

Advanced Higher Computing Science

Project

Assessment task

This document provides information for teachers and lecturers about the coursework

component of this course in terms of the skills, knowledge and understanding that are

assessed. It must be read in conjunction with the course specification.

Valid from session 2023–24 and until further notice.

The information in this publication may be reproduced in support of SQA qualifications only

on a non-commercial basis. If it is reproduced, SQA must be clearly acknowledged as the

source. If it is to be reproduced for any other purpose, written permission must be

obtained from permissions@sqa.org.uk.

This edition: September 2023 (version 1.3)

© Scottish Qualifications Authority 2014, 2019, 2022, 2023

mailto:permissions@sqa.org.uk

Contents
Introduction 1

Instructions for teachers and lecturers 2

Marking instructions 4

Instructions for candidates 11

Version 1.3 1

Introduction
This document contains instructions for teachers and lecturers, marking instructions and

instructions for candidates for the Advanced Higher Computing Science project. You must

read it in conjunction with the course specification.

This project has 80 marks out of a total of 160 marks available for the course assessment.

This is one of two course assessment components. The other component is a question

paper.

Version 1.3 2

Instructions for teachers and lecturers
Time
There is no time limit for the project. Candidates should start at an appropriate point in

the course.

Supervision, control and authentication
The project is conducted under some supervision and control.

Candidates can complete part of the work outwith the learning and teaching setting,

therefore you must exercise professional responsibility to ensure that evidence submitted

by a candidate is their own work.

You should put in place ways to authenticate candidate evidence, for example:

 regular checkpoint or progress meetings with candidates

 checklists which record activity and progress

Group work approaches can be helpful to simulate real-life situations, share tasks and

promote team-working skills; however, you can only use these to prepare candidates for

assessment. Group work is not allowed once formal work on assessment has started.

Resources
This is an open-book assessment. Candidates can access any appropriate resources.

Candidates are required to design and code their solution, and should be aware that

extensive use of resources, such as pre-written module libraries, frameworks and software

plug-ins may not allow them to demonstrate these skills and access all marks available.

Reasonable assistance
Candidates must carry out the assessment independently. However, you can provide

reasonable assistance prior to, and during, the formal assessment process.

The term ‘reasonable assistance’ is used to balance the need for support with the need to

avoid giving too much help. If candidates need more than what is thought to be

‘reasonable assistance’, they may not be ready for assessment.

Reasonable assistance must be limited to constructive comment and/or questioning. You

must not adopt a directive role or provide specific advice on how to rephrase, improve

responses or provide model answers. Helping candidates on a one-to-one basis in the

context of something they have already produced, could become support for assessment

and would be going beyond reasonable assistance. For example, you should not prompt

candidates to revisit their initial analysis and design as the project develops, and before

submitting the final evidence to SQA.

You can give advice on a generic basis, such as how to produce a project plan or how to

collate evidence. Where this happens, you should give it to the whole class.

Version 1.3 3

You should advise candidates on their choice of problem, to ensure that it meets the

criteria for the Advanced Higher project and is achievable. The purpose of the project is to

assess the practical skills of the course, so the project marking criteria is mainly focused

on the functionality of the solution. If a project does not meet the criteria, or it relies

heavily on frameworks and software plug-ins to do so, it will not allow candidates to

demonstrate these skills and access all the marks available.

You should work with individual candidates to ensure that their proposed project meets

the criteria of the six possible project combinations set out in the ‘Mandatory

requirements’ section. You can use the ‘Choosing a suitable problem — checklist’ to

support this.

Once you have agreed a suitable project with the candidate, they must work

independently, with your input limited to constructive comment and/or questioning.

You can support candidates with the following aspects of their projects:

 printing, collating and labelling their evidence, to ensure it is in the format specified

by SQA

 ensuring they have all the materials and equipment they need to complete their

project

 ensuring they understand the conditions of assessment, and any administrative

arrangements around submitting and storing evidence

 technical support

Once projects are completed and submitted, they must not be returned to candidates for

further work.

Research
As candidates implement their solution, their project requirements might lead them to

implement some code that extends beyond the content of the Advanced Higher course.

Where this is the case, candidates would need to develop new skills/knowledge, so a small

number of marks for this are included in the implementation stage.

For some candidates, this could be a distraction and you might advise them to focus on the

Advanced Higher concepts and integration, to ensure they can maximise marks in these

sections.

Evidence
All candidate evidence (whether created manually or electronically) must be submitted to

SQA in paper-based format. There is no need for evidence to be printed single sided or in

colour.

The evidence checklist details all evidence to be gathered. You should encourage

candidates to use it to ensure they submit all evidence to SQA.

You should advise candidates that evidence, especially code, must be clear and legible.

This is particularly important when pasting screenshots into a document.

Version 1.3 4

Marking instructions
In line with SQA’s normal practice, the following marking instructions for the Advanced

Higher Computing Science project are addressed to the marker. They will also be helpful

for those preparing candidates for course assessment.

Candidates’ evidence is submitted to SQA for external marking.

General marking principles
Always apply these general principles. Use them in conjunction with the detailed marking

instructions, which identify the key features required in candidates’ responses.

a Always use positive marking. This means candidates accumulate marks for the

demonstration of relevant skills, knowledge and understanding; marks are not

deducted for errors or omissions.

b If a candidate response does not seem to be covered by either the principles or

detailed instructions, and you are uncertain how to assess it, you must seek guidance

from your team leader.

c Assess ‘completeness’ of evidence according to each project. Complete evidence:

— meets all requirements

— relates to the problem

— meets the quality and technical accuracy of Advanced Higher

d Award 0 marks where evidence is:

— not provided

— not related to the problem

— not appropriate to Advanced Higher

e Where bands refer to minor, significant, or major errors and/or omissions, these

terms do not indicate the volume required, but the importance of the errors and/or

omissions in the context of the project.

f Select the band that most closely describes the evidence provided. Where a range of

marks is available for a band, you should determine:

— if the evidence is a closer match to the band above, and if so, award the highest

available mark from the range

— if the evidence is a closer match to the band below, and if so, award the lowest

available mark from the range

Version 1.3 5

Detailed marking instructions

Analysis of the problem (10 marks)

Evidence requirements Marks Marking instructions

Description of the problem, including:

 an outline of the problem, identifying

Advanced Higher concepts and integration

 any constraints

2 2 marks Complete and detailed description of the problem that meets

 all of the evidence requirements, including integration.

1 mark Description of the problem, that meets some of the evidence

 requirements.

UML use case diagram, showing integration,

and defining:

 actors

 use cases

 relationships

2 2 marks Complete, detailed and integrated use case diagram that

 meets all of the evidence requirements, including integration.

1 mark Use case diagram that meets some of the evidence

 requirements.

Requirements specification, including:

 end-user requirements

 functional requirements

4 3–4 marks Complete or almost complete and detailed requirements

 specification that meets all end-user and functional requirements

 for a fully-working, integrated solution.

1–2 marks Requirements specification, with some missing information for a

 fully-working, integrated solution.

Project plan for each stage, including:

 identified tasks

 resources required

 estimate of timings

2 2 marks Complete and detailed project plan that meets all of the

 evidence requirements.

1 mark Project plan that meets some of the evidence requirements.

Version 1.3 6

Design of the solution (20 marks)

Evidence requirements Marks Marking instructions

Design of Advanced Higher concepts 6 5–6 marks Complete or almost complete and detailed design.

3–4 marks Partially complete and detailed design, with some errors and/or

 omissions.

1–2 marks Incomplete design, with a number of significant errors and/or

 omissions.

Design of integration 4 3–4 marks Complete or almost complete and detailed design showing

 integration.

1–2 marks Partially complete design.

User-interface design shows inputs, processes
and outputs, and matches the end-user and
functional requirements

5 4–5 marks Complete or almost complete and detailed user-interface design,

 showing validated inputs and outputs, matching the end-user and

 functional requirements, and indicating the underlying processes.

2–3 marks Partially complete user-interface design, with some errors and/or

 omissions.

1 mark Minimal user-interface design.

Overall design matches the requirements
specification

5 4–5 marks Design matches all or almost all of the requirements specification.

2–3 marks Design matches some of the requirements specification.

1 mark Minimal match to the requirements specification.

Version 1.3 7

Implementation (30 marks)

Evidence requirements Marks Marking instructions

Implemented Advanced Higher concepts and
requirements, that match the design

12 11–12 marks Complete or almost complete and fully-working implementation

 that matches the design.

9–10 marks Partially complete and working implementation that closely
 matches the design, but has some minor errors and/or omissions.

7–8 marks Partially complete and working implementation that matches the

 design, with some significant errors and/or omissions.

5–6 marks Partially complete implementation that matches some aspects of

 the design, and has a number of significant errors and/or

 omissions

3–4 marks Incomplete implementation, with limited match to the design due

 to major errors and/or omissions.

1-2 marks Minimal implementation that does not match the design.

Implemented integration, that matches the
design

6 5–6 marks Complete or almost complete and fully-working integration that
 matches the design.

3–4 marks Partially complete and working integration that matches some

 aspects of the design, but with some significant errors and/or

 omissions.

1–2 marks Incomplete implementation, with limited match to the design and

 a number of significant errors and/or omissions.

Version 1.3 8

Implementation (30 marks) continued

Evidence requirements Marks Marking instructions

Implemented user interface, that matches the
design

3 3 marks Complete or almost complete and fully-working user interface

 that matches the design.

2 marks Partially complete and working user interface that matches some

 aspects of the design, but with some significant errors and/or

 omissions.

1 mark Incomplete user interface, with limited match to the design and a

 number of significant errors and/or omissions.

Description of new skills and/or knowledge
researched and developed

4 3-4 marks Complete, or almost complete, and detailed description of

 research and application of new skills and/or knowledge, that

 extends beyond what is required for the Advanced Higher course,

 developed during the implementation stage.

1-2 marks Partially complete description of research and application of new

 skills and/or knowledge developed during the implementation

 stage.

Log of ongoing testing, including:

 a description of issues resolved

 references used to resolve these issues

5 4–5 marks Complete, or almost complete, and detailed log of ongoing

 testing, describing issues resolved, and evidencing solutions and

 references throughout the implementation stage.

2–3 marks Partially complete log of ongoing testing.

1 mark Incomplete log of ongoing testing.

Version 1.3 9

Testing the solution (15 marks)

Evidence requirements Marks Marking instructions

A comprehensive plan for carrying out final

testing of the fully implemented solution,

including:

 all requirements

 description of tests

 persona and test cases

6 5–6 marks Complete and detailed test plan that meets all evidence

 requirements.

3–4 marks Partially complete test plan that meets some evidence

 requirements.

1–2 marks Incomplete test plan that meets minimal evidence requirements.

Evidence of requirements testing 6 5–6 marks Complete evidence of requirements testing that matches the

 test plan.

3-4 marks Partially complete evidence of requirements testing.

1-2 marks Incomplete evidence of requirements testing.

Description of the results of the test cases 3 3 marks Complete and detailed description of the results of the test

 cases that matches the test plan.

2 marks Partially complete description of the results of the test cases.

1 mark Incomplete description of the results of the test cases.

Version 1.3 10

Evaluation of the solution (5 marks)

Evidence requirements Marks Marking instructions

Evaluation of the solution in terms of fitness for

purpose, by discussing:

 how closely the solution matches the

requirements specification

 the results of testing

3 3 marks Complete and detailed evaluation of the solution’s fitness for

 purpose that meets all of the evidence requirements.

2 marks Partially complete evaluation of the solution that meets some of

 the evidence requirements.

1 mark Incomplete evaluation of the solution that meets minimal

 evidence requirements.

Evaluation of the solution in terms of:

 future maintainability

 robustness

2 2 marks Complete and detailed evaluation of the solution’s

 future maintainability and robustness.

1 mark Partially complete evaluation of the solution’s

 future maintainability and robustness.

Version 1.3 11

Instructions for candidates
This assessment applies to the project for Advanced Higher Computing Science.

This project has 80 marks out of a total of 160 marks available for the course assessment.

It assesses the following skills, knowledge and understanding:

 applying computational thinking to solve a complex computing problem

 analysing a complex problem within a computing science context

 designing, developing, implementing, testing, and evaluating a digital solution to a

complex problem

 demonstrating advanced skills in computer programming

 communicating understanding of complex concepts related to computing science,

clearly and concisely, using appropriate terminology

Your teacher or lecturer will let you know if there are any specific conditions for doing this

assessment.

For this project, you have to identify a computing science problem, agreed with your

teacher or lecturer. You need to develop a solution to the problem, from analysis through

to evaluation. You gain marks for the following stages of the project:

 analysis of the problem (10 marks)

 design of the solution (20 marks)

 implementation (30 marks)

 testing the solution (15 marks)

 evaluation of the solution (5 marks)

In this document, there is guidance on:

 how much support and assistance your teacher or lecturer can give you

 what evidence you need to collect

 choosing a suitable problem for your project

 what you need to do at each stage of the project

Version 1.3 12

Support and guidance from your teacher or lecturer

You must complete this project independently; however, your teacher or lecturer can

provide you with guidance to help develop your thinking as you progress. This could be:

 general support in class on broad areas, such as project planning

 constructive questioning with you on an individual basis

 constructive comments to help you find a solution

Your teacher or lecturer cannot tell you specifically how to proceed with your project,

how to rephrase or improve responses, or provide you with model answers.

Evidence to be gathered

You need to gather evidence for each stage of the project. Evidence can include program

listings, screenshots, web page source files, data files or similar, as appropriate. You must

print your evidence and submit it to SQA for marking.

You should ensure that you:

 include all your evidence, by completing the checklist provided

 clearly label your evidence

 annotate code to highlight Advanced Higher concepts and integration

 print code in a format that is legible (suggested minimum font size 11pt. If the

programming environment does not have a printing facility, consider copying and

pasting into a word processor rather than screenshots)

 print screenshots so that all content is legible

 submit your evidence in a logical order, with appropriate headings for each stage (you

may want to include a contents page and page numbers)

You will probably work on your project for several months, and during that time, you will

produce many types of evidence. You do not need to provide evidence of your progress,

but you may find it useful to keep track of your progress and organise the evidence you

produce. This could be in the form of a diary.

You should store your evidence methodically in a folder, ring binder and/or electronic

storage system. Each stage of the project provides more detail on the evidence required.

For the design and implementation stages, the evidence will depend on the problem you

are solving.

Although there is no page limit or maximum word count for your evidence, marks are

awarded for the quality of your work, not the quantity.

Version 1.3 13

Choosing a suitable problem

You must choose a suitable problem for your project. You may already have an idea, or you

can explore ideas with other candidates and/or your teacher or lecturer. You can also get

ideas from online resources, industry news, television, local business partners or STEM

ambassadors. A successful project is likely to be about something you are interested in.

It is possible to complete some projects within your centre, but you could consider a

project that requires collaboration with a university, college or local industry. Your

teacher or lecturer can advise you about this.

Your chosen problem must allow you to meet the criteria below.

It is essential that you are clear on what Advanced Higher concepts your project includes

and how it integrates with the other areas of the course. The diagrams on the following

pages show the minimum mandatory requirements, and will help you. You should focus on

the functionality of your solution, rather than its appearance.

If you spend too much time learning to use frameworks and software plug-ins, this could

distract you from ensuring your project meets all the criteria. The project itself does not

have to be overly complex. If you remain focused on the essential criteria, you can access

all the marks.

You must discuss your project idea with your teacher or lecturer. This ensures that it

meets the project criteria set out below and is achievable within the constraints of time,

expertise and resources available.

Project criteria
Your project must:

 be based on one of the following areas of the course:

— software design and development

— database design and development

— web design and development

 include two concepts from this area of the course

 integrate with one of the other two areas of the course

 validate all inputs

You should review your proposed project against the mandatory requirements on the

following pages. Examples of suitable projects for each possible combination are on the

following pages. You can choose or adapt one of these examples, or use an idea of your

own, however, remember to discuss your project idea with your teacher or lecturer to

ensure it meets the criteria and is achievable.

Version 1.3 14

Mandatory requirements

Software design and development (SDD) project

The mandatory requirements for an SDD project are shown below, followed by an

example of each project.

Concept 1

Object-oriented programming with an

array of objects

or
Concept 1

Procedural programming with a 2D array

or an array of records

with

Concept 2

One standard algorithm (using the data structure from above), from the following:

 binary search

 insertion sort

 bubble sort

Your SDD project should integrate with either:

Database design and development

Create a database with at least one

table

and

open and/or close the database

connection to execute an SQL query

and (if required), format the results

or

Web design and development

Web user interface to receive input

and/or display formatted output

Version 1.3 15

Example

A computer game requires a variety of

regular polygons to appear in the top,

left, right and bottom of the screen.

Players respond to each shape by

pressing keys corresponding to the

correct number of sides and the

position of the shapes.

The reaction time of players is

calculated and stored.

Analyse the problem, create a design

and then implement a procedural

program that:

 reads previous players’ times from a

database table, into parallel arrays

 prepares a 2D array storing

randomised shapes and co-ordinates

 displays each shape in the 2D array

and calculates the total time taken

by each player to press the correct

keys

 adds each player’s time to the

parallel arrays, and bubble sorts by

time

 displays the top 10 times

 inserts the players’ times into a

table

Test the program with a variety of

sample data.

Evaluate the solution.

Example

The results of a survey are stored in a

file.

A simple web page, with embedded

program code, is required to allow a

user to search for data within the file

and display the results of the search.

Analyse the problem, create a design

and then implement object-oriented

code that:

 reads the survey data from a file and

stores it within an array of objects

 uses a binary search to find user

input within the array

 outputs the search results within the

web page, formatted using HTML

table elements and Inline CSS

Test the program with a variety of

survey data and search scenarios.

Evaluate the solution.

Version 1.3 16

Database design and development (DDD) project

The mandatory requirements for a DDD project are shown below, followed by an

example of each project.

Concept 1

Create a database with a minimum of four related tables, using SQL

with

Concept 2

SQL queries (using the tables above), that incorporate any two of the following:

 subquery

 one logical operator (NOT, BETWEEN, ANY, EXISTS)

 query across at least three tables

Your DDD project should integrate with either:

Software design and development

Programming interface to receive

input and/or display formatted output

or

Web design and development

Web user interface to receive input

and/or display formatted output

Version 1.3 17

Example

A relational database is needed to

store personal details, meter readings

and previous bills of electricity

customers.

Analyse the problem, design and

implement a suitable database using

only SQL statements.

Design and implement additional SQL

statements to maintain the database,

for example to:

 insert, update and remove

customers

 generate bills

 update electricity costs

Design and implement a small program

to search for a customer, and insert a

new meter reading for that customer.

Test the solution with sample data.

Evaluate the solution.

Example

A relational database is needed to store

the personal details and health data (for

example steps and average heart rate)

of members of a gym.

Analyse the problem, design and

implement a suitable database using

only SQL statements.

Design and implement additional SQL

statements to maintain the database,

for example to:

 insert, update and remove members

 create statistical output for

members

Design and implement a simple web

page to allow members to input their

step count and average heart rate.

Test the solution with sample data.

Evaluate the solution.

Version 1.3 18

Web design and development (WDD) project

The mandatory requirements for a WDD project are shown below, followed by an

example of each project.

Concept 1

Complete website that includes:

 form elements (action, method, and name)

 external CSS

 multiple layouts using a media query

 use of session variables

with

Concept 2

Server-side processing (PHP) used to:

 assign variables

 process form data

Your WDD project should integrate with either:

Database design and development

Create a database with at least one

table

and

open or close the database connection

to execute an SQL query and (if

required), format the results

or

Software design and development

Embedded programming using one

Advanced Higher level data structure or

standard algorithm

Version 1.3 19

Example

Members of a swimming club need to be

able to register for the club’s annual

swimming competition by completing an

HTML form on a website.

Analyse the problem, design and

implement a website for the swimming

club.

Design and implement a single-table

database, along with the required PHP

code to validate and store the form

details.

Test the solution with sample data.

Evaluate the solution.

Example

Online revision quizzes are needed to

prepare learner drivers for their theory

test.

Analyse the problem, design, and

implement a website for the quizzes

that stores the quiz questions and

answers, within a 2D array.

When a user submits a quiz answer, a

function is called to check the answer

and display a result.

Design and implement the required code

to store and check users’ answers.

Test the solution with sample quiz data.

Evaluate the solution.

Version 1.3 20

Choosing a suitable problem — checklist

Use the following checklist to help you decide on the idea for your project.

a Will the solution to your problem involve implementing two

Advanced Higher concepts from one area of the course?

 These are:

 1 ___

 2 ___

yes no

b Will the solution to your problem involve integration with one

of the other two areas of the course?

 Integrates with _________________________________

yes no

c Will the solution to your problem validate all inputs?

yes no

d Will you be able to complete the project in the time available?

yes no

e Can you overcome all potential barriers to carrying out your

project, for example permissions, logistics, and access to

necessary hardware and software?

yes no

f Does your teacher or lecturer agree with your answers above?

yes no

Your answers to questions a–c will help you outline your problem in the analysis stage.

If you answer ‘no’ to any of the above questions, you will need to reconsider your

project idea.

Version 1.3 21

Tips for candidates

1 You must be sure from the outset which of the six project combinations you are

following. Being clear on how you will use the Advanced Higher concepts and

integration within your solution will help you focus on these essential elements as you

develop your solution.

2 You should view your requirements specification as a 'golden thread' that is vital to

every stage of the project. Consider numbering the requirements to make it easier to

cross reference them when designing, implementing, testing, and evaluating.

3 Follow the guidance and use the headings as a template for organising your evidence.

Well organised evidence can help ensure you have provided evidence for all stages. You

can also highlight or label evidence such as code and diagrams to identify the Advanced

Higher concepts and integration, and to cross reference with the requirements

specification.

4 Remember that markers need to see evidence of the Advanced Higher concepts that

you have coded. This is especially important if you are using a framework or software

plug-in that generates lots of code. Highlight and annotate your own work to show you

have implemented the concepts being assessed. If there are many pages of code,

consider extracting the Advanced Higher concepts into the main body of your evidence

and provide the full code as an appendix.

5 Many marks are available for the design and implementation of Advanced Higher

concepts and integration. It is important that you focus on this. While a small number

of marks are available for demonstrating new skills/knowledge, don't let this (or

making your user interface look nice) distract you from the functionality, as this carries

most of the marks.

Version 1.3 22

Guidance for each stage
Developing a solution

As you work through your project, you must follow these five stages of development:

 analysis

 design

 implementation

 testing

 evaluation

You can follow these stages using an iterative approach or using an agile methodology —

where you break the project down into several small iterations of design, implement and

test.

Whatever approach you use, each stage of development should continue from the previous

stage. For example, you should create your design from the requirements identified at the

analysis stage; you should implement a solution from the design you created; and so on.

The following pages detail the requirements for each stage. You gain marks based on the

evidence you submit for each of these stages.

If you need to go back and revisit a previous stage (for example to add detail to analysis or

improve a design), you should ensure that you submit only the final version as evidence.

Version 1.3 23

Analysis of the problem 10 marks

Before you begin designing and developing a solution, you must analyse the problem that

you are going to solve, to ensure that you fully understand every aspect of it.

Description of the problem (2 marks)
Describe your problem. Your description should include:

 an outline of the problem, identifying the Advanced Higher concepts and integration

(see the examples earlier in this document)

 any constraints you identify

UML use case diagram (2 marks)
Draw a UML use case diagram for your problem. Your diagram should define the following:

 actors

 use cases

 relationships

Your diagram should include the integration you intend to implement, for example a web

project connecting to a database.

Requirements specification (4 marks)
Produce a requirements specification. Your requirements specification should list:

 end-user requirements

 functional requirements

Your requirements specification should consider all input validation that is required for

your problem.

Project plan (2 marks)
Create a project plan for the four remaining stages of your project.

Your project plan should include:

 the tasks you complete in each stage

 any resources you need to implement your solution

 an estimate of how long each stage and tasks will take

Version 1.3 24

Guidance for producing a project plan

Your list of tasks for each stage could include:

 user-interface design

 implementation of input validation

 ongoing testing

Resources can include access to development tools and end users. Some of these could be

available at any time, while others may only be available at certain times. You need to

plan to ensure that your project is not held up waiting for resources.

Your timings should allow for holidays, or other events that affect how much time you can

spend on your project.

You should review and update your project plan as you work through each stage. You must

submit your final version of the plan as evidence.

Version 1.3 25

Design of the solution 20 marks

Now, design your solution based on your requirements specification.

Project design (15 marks)
Design your solution, using appropriate design methodologies or techniques.

Your design should meet the end-user and functional requirements identified at the

analysis stage, and include the integrated part of the project.

User-interface design (5 marks)
Design the user interface for your solution using appropriate design methodologies or

techniques.

Your user-interface design should include annotated wireframes that show all inputs (with

notes on validation), underlying processes and outputs. It should also meet the end-user

and functional requirements identified at the analysis stage.

Design methodologies

The problem you are solving will determine the design methodologies you use. The

following may be suitable:

Software design and development

 use structure diagrams or pseudocode to show:

— top level design with data flow

— refinements of Advanced Higher concepts, functional requirements and input

validation

 use a UML class diagram — including class names, properties and data types, methods

(including constructor) and arguments, and (where appropriate), public and/or private,

inheritance to show class structure(s)

 design structure and data type(s) of array of records or 2D arrays

 use wireframes to show user-interface design

Database design and development

 entity relationship diagram — including (where appropriate) entity name, entity type

(strong, weak), attributes, relationship participation (mandatory, optional),

relationship name and cardinality

 data dictionary — using SQL attribute types and indicating input validation

 query designs

Web design and development

 use structure diagram or pseudocode to show Advanced Higher concepts, functional

requirements and input validation

 site navigation structure showing use of session variables if appropriate

 use wireframes to show:

— user-interface design

— effect of media query

Version 1.3 26

Implementation 30 marks

Now implement your solution.

Implementation (21 marks)
Implement your solution, including the user interface, ensuring it matches your completed

design.

The problem you are solving will determine the evidence you provide of your implemented

solution. The following may be suitable:

Software design and development

 program code

 screenshots of program user interface

Database design and development

 SQL code

 screenshots to show

— that the structure of the implemented table(s) matches the design

— any initial value stored in table(s)

Web design and development

 PHP code

 HTML code and page content

 CSS declarations

 screenshots of pages to show

— user interface

— effect of media queries

Remember you must provide evidence of the integrated part of your solution.

Research and development of new skills and/or knowledge (4 marks)
When implementing your functional requirements, you may need to make use of some

coding that extends beyond the content of the Advanced Higher course. If this is the case,

you will need to carry out some research.

Describe:

 any new skills and/or knowledge that you researched

 why those new skills and/or knowledge were necessary

 how you applied these new skills and/or knowledge to your project

You should reference the resources you used to research and develop these new skills

and/or knowledge.

Version 1.3 27

Log of ongoing testing (5 marks)
As you implement your solution, you will encounter errors or problems that you need to

solve before you can continue. Take notes of errors, solutions and any reference materials

you use, for example websites, forums, textbooks or learning resources. You will need to

refer to these notes to produce evidence of ongoing testing

Produce a log of the ongoing testing you carry out during implementation. Your log should

include:

 what you are testing

 descriptions of issues you encounter during testing

 descriptions of how you resolve these issues

 lists of references you use to resolve each issue

You could present your log as a table, using the above bullet points as column headings.

Version 1.3 28

Testing the solution 15 marks

Once you have fully implemented your design, you must carry out final testing on your

solution. This testing should be systematic and comprehensive, and based on a test plan.

Final test plan (6 marks)
Create a plan of how you will carry out final testing of your fully implemented solution.

Your plan should be comprehensive, to ensure that your solution meets all the

requirements identified at the analysis stage. It should include:

 all end-user and functional requirements

 a description of the tests you will carry out

 a description of a persona, with a list of test cases that will be used to test the solution

with an end user

Note: the end-user can be another candidate, a teacher or a lecturer, who adopts the

persona and carries out the test cases.

Requirements testing (6 marks)
Test your solution and provide evidence of each end-user and functional requirement test

identified in your plan.

Evidence should show inputs (including errors if any are generated) and outputs to show

that all functional requirements are working correctly.

The problem you are solving will determine the evidence you require. The following may

be suitable:

 screenshots showing inputs and any errors generated

 screenshots showing successful implementation of Advanced Higher algorithms

 screenshots showing successful implementation of SQL queries

 screenshots showing successful implementation of media queries

Testing with persona and test cases (3 marks)
Test your solution using the persona and test cases identified in your plan.

Describe the results of each test case — this could be in the form of a short report or a

table.

Version 1.3 29

Evaluation of the solution 5 marks

You must now evaluate your solution.

Evaluation report (5 marks)
Produce a report to evaluate your solution. This should include:

 the fitness for purpose of your solution, discussing:

— how closely your solution matches all requirements stated in your requirements

specification

— the results of your testing

 the future maintainability and robustness of your solution

Version 1.3 30

Evidence checklist for SDD projects
Analysis

Description of the problem that includes: Complete

 outline of the problem:

— SDD Advanced Higher (AH) concepts

— integration with DDD/WDD

 constraints

UML use case diagram that defines: Complete

 actors

 use cases

 relationships

Requirements specification that includes: Complete

 end-user requirements

 functional requirements for SDD

 functional requirements for integration with DDD/WDD

 validation of inputs

Project plan for each stage that includes: Complete

 tasks for each stage

 resources required for implementation

 estimate of timings

Design

Design of Advanced Higher concepts that includes: Complete

 UML class diagram (object-oriented only)

 Data structure design (2-D array and/or array of records)

 structure diagrams or pseudocode showing:

— top-level design with data flow

— refinement of AH algorithm(s) making use of AH data structure

— input validation

Design of integration with either: Complete

 DDD, including:

— data dictionary

— entity-relationship diagram (if two or more tables)

— design of query/queries

OR

 WDD, showing:

— connection with website

— how program will send data to web code for display

— how program will receive input from web code for processing

Version 1.3 31

User interface design that includes: Complete

 wireframe designs of:

— input forms showing input validation

— buttons and menu options showing underlying processes

— output screens

Implementation

Implementation of Advanced Higher concepts that includes: Complete

 evidence of implemented code showing:

— AH algorithm(s)

— data structure (2-D array and/or array of records)

— classes (object-oriented only)

— all end-user requirements met

— all functional requirements met

— input validation

 screenshot evidence to show before and after execution of AH algorithm

Implementation of integration with either: Complete

 DDD, including evidence of:

— database structure

— initial values in tables

— connection code

— code for query/queries

— results of SELECT query/queries

— tables updated by INSERT, DELETE, UPDATE query/queries

OR

 WDD, including evidence of:

— connection code

— working integration with web code

Implementation of user interface, including: Complete

 screenshot evidence of:

— input screens

— output showing results of processing

— gameplay (if appropriate)

Description of new skills and/or knowledge, including a description of: Complete

 each new skill and/or knowledge

 research required to acquire new skills and/or knowledge

 the use made of new skills and/or knowledge in implementation stage

Version 1.3 32

Log of ongoing testing that includes: Complete

 description of all tests performed during implementation

 description of details of non-trivial errors or problems encountered,

including:

— description of each issue

— references used to resolve each issue (if appropriate)

Testing

Comprehensive test plan that indicates: Complete

 testing of:

— all functional requirements

— all end-user requirements

— input validation

— integration

 the planned tests to be used

 characteristics of personas

 test cases to be completed by the personas

Requirements testing Complete

 Screenshot evidence of each test listed in the plan.

Results of the test cases Complete

 Description of results of testing with the persona and test cases.

Evaluation

Fitness for purpose Complete

 Description of how closely the solution matches each of the functional

and end-user requirements stated in the ‘requirements specification’.

 Discussion of the results of testing.

Evaluation Complete

 Description of maintainability of the solution that refers to ease of

future maintenance.

 Description of robustness of the solution.

Version 1.3 33

Evidence checklist for DDD projects
Analysis

Description of the problem that includes: Complete

 outline of the problem:

— DDD Advanced Higher (AH) concepts

— integration with SDD/WDD

 constraints

UML use case diagram that defines: Complete

 actors

 use cases

 relationships

Requirements specification that includes: Complete

 end-user requirements

 functional requirements for DDD

 functional requirements for integration with SDD/WDD

 validation of inputs

Project plan for each stage that includes: Complete

 tasks for each stage

 resources required for implementation

 estimate of timings

Design

Design of Advanced Higher concepts that includes: Complete

 data dictionary with appropriate SQL data types and input validation

 entity-relationship diagram

 design of queries

Design of integration with either: Complete

 SDD, including pseudocode or structure diagram showing:

— connection with database

— execution of queries

— entry of data from the user

— formatting of output

OR

 WDD, including pseudocode or structure diagram showing:

— connection with webpage/site

— execution of queries

— entry of data from the user

— formatting of output

Version 1.3 34

User interface design that includes: Complete

 wireframe designs of:

— input forms showing input validation

— buttons and menu options showing underlying processes

— output screens

Implementation

Implementation of Advanced Higher concepts that includes: Complete

 evidence of implemented SQL code for:

— implemented tables

— all queries

 evidence of implemented code for:

— all functional requirements

— all end-user requirements

— input validation

 screenshot evidence showing:

— initial values shown in tables

— tables updated by INSERT, DELETE, UPDATE queries

— results from SELECT queries

Implementation of integration with either: Complete

 SDD, including evidence of implemented code showing:

— connection with database

— execution of queries

— input received from user and/or formatting of output

OR

 WDD, including evidence of implemented code:

— connection with database

— execution of queries

— input received from user and/or formatting of output

Implementation of user interface, including: Complete

 screenshot evidence of:

— input screens

— output showing results of processing

Description of new skills and/or knowledge, including a description of: Complete

 each new skill and/or knowledge

 research required to acquire new skills and/or knowledge

 the use made of new skills and/or knowledge in implementation stage

Version 1.3 35

Log of ongoing testing that includes: Complete

 description of all tests performed during implementation

 description of details of non-trivial errors or problems encountered,

including:

— description of each issue

— references used to resolve each issue (if appropriate)

Testing

Comprehensive test plan that indicates: Complete

 testing of:

— all functional requirements

— all end-user requirements

— input validation

— integration

 the planned tests to be used

 characteristics of personas

 test cases to be completed by the personas

Requirements testing Complete

 Screenshot evidence of each test listed in the plan.

Results of the test cases Complete

 Description of results of testing with the persona and test cases.

Evaluation

Fitness for purpose Complete

 Description of how closely the solution matches each of the functional

and end-user requirements stated in the ‘requirements specification’.

 Discussion of the results of testing.

Evaluation Complete

 Description of maintainability of the solution that refers to ease of

future maintenance.

 Description of robustness of the solution.

Version 1.3 36

Evidence checklist for WDD projects
Analysis

Description of the problem that includes: Complete

 outline of the problem:

— WDD Advanced Higher (AH) concepts

— integration with DDD/SDD

 constraints

UML use case diagram that defines: Complete

 actors

 use cases

 relationships

Requirements specification that includes: Complete

 end-user requirements

 functional requirements for WDD

 functional requirements for integration with DDD/SDD

 validation of inputs

Project plan for each stage that includes: Complete

 tasks for each stage

 resources required for implementation

 estimate of timings

Design

Design of Advanced Higher concepts that includes: Complete

 pseudocode showing:

— processing of form data

— assignment of variables

 site navigation structure

 use of session variables (in pseudocode or site navigation structure)

 media queries

 input validation

Design of integration with either: Complete

 DDD, including:

— data dictionary

— entity-relationship diagram (if two or more tables)

— connection to database

— design of queries

OR

 SDD, including:

— connection with program

— AH data structure or algorithm

Version 1.3 37

User interface design that includes: Complete

Wireframe designs of:

 input forms showing input validation

 buttons and menu options showing underlying processes

 output screens

Implementation

Implementation of Advanced Higher concepts that includes: Complete

 evidence of implemented:

— HTML code for forms

— code for form processing and assignment of variables

— external CSS file with link in HTML/PHP pages

— media queries in CSS file

— session variables

— functional requirements

— end-user requirements

— input validation

Implementation of integration with either: Complete

 DDD, including evidence of:

— database structure

— initial values in tables

— connection code

— code for query/queries

— results of SELECT query/queries

— tables updated by INSERT, DELETE, UPDATE query/queries

OR

 SDD, including evidence of implemented code showing:

— connection with program

— AH data structure or algorithm

— input received from user and/or format output

Implementation of user interface, including: Complete

 screenshot evidence of:

— input screens

— output showing results of processing

Description of new skills and/or knowledge, including a description of: Complete

 each new skill and/or knowledge

 research required to acquire new skills and/or knowledge

 the use made of new skills and/or knowledge in implementation stage

Version 1.3 38

Log of ongoing testing that includes: Complete

 description of all tests performed during implementation

 description of details of non-trivial errors or problems encountered,

including:

— description of each issue

— references used to resolve each issue (if appropriate)

Testing

Comprehensive test plan that indicates: Complete

 testing of:

— all functional requirements

— all end-user requirements

— input validation

— integration

 the planned tests to be used

 characteristics of personas

 test cases to be completed by the personas

Requirements testing Complete

 Screenshot evidence of each test listed in the plan.

Results of the test cases Complete

 Description of results of testing with the persona and test cases.

Evaluation

Fitness for purpose Complete

 Description of how closely the solution matches each of the functional

and end-user requirements stated in the ‘requirements specification’.

 Discussion of the results of testing.

Evaluation Complete

 Description of maintainability of the solution that refers to ease of

future maintenance.

 Description of robustness of the solution.

Version 1.3 39

Administrative information

Published: September 2023 (version 1.3)

History of changes

Version Description of change Date

1.2 Updated the guidance for teachers, lecturers and candidates on:

 selecting a suitable project

 using frameworks and software plug-ins

 developing new skills/knowledge

 gathering evidence

Updated the diagrams to clarify that these are mandatory
requirements and to define ‘Advanced Higher concepts’.

Included more detailed evidence requirements for design,
implementation and testing, incorporating the requirement for
input validation.

Removed the requirement for scope and boundaries in analysis.

Added in ‘Tips for candidates’ section.

September
2022

1.3 ‘Candidate checklist’ replaced with detailed ‘Evidence
checklists’ for each type of project.

September
2023

Note: you are advised to check SQA’s website to ensure you are using the most up-to-date

version of this document.

Security and confidentiality
This document can be used by SQA approved centres for the assessment of National

Courses and not for any other purpose.

© Scottish Qualifications Authority 2014, 2019, 2022, 2023

	Introduction
	Instructions for teachers and lecturers
	Marking instructions
	Instructions for candidates

