thinking and Planning and Organising components of Problem
Solving embedded in it. This means that when learners achieve the Unit, their Core Skills
profile will also be updated to show they have achieved Critical Thinking at SCQF level 5 and
Critical Thinking at SCQF level 6.

HY2C 46, Computer Programming (SCQF level 6) 11

History of changes to unit

Version Description of change Date

02

Core Skills Components Critical Thinking and Planning and
Organising at SCQF level 6 embedded.

31/05/18

© Scottish Qualifications Authority 2018.

This publication may be reproduced in whole or in part for educational purposes provided
that no profit is derived from reproduction and that, if reproduced in part, the source is
acknowledged.

Additional copies of this unit specification can be purchased from the Scottish Qualifications
Authority. Please contact the Business Development and Customer Support team, telephone
0303 333 0330.

HY2C 46, Computer Programming (SCQF level 6) 12

General information for learners

Unit title: Computer Programming (SCQF level 6)

This section will help you decide whether this is the unit for you by explaining what the unit is
about, what you should know or be able to do before you start, what you will need to do
during the unit and opportunities for further learning and employment.

The purpose of this unit is to develop your programming skills, and deepen your knowledge
of programming concepts and techniques. Previous programming experience is desirable but
is not essential. However, it would be beneficial for you to have achieved HY2C 45 Computer
Programming at SCQF level 5.

This is a non-specialist unit, suitable if you want to gain intermediate programming skills for
vocational purposes, and if wish to appreciate programming for academic or personal
reasons. It is particularly if you have an interest in STEM and computer science.

You will gain a range of practical skills and acquire relevant underpinning knowledge. You
will learn how to write code in a high-level language and appreciate programming concepts
and techniques, and develop your computational thinking skills.

On completion of this unit, you will know how to write significant programs to solve real-world
problems. You will be able to apply programming concepts by implementing them in a
programming environment.

You may progress to a wide range of software development or programming qualifications at
SCQF level 7, such as GF3E 15 HNC Computing or GM09 15 HNC Computer Games
Development.

Outcomes

On successful completion of the unit, you will be able to:

1 Write algorithms to solve complex problems.
2 Explain programming concepts.
3 Write a complex computer program.

In Outcome 1, you will cover computational thinking by learning how to create algorithms by
breaking down complex problems into logical steps. You will produce flowcharts, which can
be based on the algorithms you create. You will learn how to refine algorithms and/or
flowcharts to make them more efficient.

In Outcome 2, you will learn about key programming concepts, including variables, naming
conventions, data types, arithmetic operators, assignment operators, relational operators,
logical operators, sequence, selection, iteration, recursion, data structures (arrays and or
lists), subroutines, parameter passing and comments.

In Outcome 3, you will learn how to implement those programming concepts in code based
on algorithms. You will also learn how to carry out routine testing and debugging.

The language may be Python, Basic, JavaScript, Java, C#, C++ and the IDE could be Visual
Studio, but any other modern programming language and environment, which make use of
the required programming concepts, would be acceptable.

This Unit has the Critical Thinking and Planning and Organising components of Problem
Solving embedded in it. This means that when you achieve the Unit, your Core Skills profile
will also be updated to show you have achieved Critical Thinking at SCQF level 5 and Critical
Thinking at SCQF level 6.

