\square
\square

S816/75/01

Computing Science

Duration - 1 hour 30 minutes

Fill in these boxes and read what is printed below.

Full name of centre

\square

Town

Number of seat

Surname

Forename(s)

Date of birth

Total marks - 80

SECTION 1 - Software design and development, and Computer systems - 55 marks Attempt ALL questions.

Attempt EITHER Section 2 OR Section 3

SECTION 2 - Database design and development - 25 marks
SECTION 3 - Web design and development - 25 marks

You may use a calculator.

Show all workings.
Write your answers clearly in the spaces provided in this booklet. Additional space for answers is provided at the end of this booklet. If you use this space you must clearly identify the question number you are attempting.
Use blue or black ink.
Before leaving the examination room you must give this booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

SECTION 1 - SOFTWARE DESIGN AND DEVELOPMENT, AND COMPUTER SYSTEMS

- 55 marks

Attempt ALL questions

1. A question in a program requires a true or false response.

State the most suitable data type for storing this response.
\qquad
2. The code below should receive input and display a user's name.
...

Line 3 DECLARE name INITIALLY ""
Line 4 SEND "Please type in your name" TO DISPLAY
Line 5 SD "Your name is" \& name TO DISPLAY
Line 6 RECEIVE name FROM KEYBOARD

Identify the syntax error and logic error in the program code above.
Syntax error \qquad

Logic error \qquad
\qquad
3. Convert the following 8-bit binary number into denary.

$$
11100010
$$

\square
\qquad
4. A user enters the value 2 when running the program below.

Line 1 DECLARE answer INITIALLY 0
Line 2 DECLARE numOne INITIALLY 3
Line 3 RECEIVE numTwo FROM KEYBOARD
Line 4 SET answer TO numOne ${ }^{\wedge}$ numTwo
Line 5 SEND answer TO DISPLAY
State the output.
5. Explain why the development of software is called an iterative process.
\qquad
\qquad
\qquad
6. Explain why encryption is used when sending emails across wireless networks.
\qquad
\qquad
7. Input validation is required to ensure that a program will only accept the numbers 1 or 5 .
(a) Using a design technique of your choice, design an efficient solution to ensure that the program will only accept valid numbers from the user.
\square
(b) State a numerical example of exceptional test data that could be used to test the design.
\qquad
\qquad
\qquad
\qquad
9. A vector graphics package is used to create a floor plan for a house as shown below.

(a) State the object used to create the outline of the sink.
(b) The line thickness and line colour are attributes of the lines used to draw the outside walls.

State one other attribute of these lines.
\qquad
\qquad
10. A cinema is developing an app to survey customers. Cinema staff will ask customers questions as they leave the cinema. Staff will use a touchscreen on a tablet to input and submit the responses given by each customer.
Customers will be asked the following questions:

- Which of the two films the cinema is currently showing did you see?
- What score would you give the film, from 1 to 5 ?
- Did you purchase food in the cinema?
(a) As many customers as possible should be surveyed as they leave the cinema. It is important that answers to questions can be input as quickly as possible using a touchscreen.

Using the information above, design a user interface for this part of the app.
\square
0. (continued)

At the end of each day the app will calculate the average score for each film.
The suggested design for this part of the app is shown below.

10. (continued)

(b) Read the design for the cinema app and identify
(i) a value that will be stored as an integer
(ii) the condition used in the loop
(iii) an inefficient part of the design that could be removed without affecting the solution.
(c) Before the design is implemented, the following test data is created.

Type of test	User input
Normal	A
	10
	B
	8
	A
	2
	B
	8

The design does not calculate the average score for each film correctly.
(i) State the average score for each film that this design will output.

Film A
Film B \qquad
(ii) Describe how the design should be edited to calculate the correct average scores.
\qquad
\qquad
11. A spelling game stores 20 words. Each word has an accompanying sound file where an actor's voice speaks the word.
When the game is running the program repeats the following 20 times:

- selects one of the 20 words
- loads a sound file matching the selected word
- plays the sound file through a speaker
- asks the user to type in the word
- compares the user's entry to the stored word
- informs the user if they have spelled the word correctly.

When the game is over the program displays the total number of words that have been spelled correctly by the user.
(a) Complete the table below by identifying three processes from the above description of the game.

Input(s)	User enters the word
Process(es)	
Output(s)	Play matching sound file through speaker. Display whether or not the user spelled the word correctly. Display the total number of correctly spelled words.

11. (continued)
(b) The spelling game stores 20 words.
(i) State the data structure and data type that will be required to store the 20 words.

Data structure \qquad
Data type \qquad
(ii) State where in the computer system the 20 words will be stored while the program is running.
\qquad
(iii) State the part of the processor that will compare the selected stored word with the user's input.
11. (continued)
(c) Part of the program code is shown below.
-••
Line 28 SET choice $T O$ <a number between 0 to 19>
Line 29 <load selected sound file>
Line 30 SEND <sound file> TO <speaker>
Line 31 RECEIVE usersWord FROM KEYBOARD
Line 32 IF usersWord = NOT(storedWords[choice]) THEN
Line 33 SEND "Sorry, the correct spelling is " \& storedWords[choice] TO DISPLAY
Line 34
ELSE
SEND "Well Done" TO DISPLAY SET correctGuesses TO correctGuesses + 1
Line 36
Line 37
END IF
Line 38 END REPEAT
Line 39 SEND "You guessed " \& correctGuesses \& " words correctly" TO DISPLAY
(i) Identify the logical operator used in the above code.
(ii) Using a programming language of your choice, re-write Line 28 to show how the value stored in the variable choice would be generated. Your answer should use a function.

(iii) When the above code was tested several times, it was found that the user was not asked to spell all 20 of the stored words.

Explain why the program did not ask the user to spell every stored word.
\qquad
\qquad
\qquad
\qquad
\qquad
11. (continued)
(d) The first stored word is

Animal

State the number of bits required to store this word using extended ASCII.
2. A company runs a sightseeing trip around Iron Craig Island each Saturday and Sunday. Their boat can hold 100 passengers.
Every weekend the available tickets are numbered as follows.

Saturday's ticket numbers	1 to 100
Sunday's ticket numbers	101 to 200

A program is being developed to:

- allow the company to check the validity of each passenger's ticket as they board the boat
- calculate and display the total number of the passengers on each trip.

The program design is shown below.

12. (continued)
(a) (i) State the type of loop required when implementing this design.
(ii) State the standard algorithm used in this design.

Example from design	Matching construct
Set totalPassengers to 0.00	
	Conditional statement
	Arithmetic operation

(b) The total number of passengers is set to 0.00 in the design.

State a more appropriate data type to store the total number of passengers. Give a reason for your answer.

Data type \qquad
Reason \qquad
\qquad
[Turn over
12. (continued)
(c) The program is edited to calculate the total value of the passengers' tickets. The price of a ticket is different for each deck.

	Deck 1	Deck 2
Saturday's ticket numbers	1 to 50	51 to 100
Sunday's ticket numbers	101 to 150	151 to 200
Ticket price	$£ 5$	$£ 10$

The edited code is shown below.

```
Line 5 RECEIVE lower FROM KEYBOARD
Line 6 RECEIVE upper FROM KEYBOARD
Line 14 IF ticketNumber < lower OR ticketNumber > upper THEN
Line 15 SEND "Ticket Refused" TO DISPLAY
Line 16 ELSE
Line 17 SET numberOfPassengers TO numberOfPassengers + 1
Line 18 IF ticketNumber <= (lower + 49) THEN
Line 19 SET totalValue TO totalValue + 5
Line 20 END IF
Line 21 IF ticketNumber >= (lower + 50) THEN
Line 22 SET totalValue TO totalValue + 10
Line 23 END IF
Line 24 END IF
```

```
\(\cdots\)
Line 6 RECEIVE upper FROM KEYBOARD
Line 14 IF ticketNumber < lower OR ticketNumber > upper THEN
Line 15 SEND "Ticket Refused" TO DISPLAY
Line 16 ELSE
Line 17 SET numberOfPassengers TO numberOfPassengers + 1
Line 18 IF ticketNumber <= (lower + 49) THEN
Line 19 SET totalValue TO totalValue + 5
Line 20 END IF
Line 21 IF ticketNumber >= (lower +50 ) THEN
Line 23 END IF
Line 24 END IF
```

12. (c) (continued)

Using a programming language of your choice, re-write lines 18 to 23 in a more efficient way.
\square
(d) Tickets include a bit-mapped graphic.

Describe how a bit-mapped graphic is represented in a computer system's memory.
\qquad
\qquad
\qquad
13. A farm uses a robot to scan mushrooms and measure their diameter. If they have grown to the correct size, the mushrooms are picked and packed into boxes.

The program that controls the robot is shown below.
Line 1 DECLARE maxSize AS REAL INITIALLY 4.0
Line 2 DECLARE fullBox AS INTEGER INITIALLY 20
Line 3 DECLARE count AS INTEGER INITIALLY 0
Line 4 DECLARE mushroomSize AS REAL INITIALLY 0.0
Line 5 WHILE <there are more mushrooms to scan> DO
Line 6 RECEIVE mushroomSize FROM <scanner>

Line 7 IF mushroomSize >= maxSize/2 AND mushroomSize <= maxSize THEN

Line 8
<pick and pack scanned mushroom>
Line 9
SET count TO count +1
IF count $=$ fullBox THEN
SEND "Box Full" TO TOUCHSCREEN
SEND "Replace with Empty Box" TO TOUCHSCREEN
Line 13
Line 14
Line 15
<pause until box replaced> SET count TO 0
END IF
Line 16 END IF
Line 17 END WHILE
13. (continued)
(a) Explain fully how this program informs the farmer when a box of mushrooms is full.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The robot currently picks mushrooms that are no more than 4 cm in diameter and packs 20 mushrooms into a box.
(i) State the smallest size a picked mushroom could be.
\qquad
(ii) Explain why line 14 is necessary.
\qquad
\qquad
\qquad
[Turn over
13. (continued)
(c) The scanner on a second robot calculates how white each mushroom is and outputs this as a 'whiteness' reading between 0 and 10 .

Line 1 DECLARE maxSize AS REAL INITIALLY 4.0
Line 2 DECLARE fullBox AS INTEGER INITIALLY 20
Line 3 DECLARE count AS INTEGER INITIALLY 0
Line 4 DECLARE whiteness AS REAL INITIALLY 0.0
Line 5 WHILE <there are more mushrooms to scan> DO
Line 6 RECEIVE mushroomSize FROM <scanner>
Line 7 IF mushroomSize >= maxSize/2 AND mushroomSize <= maxSize THEN

Line 8 <pick and pack scanned mushroom>
Line $9 \quad$ SET count TO count + 1
Line 10 IF count = fullBox THEN
Line 11 SEND "Box Full" TO TOUCHSCREEN
Line 12 SEND "Replace with Empty Box" TO TOUCHSCREEN
Line 13 <pause until box replaced>
Line $14 \quad$ SET count TO 0
Line 15 END IF
Line 16 END IF
Line 17 END WHILE
Line 4 of the original program has been edited.
Describe how else the original program could be edited so that mushrooms of any size, with a whiteness reading of at least 9 would be picked by the robot.
[END OF SECTION 1]
14. A database is used to store data about restaurants. This includes the type of food they serve, the average price of a meal and a rating of 1, 2, 3, 4 or 5 stars.
(a) The SQL query below is executed.

```
SELECT name, address, phoneNumber
```

FROM restaurant
WHERE (foodType = "Italian" OR foodType = "French")
AND starRating > 1
AND starRating < 5
ORDER BY averagePrice ASC

Describe the output that would be listed under the headings name, address and phoneNumber when the above query is executed.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) State which SQL operation would be required to change the phone number of a restaurant in the database.
\qquad
15. A data dictionary includes entity names and attribute names.

State one other item of information that would be included in a data dictionary.
\qquad
16. A primary school is organising a range of 30 activities for its 550 pupils for the last day of term. The organiser wishes to create and use a database.
The following are essential.
Each pupil selects one activity. They must return a form which contains their name, class and emergency contact details.

The organiser provides class teachers with a list of pupils' names and chosen activities.
Each activity has a leader and a unique activity name. Activity prices range from $£ 2$ to $£ 30$. The organiser provides a list for each activity leader, showing each pupil’s name, class and emergency contact details.
The organiser records which pupils have returned a form so that they can search for pupils who have not signed up to an activity.
(a) State two functional requirements of the database.

Functional requirement 1 \qquad
\qquad
\qquad
Functional requirement 2
\qquad
\qquad
(b) Complete the entity-relationship diagram on the opposite page for the database by:

- naming the entities
- drawing any missing attributes from either entity
- drawing the relationship between the entities
- naming the relationship between the entities.

16. (continued)

(c) Identify the attribute that would be stored as a Boolean field when the database is implemented.
(d) When the database is implemented validation is added to several fields.
(i) The primary school has 14 different class names. For example P1A, P4B, P6/7A.

Describe how validation of this field could be implemented when the database tables are created.
\qquad
\qquad
\qquad
(ii) State one field where range validation would be appropriate.
\qquad
17. A car retailer has four showrooms.

A relational database is used to store details of the four showrooms and the cars they have for sale.

Showroom		
showroomID	city	manager
Gla1	Glasgow	Ray Rain
Gla2	Glasgow	Kate Jones
Abd	Aberdeen	Sue Gearan
Dun	Dundee	Sadiq Yavuz

Car							
carID	make	model	colour	seats	salePrice	showroomID	
1	McLaren	F1	blue	3	900000	Dun	
2	Jaguar	XKR	silver	2	70000	Gla1	
3	SMART	Sports	green	3	22300	Abd	
4	Nissan	GT-R	red	4	80000	Dun	
5	Alfa Romeo	Giulia	green	2	50000	Dun	
6	Audi	TT Coupe	white	4	12050	Gla2	
7	Mazda	MX-5	black	2	21987	Abd	
8	Jaguar	F-Type	red	2	105200	Dun	
9	SMART	Sports	yellow	3	17000	Gla1	
\ldots							

(a) Design a query that would output the model, number of seats and the showroom manager for all the Jaguar cars located in Glasgow.

Field(s)	
Table(s)	
Search criteria	

17. (continued)

(b) An SQL statement is implemented to find all two seater cars and produces the output below.

make	model	salePrice
Alfa Romeo	Giulia	50000
Alfa Romeo	GTV	35000
Alfa Romeo	Spider	66000
Fiat	Spider 124	26345
Jaguar	F-Type	105200
Jaguar	XJS	45595
Jaguar	XKR	70000
Lotus	Evora	72500
Mazda	MX-5	21987
Porsche	Cayman 718	40000

Write the SQL statement that will produce this output, in the order shown.

(c) One functional requirement is to output the make, model and price of cars costing less than 60000 which are not in Glasgow.

```
SELECT make, model, colour, salePrice
FROM Car
WHERE showroomID = "Abd"
AND salePrice < 60000;
```

Give two reasons why the SQL statement would not produce the required output.

Reason 1 \qquad
\qquad
Reason 2 \qquad
\qquad
[END OF SECTION 2]

SECTION 3 - WEB DESIGN AND DEVELOPMENT - 25 marks

Attempt ALL questions
18. A team of web designers create a low-fidelity prototype for a bakery that wishes to sell its cakes online.
(a) State one benefit to the bakery of a low-fidelity prototype being created.
\qquad
\qquad
\qquad
(b) The designers ensure there is consistency across the prototype.

Describe why consistency is a benefit for end-users.
\qquad
\qquad
\qquad
\qquad
19. A swimming club currently runs sessions for swimmers aged 5-7 and 8-10.

The diagram below shows the current structure of the club's website.
The club wants to add a new page to their website showing information for swimmers in the Dolphins group (aged 11-14). They would also like to add an external link from their home page to local competition dates.

Complete the diagram below to show the structure of the updated site.

[Turn over
20. Find Me An Owner dog rescue centre is creating a new website.

Each dog has its own web page. The home page contains links to all of these pages. One of the pages is shown below.

		- -x
- x		
$\leftarrow \rightarrow \mathrm{C}$	http://FindMeAnOwner.co.uk/Dudley	的三

Dudley (Inverness City Centre)

Dudley is a 7 year old Labrador who is looking for a new home. He has an excellent temperament and is great with children and older adults. He enjoys going for walks and chasing a ball.

Rating

friendliness:

(a) (i) State a suitable file format for the image of the dog and explain your choice.

File format \qquad
Explanation \qquad
\qquad
\qquad
20. (a) (continued)
(ii) The staff at the centre took the photo of the dog.

Explain why the centre staff do not have to worry about the Copyright Designs and Patents Act when using this picture on the web page.
\qquad
\qquad
(b) The following HTML code is added to each dog's web page.

```
<p> Back to the home page <a href= "home.html"> click here
</a>
</p>
```

Show how this code would be displayed when viewed in a browser.
[Turn over
20. (continued)
(c) When testing one of the links on the home page the following error screen appears.

(i) State one possible reason why the 'Page Not Found' error was displayed.
\qquad
\qquad
\qquad
(ii) All the links on the website have now been tested.

Describe two other tests that should be carried out on the website.
Test 1 \qquad
\qquad
\qquad
Test 2
\qquad
\qquad
21. Movelt estate agency is developing a new website.

The following code is used to create the home page for the estate agent's website. The home page includes a heading, a video, a welcome message and the company logo shown below.
[Turn over

```
<style>
```

<style>
h1 {text-align:right;font-size:24pt}
h1 {text-align:right;font-size:24pt}
.pageText {text-align:left;font-size:12pt}
.pageText {text-align:left;font-size:12pt}
</style>
</style>
<h1 class="pageText"> MoveIt Estate Agents </h1>
<h1 class="pageText"> MoveIt Estate Agents </h1>
<video width="400" height="300" controls>
<video width="400" height="300" controls>

<source src="intro.mp4">
<source src="intro.mp4">
</video>
</video>
<p class="pageText"> Welcome to MoveIt Estate Agents </p>
<p class="pageText"> Welcome to MoveIt Estate Agents </p>

M
M
...

```
21. (continued)
(a) Draw how the home page will look when viewed in a browser. Some of the content has already been added.


\section*{21．（continued）}

One of the implemented pages from Movelt＇s website is shown below．
\begin{tabular}{|c|c|}
\hline －\(x\) &  \\
\hline \(\leftarrow \rightarrow\) C 亿 http：／／MoveltestateAgents．co．uk／rosieview & 访三 \\
\hline \multicolumn{2}{|l|}{Rosie View} \\
\hline  & \\
\hline \begin{tabular}{l}
Features of the flat \\
－Ground floor flat \\
－ 2 bedrooms with ensuite \\
－Kitchen \\
－Generous living area
\end{tabular} & \\
\hline See floor plan & \\
\hline \begin{tabular}{l}
Contact Us： \\
Agent：G Smith \\
Ref：AS1289 \\
Phone： 01355876242
\end{tabular} & \\
\hline Audio Description & \\
\hline
\end{tabular}

\section*{Features of the flat}
－Ground floor flat
－ 2 bedrooms with ensuite
－Kitchen
－Generous living area

\section*{See floor plan}

\section*{Contact Us：}

Agent：G Smith
Ref：AS1289
Phone： 01355876242

\section*{Audio Description}
［Turn over

\section*{21. (continued)}
(b) The following code is used to create the page.
```

<h3> Features of the flat </h3>

 Ground floor flat
 2 bedrooms with ensuite
 Kitchen
 Generous living area

 See floor plan
<h3> Contact Us: </h3>
<p class="contactInfo"> Agent: G Smith </p>
<p class="contactInfo"> Ref: AS1289 </p>
<p class="contactInfo"> Phone: 01355 876242 </p>

```
(i) Write the single CSS rule that could be used to centre align the three paragraphs underneath 'Contact Us', ensuring the size of the font is 12.

(ii) State the type of addressing in the hyperlink that is used to take the user to the floor plan page.
\(\qquad\)

21. (continued)
(c) The page includes a feature that changes the image of the flat to the price of the flat when the user moves the cursor over the image.

(i) State the language used to implement this feature.
\(\qquad\)
(ii) State the type of event that would be used in this feature.
(d) The website currently includes audio descriptions of each flat. These audio clips are stored using a compressed file format.
(i) State one benefit to the end-user of the site using a compressed format for these audio files.
21. (d) (continued)
(ii) When recording the audio descriptions, a choice of sample rates can be used.
\begin{tabular}{|c|c|}
\hline Sample rate A & Sample rate B \\
\hline 800 Hz & 44 kHz \\
\hline
\end{tabular}

State one advantage and one disadvantage of using Sample rate B when recording and storing the sound file rather than Sample rate A.

Advantage of Sample rate B \(\qquad\)
\(\qquad\)
Disadvantage of Sample rate B \(\qquad\)

\section*{[END OF SECTION 3]}
[END OF SPECIMEN QUESTION PAPER]

\section*{Marking Instructions}

These marking instructions have been provided to show how SQA would mark this specimen question paper.

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is reproduced, SQA should be clearly acknowledged as the source. If it is to be used for any other purpose, written permission must be obtained from permissions@sqa.org.uk.
Where the publication includes materials from sources other than SQA (ie secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the user's responsibility to obtain the necessary copyright clearance.

\section*{General marking principles for National 5 Computing Science}

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this paper. These principles must be read in conjunction with the detailed marking instructions, which identify the key features required in candidate responses.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the detailed marking instructions for this assessment.
(b) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted.
(c) If a candidate response is not covered by either the principles or detailed marking instructions, and you are uncertain how to assess it, you must seek guidance from your team leader.
(d) Award marks regardless of spelling, as long as the meaning is unambiguous. This applies to all responses, including code. Award marks as per the detailed marking instructions, regardless of syntax errors, if the intention of the coding is clear.
(e) For questions where candidates are asked to design or write code, a sample response is shown in the detailed marking instructions. This will not be the only valid response. You must use the detailed marking instructions and additional guidance to ensure that you consider alternative approaches and nuances of different programming languages. If in doubt you should refer to your Team Leader.
(f) A correct response can be negated if the candidate includes an extra, incorrect response which demonstrates they do not know the correct answer. For example, in a 'state' question where the only correct answer is 'white', if the candidate answers 'white orange', you should not award the mark.
(g) If a candidate puts a score through a response and makes a further attempt, you should only mark the further attempt. If no further attempt is made and the original is legible, you should mark the original response.
(h) Where an incorrect response is carried forward and used correctly in a following part of the question, you should give credit for subsequent responses that are correct with regard to the original error. Candidates should not be penalised more than once for the same error.
(i) Only award marks for a valid response to the question asked. Where candidates are asked to:
- Identify, name, give or state, they need only name or present in brief form.
- describe, they must provide a statement or structure of characteristics and/or features. This will be more than an outline or a list. It may refer to, for example, a concept, process, experiment, situation, or facts, in the context of and appropriate to the question. Candidates must make the same number of factual/appropriate points as there are marks available in the question.
- explain, they must relate cause and/or effect and/or make relationships between things clear, in the context of the question or a specific area within the question.
- write code, they must write recognisable code, not prose nor a diagram.
- design, they must use a design technique appropriate to the problem. Award marks as per the detailed marking instructions, regardless of errors in the exemplification of the technique, if the intention of the design is clear.
(j) In the marking instructions, if a word is underlined then it is essential; if a word is in brackets() then it is not essential. Words separated by / are alternatives.

\section*{Marking instructions for each question}

Section 1 - Software design and development, and Computer systems
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} & Expected response & Max mark & Additional guidance \\
\hline 1. & & Boolean & 1 & \\
\hline 2. & & \begin{tabular}{l}
- Syntax error - SD (should be SEND) \\
- Logic - The name is displayed before the user enters it
\end{tabular} & 2 & For the logic error accept, Line 6 should come after line 4. \\
\hline 3. & & 226 & 1 & \\
\hline 4. & & 9 & 1 & \\
\hline 5. & & Previous stages in development are often revisited & 1 & Suitable examples are acceptable for the mark \\
\hline 6. & & \begin{tabular}{l}
- to try to prevent unauthorised access to content/reading or understanding of email \\
- designed to scrambled data to prevent access from individuals who do not have permission \\
- scrambled to make information unreadable until decrypted
\end{tabular} & 1 & \begin{tabular}{l}
Award 1 mark for any one bullet. \\
Do not accept answers that state encryption prevents access to data. Data can still be intercepted, just not read or understood.
\end{tabular} \\
\hline 7. & (a) & \begin{tabular}{l}
Design showing: \\
- conditional loop \\
- loop condition \\
- input inside loop \\
- error message.
\end{tabular} & 4 & \begin{tabular}{l}
The loop conditional may change depending on where the candidate uses a pre or post conditional loop. For example: \\
- until num \(=1\) or num = 5 \\
- while num \(\neq 1\) and num \(\neq 5\) \\
Where the design indicates a preconditional (while) loop a second input should be shown inside the loop
\end{tabular} \\
\hline & (b) & Any numerical value that is neither 1 or 5. & 1 & \\
\hline 8. & & \begin{tabular}{l}
- settings on monitors \\
- power down settings \\
- leaving computers on standby
\end{tabular} & 1 & Award 1 mark for any one bullet. \\
\hline 9. & (a) & ellipse & 1 & Do not allow "oval" or "circle" in place of ellipse. \\
\hline & (b) & \begin{tabular}{l}
- \(x\) and \(y\) coordinates \\
- x coordinate \\
- y coordinate
\end{tabular} & 1 & \begin{tabular}{l}
Award 1 mark for any one bullet. \\
Accept other appropriate answers such as: \\
- transparency \\
- opacity \\
- laye
\end{tabular} \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} & Expected response & Max mark & Additional guidance \\
\hline 13. & (a) & & \begin{tabular}{l}
- Add 1 to/increment count variable \\
- if count \(=20\) \\
- message displayed (to farmer)
\end{tabular} & 3 & \\
\hline & (b) & (i) & 2 & 1 & \\
\hline & & (ii) & The count must be restarted for the next box of mushrooms. & 1 & The count variable is reset back to 0 to start counting the next box of mushrooms. \\
\hline & (c) & & \begin{tabular}{l}
- line 6 edited to input whiteness \\
- the condition (on line 7) should be changed to whiteness >= 9 and whiteness <=10
\end{tabular} & 2 & Note that the condition whiteness \(=9\) or whiteness \(=10\) is not appropriate in this case as whiteness is a real value. \\
\hline
\end{tabular}

\section*{Section 2 - Database design and development}
\begin{tabular}{|l|l|l|l|c|l|}
\hline \multicolumn{2}{|c|}{ Question } & \multicolumn{1}{|c|}{ Expected response } & \begin{tabular}{c} 
Max \\
mark
\end{tabular} & \multicolumn{1}{c|}{ Additional guidance } \\
\hline 14. & (a) & \begin{tabular}{l} 
- \begin{tabular}{l} 
restaurants which serve either \\
Italian or French food will be \\
listed \\
restaurants with a rating of 2,3 \\
or 4 will be listed \\
the displayed restaurants will be \\
sorted by average price from \\
lowest to highest
\end{tabular}
\end{tabular} & 3 & \\
\hline 15. & (b) & \begin{tabular}{l} 
UPDATE
\end{tabular} & \begin{tabular}{l} 
- Attribute Type \\
- Attribute Size \\
- Validation \\
- Keys \\
- Sample Data
\end{tabular} & 1 & Accept formatting \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} & Expected response & Max mark & Additional guidance \\
\hline 16. & (a) & & \begin{tabular}{l}
- the database should store the name, class and emergency contact of each pupil in the school \\
- the database should store the activity name, price and leader for each activity \\
- the database should store which pupils have returned forms \\
- the database should output lists of pupils who are signed up for each activity \\
- the database should output the pupils who have not signed up for an activity
\end{tabular} & 2 & \begin{tabular}{l}
Award 1 mark each for any bullet. Maximum 2 marks. \\
Answers will probably be worded differently. Answers should relate to the data being stored and the processes and output from that data as described in the scenario.
\end{tabular} \\
\hline & (b) & & \begin{tabular}{l}
Completed ERD showing: \\
- Pupil and Activity entities \\
- activity attributes (leader, price) \\
- relationship (M:1) \\
- cardinality
\end{tabular} & 4 & \begin{tabular}{l}
Award 1 mark for each bullet: \\
The relationship may be represented using any correct notation. For example \(M: N\) or \(\infty: 1\) \\
Cardinality may be described in many different ways. Accept any appropriate answer.
\end{tabular} \\
\hline & (c) & & formReturned & 1 & \\
\hline & (d) & (i) & \begin{tabular}{l}
- use of restricted choice \\
- limited to the class names
\end{tabular} & 2 & \\
\hline & & (ii) & price & 1 & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|c|l|}
\hline \multicolumn{2}{|c|}{ Question } & \multicolumn{1}{|c|}{ Expected response } & \begin{tabular}{c} 
Max \\
mark
\end{tabular} & \multicolumn{1}{c|}{ Additional guidance } \\
\hline 17. & (a) & \begin{tabular}{l} 
Fields \\
- Model, seats, manager \\
Tables \\
- Showroom, Car \\
Criteria \\
- Make = Jaguar \\
- City = Glasgow
\end{tabular} & 4 & \begin{tabular}{l} 
Second criteria could also be written \\
as: \\
showroomID = "Gla1" AND \\
showroomID = "Gla1"
\end{tabular} \\
\hline (b) & \begin{tabular}{l} 
- SELECT make, model, \\
- salePrice \\
- FROM Car \\
- WHERE seats = 2 \\
ASDER BY make ASC, model
\end{tabular} & 4 & \begin{tabular}{l} 
As SQL defaults to sorting by \\
ascending order, both ASCs could be \\
omitted.
\end{tabular} \\
\hline (c) & \begin{tabular}{l} 
- Extra column displayed \\
- Output does not include the \\
Dundee showroom
\end{tabular} & 2 & \\
\hline
\end{tabular}

\section*{Section 3 - Web design and development}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question} & Expected response & Max mark & Additional guidance \\
\hline 18. & (a) & \begin{tabular}{l}
The bakery can: \\
- see how the site will look before it is created \\
- request alterations to the appearance before pages are created \\
- provide feedback to developers
\end{tabular} & 1 & \begin{tabular}{l}
Award 1 mark for any bullet. \\
Answers must focus on benefits to the client (bakery) and not the developer.
\end{tabular} \\
\hline & (b) & \begin{tabular}{l}
- easy to learn how to use/navigate pages \\
- user knows they are still on the same site across different pages \\
- different sections of the pages can be identified by their appearance
\end{tabular} & 1 & Award 1 mark for any bullet. \\
\hline 19. & & \begin{tabular}{l}
- new Dolphins page \\
- double headed arrow from Home to Dolphins page \\
- external page with single headed arrow from home page \\
Sample answer
\end{tabular} & \begin{tabular}{l}
3 \\
Otters \\
age 8-10)
\end{tabular} & Award 1 mark for each bullet. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} & Expected response & Max mark & Additional guidance \\
\hline 20. & (a) & (i) & \begin{tabular}{l}
- suitable graphic file format for web photographs \\
For example: \\
- jpg \\
- png \\
- matching explanation \\
For example: \\
- high colour depth \\
- small file size \\
- compressed file
\end{tabular} & 2 & Do not accept GIF as not suitable for photographs \\
\hline & & (ii) & \begin{tabular}{l}
- staff/centre own the photo \\
- staff/centre own copyright.
\end{tabular} & 1 & \begin{tabular}{l}
Award 1 mark for either bullet. \\
Do not accept 'staff took the photo' as this is in the question.
\end{tabular} \\
\hline & (b) & & \begin{tabular}{l}
- correct text (Back to the home page) \\
- 'click here' underlined.
\end{tabular} & 2 & Correct answer: Back to home page click here \\
\hline & (c) & (i) & \begin{tabular}{l}
- web page does not exist \\
- the url/address in the hyperlink code could be incorrect
\end{tabular} & 1 & \begin{tabular}{l}
Award 1 mark for either bullet. \\
Do not accept 'page is not found'
\end{tabular} \\
\hline & & (ii) & \begin{tabular}{l}
- test consistency across pages \\
- test pages match user-interface design \\
- test media (text, graphics, video, sound) plays/displays correctly
\end{tabular} & 2 & \begin{tabular}{l}
Award 1 mark for each bullet. Maximum 2 marks. \\
Do not accept 'test (hyper)links or navigation' as it is stated in the question. \\
Accept answers that show knowledge beyond National 5 level: \\
- test interactive features for example (JavaScript) \\
- test form input \\
- test communication with database/server
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} & Expected response & Max mark & Additional guidance \\
\hline \multirow[t]{2}{*}{21.} & \multirow[t]{2}{*}{(a)} & \multirow[t]{2}{*}{} & \begin{tabular}{l}
- heading and paragraph on left of page above and below video \\
- heading and paragraph text roughly the same size \\
- logo image below paragraph drawn about half the width of the video.
\end{tabular} & 3 & \begin{tabular}{l}
Be lenient regarding: \\
- the matching text size of the heading and paragraph \\
- the size of the logo in comparison to the video.
\end{tabular} \\
\hline & & & \multicolumn{3}{|l|}{\begin{tabular}{l}
Example answer: \\
Movelt Estate Agents \\
Welcome to Movelt Estate Agents
\end{tabular}} \\
\hline & (b) & (i) & \begin{tabular}{l}
A single CSS rule with: \\
- use of class name in paragraph element (.contactInfo) of supplied code \\
- text centre aligned \\
- font size 12
\end{tabular} & 3 & \begin{tabular}{l}
Example answer: \\
.contactInfo \{ text-align: center; font-size:12pt \}
\end{tabular} \\
\hline & & (ii) & Relative & 1 & \\
\hline & (c) & (i) & JavaScript & 1 & \\
\hline & & (ii) & onMouseOver & 1 & Mouse over \\
\hline & (d) & (i) & faster page load & 1 & Do not allow 'less storage required' as this would be an advantage for the developer/client not the enduser. \\
\hline & & (ii) & \begin{tabular}{l}
- Advantage - better sound quality \\
- Disadvantage - larger file size
\end{tabular} & 2 & \\
\hline
\end{tabular}
[END OF SPECIMEN MARKING INSTRUCTIONS]```

