

Advanced Higher Computing Science

Course code: C816 77

Course assessment code: X816 77

SCQF: level 7 (32 SCQF credit points)

Valid from: session 2024-25

This document provides detailed information about the course and course assessment to
ensure consistent and transparent assessment year on year. It describes the structure of
the course and the course assessment in terms of the skills, knowledge and understanding
that are assessed.

This document is for teachers and lecturers and contains all the mandatory information
required to deliver the course.

The information in this document may be reproduced in support of SQA qualifications only on
a non-commercial basis. If it is reproduced, SQA must be clearly acknowledged as the
source. If it is to be reproduced for any other purpose, written permission must be obtained
from permissions@sqa.org.uk.

Where this document includes materials from sources other than SQA (secondary copyright)
this material must only be reproduced for the purposes of instruction in an educational
establishment. If it is to be reproduced for any other purpose, it is the user’s responsibility to
obtain the necessary copyright clearance. The acknowledgements page lists sources of
copyright items that are not owned by SQA.

This edition: September 2024 (version 3.2)

© Scottish Qualifications Authority 2014, 2019, 2023, 2024

mailto:permissions@sqa.org.uk

Contents
Course overview 1

Course rationale 2

Purpose and aims 2

Who is this course for? 2

Course content 4

Skills, knowledge and understanding 5

Skills for learning, skills for life and skills for work 14

Course assessment 15

Course assessment structure: question paper 15

Course assessment structure: project 18

Grading 20

Equality and inclusion 21

Further information 22

Appendix: course support notes 23

Introduction 23

Approaches to learning and teaching 23

Preparing for course assessment 46

Developing skills for learning, skills for life and skills for work 48

Resources to support the Advanced Higher Computing Science course 49

Appendix 1: problem analysis (SDD, DDD and WDD) 50

Appendix 2: Unified Modelling Language (UML) — class diagrams (SDD) 61

Appendix 3: entity-relationship diagrams (DDD) 65

Appendix 4: data dictionary (DDD) 71

Appendix 5: query design (DDD) 73

Appendix 6: server-side process design (WDD) 77

Appendix 7: linked lists (SDD) 87

Appendix 8: connecting to a database using a programming language (SDD) 94

Appendix 9: standard algorithms (SDD) 113

Appendix 10: SQL operations (DDD) 122

Appendix 11: HTML forms (WDD) 136

Appendix 12: PHP form processing (WDD) 139

Appendix 13: PHP sessions (WDD) 149

Appendix 14: media queries (WDD) 153

Appendix 15: integrative testing (SDD, DDD and WDD) 162

Appendix 16: fitness for purpose (SDD, DDD and WDD) 170

Copyright acknowledgements 173

Version 3.2 1

Course overview
This course consists of 32 SCQF credit points, which includes time for preparation for course
assessment. The notional length of time for candidates to complete the course is 160 hours.

The course assessment has two components.

Component Marks Duration

Question paper 55 2 hours

Project 80 see ‘Course assessment’ section

Recommended entry Progression

Entry to this course is at the discretion of
the centre.

Candidates should have achieved the
Higher Computing Science course or
equivalent qualifications and/or experience
prior to starting this course.

♦ a range of computing-related Higher
National Diplomas (HNDs)

♦ degrees in computing science or related
disciplines

♦ careers in computing, IT and/or related
areas

♦ further study, employment and/or
training

Conditions of award
The grade awarded is based on the total marks achieved across both course assessment
components.

Version 3.2 2

Course rationale
National Courses reflect Curriculum for Excellence values, purposes and principles. They
offer flexibility, provide time for learning, focus on skills and applying learning, and provide
scope for personalisation and choice.

Every course provides opportunities for candidates to develop breadth, challenge and
application. The focus and balance of assessment is tailored to each subject area.

This course highlights the central role of computing professionals as creative
problem-solvers and designers, able to conceive, design, implement, and operate complex
systems. It provides candidates with an understanding of contemporary computing
technologies, and develops a wide range of practical skills that underpin our modern, digital
world.

The course also builds awareness of the importance of computing in meeting our needs
today and for the future, in many fields including science, education, business, and industry.
Many organisations regard computing skills as vital to their growth and sustainability, while a
growing number of individuals use computing technologies as a way to create
entrepreneurial, social and enterprise-building opportunities.

Purpose and aims
The course provides a broad and challenging exploration of computing technologies,
focusing on developing advanced programming and research skills. Candidates learn to
apply a rigorous approach to the design and development process.

The course enables candidates to:

♦ understand and apply computational-thinking skills across a range of computing contexts
♦ extend and apply knowledge and understanding of advanced concepts and processes in

computing science
♦ apply skills and knowledge in analysis, design, development, implementation, testing,

and evaluation to a range of digital solutions with increasingly complex aspects
♦ apply creative problem-solving skills across a range of contexts
♦ develop autonomous learning, investigative, and research skills
♦ communicate advanced computing concepts clearly and concisely, using appropriate

terminology
♦ develop an informed understanding of the role and impact of computing technologies in

influencing our environment and society

Who is this course for?
The course is suitable for candidates interested in exploring the role and impact of
contemporary computing technologies. It provides a pathway for those who want to progress
to more specialised training, further education, or entry into a diverse range of occupations

Version 3.2 3

and careers, such as software programming and/or engineering, databases, and web design
and development.

The skills in the course are transferable to all areas of computing-related study including
robotics, artificial intelligence, e-commerce, networking, cyber security, and systems analysis
and testing.

Version 3.2 4

Course content
The course has three areas of study:

Software design and development
Candidates develop knowledge, understanding, and advanced practical problem-solving
skills in software design and development. They do this by using appropriate software
development environments. Candidates develop object-oriented programming and
computational-thinking skills by analysing, designing, implementing, testing, and evaluating
practical solutions and explaining how these modular programs work. They use their
knowledge of data types and constructs to create efficient programs to solve advanced
problems.

Database design and development
Candidates develop knowledge, understanding, and advanced practical problem-solving
skills in database design and development. They do this through a range of practical tasks,
using SQL to create and query relational databases. Candidates apply computational-
thinking skills to analyse, design, implement, test, and evaluate practical solutions, using a
range of development tools. Candidates apply interpretation skills to tasks involving some
complex features in both familiar and new contexts.

Web design and development
Candidates develop knowledge, understanding, and advanced practical problem-solving
skills in web design and development. They do this through a range of practical and
investigative tasks. Candidates apply computational-thinking skills to analyse, design,
implement, test, and evaluate practical solutions to web-based problems, using a range of
development tools including HTML, Cascading Style Sheets (CSS) and PHP. Candidates
apply interpretation skills to tasks involving some complex features in both familiar and new
contexts.

Integration
The integration of technologies is central to the course. Teachers and lecturers should
consider candidates’ previous experience in ‘Database design and development’ and ‘Web
design and development’ when planning delivery. This will ensure candidates are prepared
for the integration that is required for the question paper and project assessment
components. These requirements are set out in ‘Course assessment structure: question
paper’ on pages 14–17 and in the Coursework Assessment Task.

https://www.sqa.org.uk/files_ccc/ah-cat-computing-science.pdf

Version 3.2 5

Skills, knowledge and understanding
Skills, knowledge and understanding for the course
The following provides a broad overview of the subject skills, knowledge and understanding
developed in the course:

♦ applying computational thinking to solve complex computing problems
♦ analysing complex problems within computing science, across a range of contemporary

contexts
♦ designing, developing, implementing, testing, and evaluating digital solutions (including

computer programs) to complex problems across a range of contexts
♦ developing advanced skills in computer programming and the ability to communicate how

a program works
♦ communicating an understanding of complex concepts related to computing science

design and development, clearly and concisely, using appropriate terminology
♦ knowledge and understanding of the role and impact of contemporary computing

technologies on the environment and society

Version 3.2 6

Skills, knowledge and understanding for the course assessment
The following provides details of skills, knowledge and understanding sampled in the course assessment.

 Software design and development Database design and development Web design and development

Analysis Identify the purpose and functional requirements of a problem that relates to the design and implementation at this level
in terms of:

♦ inputs
♦ processes
♦ outputs

Describe, exemplify and implement research for:

♦ feasibility studies:

— economic
— time
— legal
— technical
— user surveys

Describe, exemplify and implement planning in terms of:

♦ scheduling
♦ resources
♦ Gantt charts

Version 3.2 7

 Software design and development Database design and development Web design and development

Analysis
(continued)

Produce requirement specifications for end users and develop:

♦ end-user requirements
♦ scope, boundaries and constraints
♦ functional requirements

Describe, exemplify and implement Unified Modelling Language (UML):

♦ use case diagrams:

— actors
— use cases
— relationships

Design Identify the data types and structures
required for a problem that relates to
the implementation at this level.

Read and understand designs of
solutions to problems at this level
using the following design techniques:

♦ structure diagrams
♦ pseudocode
♦ UML

Describe, exemplify and implement
entity-relationship diagrams with three
or more entities indicating:

♦ entity name
♦ entity type (strong, weak)
♦ attributes
♦ relationship participation

(mandatory, optional)
♦ name of relationship
♦ cardinality

Identify relationship participation from
an entity-occurrence diagram.

Describe, exemplify and implement
wireframe designs showing:

♦ visual layout
♦ navigation
♦ consistency
♦ underlying processes

Describe, exemplify and implement
low-fidelity prototype from wireframe
design.

Version 3.2 8

 Software design and development Database design and development Web design and development

Design
(continued)

Exemplify and implement efficient
design solutions to a problem at this
level, using pseudocode, showing:

♦ top-level design
♦ the data flow
♦ refinements

Describe, exemplify and implement
UML for the following:

♦ class diagrams:

— class name
— instance variables and data

types
— methods
— public and private
— inheritance
— constructor
— array of objects

Describe, exemplify and implement
surrogate keys.

Describe and exemplify a data
dictionary, in relation to SQL, with three
or more entities for the following:

♦ entity name
♦ attribute name
♦ primary and foreign key
♦ attribute type:

— varchar
— integer
— float
— date
— tie

♦ attribute size
♦ validation:

— presence check
— restricted choice
— field length
— range

Read and understand designs of
server-side processes at this level,
using the following techniques:

♦ structure diagrams
♦ pseudocode

Exemplify and implement the design of
server-side processes using
pseudocode.

Version 3.2 9

 Software design and development Database design and development Web design and development

Design
(continued)

Describe, exemplify and implement
user-interface design using a
wireframe, indicating:

♦ visual layout
♦ inputs
♦ validation
♦ underlying processes
♦ outputs

Exemplify a design of a solution query
using:

♦ tables and queries
♦ fields
♦ search criteria
♦ sort order
♦ calculations
♦ grouping
♦ having

Implementation Data types and structures
Describe, exemplify, and implement
the following structures in solutions to
problems at this level:

♦ parallel 1-D arrays
♦ records
♦ arrays of records
♦ 2-D arrays
♦ array of objects

Describe and exemplify the operation
of linked lists (double and single).

SQL
Implement relational database using
SQL Data Definition Language (DDL)
and Data Manipulation Language
(DML) to match the design.

CSS
Describe, exemplify, and implement
responsive pages using the following
media queries:

♦ media type:

— print
— screen

♦ media feature:
— max-width

Version 3.2 10

 Software design and development Database design and development Web design and development

Implementation
(continued)

Computational constructs
Describe, exemplify, and implement
the following object-oriented
constructs:

♦ object
♦ property
♦ method
♦ class
♦ sub-class
♦ encapsulation
♦ inheritance
♦ instantiation
♦ polymorphism

Describe, exemplify, and implement
code to:

♦ open and close connection to

database server
♦ execute SQL query
♦ format query results

Describe, exemplify, and implement the
following SQL operations:

♦ CREATE statement:

— CREATE DATABASE
— CREATE TABLE
constraints:

o primary key
o foreign key
o not null
o check
o auto increment

♦ DROP statement:
— DROP DATABASE
— DROP TABLE

♦ HAVING clause of the SELECT
statement

♦ subqueries used with the WHERE
clause of SELECT statements

♦ data types:
— varchar
— integer
— float
— date
— time

HTML
Describe, exemplify, and implement
form elements including:

♦ FORM element:

— action
— method (get and post)

♦ INPUT, SELECT and TEXTAREA
elements:
— name
— value

♦ TABLE element:
— th, tr, td

PHP
Describe, exemplify, and implement
coding of server-side processing to:

♦ assign form data to server-side

variables:
— $_get()
— $_post()

Version 3.2 11

 Software design and development Database design and development Web design and development

Implementation
(continued)

Algorithm specification
Describe, exemplify, and implement
standard algorithms including:

♦ binary search
♦ insertion sort
♦ bubble sort

Read and explain code that uses
constructs appropriate to this level.

♦ logical operators:
— IN
— NOT
— BETWEEN
— ANY
— EXISTS

Read and explain code that uses the
SQL at this level.

♦ open and close connection to
database server:
— die()
— mysqli_connect()
— mysqli_close()

♦ execute SQL query:
— mysqli_query()

♦ format query results:
— echo
— mysqli_fetch_array()
— mysqli_num_row()

and:

♦ assignment, repetition and

selection using server-side local
and global variables

♦ sessions:
— session_start()
— session_destroy()

Read and explain code that uses
constructs appropriate to this level.

Version 3.2 12

 Software design and development Database design and development Web design and development

Testing Describe, exemplify and implement the following:

♦ integrative testing
♦ usability testing based on prototypes
♦ final testing
♦ end-user testing

 and:

♦ component testing during the

development of the solution

and:

♦ SQL-implemented tables match

design
♦ SQL operations work correctly at

this level

Evaluation Evaluate solution in terms of:

♦ fitness for purpose
♦ maintainability

— perfective
— corrective
— adaptive

♦ robustness

 and:

♦ efficiency
♦ usability

and:

♦ accuracy of output

and:

♦ usability

Version 3.2 13

Skills, knowledge and understanding included in the course are appropriate to the SCQF level of the course. The SCQF level descriptors give
further information on characteristics and expected performance at each SCQF level, and are available on the SCQF website.

Version 3.2 14

Skills for learning, skills for life and skills for work
This course helps candidates to develop broad, generic skills. These skills are based on
SQA’s Skills Framework: Skills for Learning, Skills for Life and Skills for Work and draw from
the following main skills areas:

2 Numeracy

2.3 Information handling

3 Health and wellbeing

3.1 Personal learning

4 Employability, enterprise and citizenship

4.2 Information and communication technology (ICT)

5 Thinking skills

5.3 Applying
5.4 Analysing and evaluating

Teachers and lecturers must build these skills into the course at an appropriate level, where
there are suitable opportunities.

http://www.sqa.org.uk/sqa/63101.html

Version 3.2 15

Course assessment
Course assessment is based on the information in this course specification.

The course assessment meets the purposes and aims of the course by addressing:

♦ breadth — drawing on knowledge and skills from across the course
♦ challenge — requiring greater depth or extension of knowledge and/or skills
♦ application — requiring application of knowledge and/or skills in practical or theoretical

contexts as appropriate

This enables candidates to apply:

♦ knowledge and skills from across the course to plan, analyse, design, implement, test

and evaluate a solution to solve an appropriately challenging practical computing science
problem

♦ breadth of knowledge from across the course, and depth of understanding, to answer
appropriately challenging questions in computing science contexts

Course assessment structure: question paper
Question paper 55 marks
The question paper gives candidates the opportunity to:

♦ apply computational thinking to solve complex computing problems
♦ analyse complex problems within computing science, across a range of contemporary

contexts
♦ design, develop, implement, test, and evaluate digital solutions (including computer

programs) to complex problems across a range of contexts
♦ communicate how a well-structured, complex, modular program works
♦ demonstrate understanding of complex concepts relating to computing science design

and development by communicating clearly and concisely, using appropriate terminology
♦ demonstrate knowledge and understanding of key aspects of contemporary project

planning and management
♦ demonstrate knowledge and understanding of object-oriented programming

The question paper has 55 marks, which is approximately 40% of the overall marks for the
course assessment (135 marks).

Version 3.2 16

The question paper has three sections. Section 1 is mandatory, and candidates have the
option to complete wither section 2 or section 3.

♦ Section 1: Software design and development — 35 marks
♦ Section 2: Database design and development — 20 marks
♦ Section 3: Web design and development — 20 marks

Each section begins with a number of short, stand-alone questions. These are predominantly
‘C’ mark questions, based on Advanced Higher concepts, presented in a clear and concise
way, in a simple and/or familiar context.

This is followed by more challenging, context-based questions with multiple subparts. These
require a range of responses including restricted and extended response, designing solutions
and writing code, and feature both ‘C’ mark and ‘A’ mark questions. Some questions are
designed to be more challenging and feature higher-order Advanced Higher concepts, such
as the integration of technologies or understanding and/or designing solutions to complex,
unfamiliar problems.

The questions will:

♦ require candidates to understand and design solutions to complex, unfamiliar problems
♦ be set in meaningful contexts that require candidates to provide some descriptions and

explanations
♦ provide integration by drawing on understanding from other areas of the course
♦ sample across the course in a balanced way

Integration
The ‘Database design and development’ and ‘Web design and development’ sections will
each contain a question set in the context of a database-driven website. Part of this question
will require some integration with the other option. The tables below detail what could be
asked in the question paper.

For ‘Database design and development’, candidates will need to be familiar with the following
‘Web design and development’ skills, knowledge and understanding so they can design and
implement HTML forms.

Design
Describe, exemplify, and implement wireframe designs showing:

♦ visual layout
♦ navigation
♦ consistency
♦ underlying processes

Version 3.2 17

Implementation
Describe, exemplify, and implement form elements including:

♦ FORM element:

— action
— method (get and post)

♦ INPUT, SELECT and TEXTAREA elements:
— name
— value

Describe, exemplify and implement form elements:

♦ form element: input

— text
— number
— textarea
— radio
— submit

♦ form element: select

Describe, exemplify and implement form data validation:

♦ length
♦ presence
♦ range

Read and explain code that makes use of the above HTML.

For ‘Web design and development’, candidates will need to be familiar with the following
‘Database design and development’ skills, knowledge and understanding in order that they
can implement SQL queries:

♦ select:

— from
— where:
 o AND, OR, <, >, =
 o order by with a single field
— use of MAX, MIN, AVG, COUNT and SUM to return a single value

♦ insert
♦ update
♦ delete

Read and explain code that makes use of the above SQL.

Version 3.2 18

SQA’s standardised reference language
Questions assessing understanding and application of programming skills are expressed
using SQA’s standardised reference language. Further information can be found in the
document Reference language for Computing Science question papers, which can be
downloaded from the Advanced Higher Computing Science subject page on SQA’s website.

Where candidates need to answer by writing code, answers may be expressed using any
programming language. Candidates are not expected to write code in SQA’s standardised
reference language. Marks are awarded for demonstrating understanding, not for the correct
use of syntax.

Setting, conducting and marking the question paper
SQA sets and marks the question paper. It is conducted in centres under conditions specified
for external examinations by SQA.

Candidates have 2 hours to complete the question paper.

Specimen question papers for Advanced Higher courses are published on SQA’s website.
These illustrate the standard, structure and requirements of the question papers. The
specimen papers also include marking instructions.

Course assessment structure: project
Project 80 marks
The project gives candidates the opportunity to:

♦ apply computational thinking to solve a complex computing problem
♦ analyse a complex problem within a computing science context
♦ design, develop, implement, test, and evaluate a digital solution to a complex problem
♦ demonstrate advanced skills in computer programming
♦ communicate understanding of complex concepts related to computing science, clearly

and concisely, using appropriate terminology

The project is designed to allow candidates to demonstrate their ability to work
independently.

The project must:

♦ be based on one of the following study areas of the course:

— software design and development
— database design and development
— web design and development

♦ include at least two concepts from this area of the course
♦ integrate with one of the other two areas of the course

Version 3.2 19

It is important for teachers and lecturers to discuss potential project ideas with candidates to
ensure that they meet the criteria for the Advanced Higher project, and are achievable within
the constraints of time, expertise and resources available.

The project has 80 marks, which is approximately 60% of the overall marks for the course
assessment (135 marks).

Candidates gain marks for the following stages of the project:

♦ analysis of the problem 10 marks
♦ design of the solution 20 marks
♦ implementation 30 marks
♦ testing the solution 15 marks
♦ evaluation of the solution 5 marks

Setting, conducting and marking the project
The project is:

♦ an open brief — candidates choose the topic for their project in discussion with their

teacher or lecturer
♦ conducted under some supervision and control
♦ submitted to SQA for external marking

Assessment conditions
Time
There is no time limit for the project. It is recommended that the project is completed within
40 hours. This can be broken down for each section as follows:

♦ Analysis — 5 hours
♦ Design — 10 hours
♦ Implementation — 15 hours
♦ Testing — 8 hours
♦ Evaluation — 2 hours

Candidates should start at an appropriate point in the course.

Supervision, control and authentication
The project is conducted under some supervision and control.

Candidates can complete part of the work outwith the learning and teaching setting;
therefore, teachers and lecturers must exercise professional responsibility to ensure that
evidence submitted by a candidate is their own work.

Resources
This is an open-book assessment. Candidates can access any appropriate resources.

Version 3.2 20

Reasonable assistance
Candidates must carry out the assessment independently. However, teachers and lecturers
can provide reasonable assistance prior to, and during, the formal assessment process.

Teachers and lecturers should advise candidates on their choice of problem. This is to
ensure that their chosen problem meets the criteria for the Advanced Higher project and is
achievable.

Candidates must work independently once the formal assessment process has started, with
teacher and lecturer input limited to constructive comment and/or questioning.

Once projects are completed and submitted, they must not be returned to candidates for
further work.

Evidence to be gathered
Candidate evidence includes program listings, screenshots, web page source files, data files
or similar, as appropriate.

Volume
There is no word count. The project should have no more than 24 functional requirements.
This will ensure that the volume of evidence is not excessive.

Grading
Candidates’ overall grades are determined by their performance across the course
assessment. The course assessment is graded A–D based on the total mark for both course
assessment components.

Grade description for C
For the award of grade C, candidates will typically have demonstrated successful
performance in relation to the skills, knowledge and understanding for the course.

Grade description for A
For the award of grade A, candidates will typically have demonstrated a consistently high
level of performance in relation to the skills, knowledge and understanding for the course.

Version 3.2 21

Equality and inclusion
This course is designed to be as fair and as accessible as possible with no unnecessary
barriers to learning or assessment.

Guidance on assessment arrangements for disabled candidates and/or those with additional
support needs is available on the assessment arrangements web page:
www.sqa.org.uk/assessmentarrangements.

http://www.sqa.org.uk/assessmentarrangements

Version 3.2 22

Further information

♦ Advanced Higher Computing Science subject page
♦ Assessment arrangements web page
♦ Building the Curriculum 3–5
♦ Guidance on conditions of assessment for coursework
♦ SQA Skills Framework: Skills for Learning, Skills for Life and Skills for Work
♦ Educational Research Reports
♦ SQA e-assessment web page
♦ SCQF website: framework, level descriptors and SCQF Handbook

https://www.sqa.org.uk/sqa/48508.html
http://www.sqa.org.uk/assessmentarrangements
https://education.gov.scot/education-scotland/scottish-education-system/policy-for-scottish-education/policy-drivers/cfe-building-from-the-statement-appendix-incl-btc1-5/building-the-curriculum/
https://education.gov.scot/education-scotland/scottish-education-system/policy-for-scottish-education/policy-drivers/cfe-building-from-the-statement-appendix-incl-btc1-5/building-the-curriculum/
http://www.sqa.org.uk/sqa/files_ccc/Guidance_on_conditions_of_assessment_for_coursework.pdf
http://www.sqa.org.uk/sqa/63101.html
http://www.sqa.org.uk/sqa/35847.958.html
http://www.sqa.org.uk/sqa/68750.html
https://scqf.org.uk/

Version 3.2 23

Appendix: course support notes
Introduction
These support notes are not mandatory. They provide advice and guidance to teachers and
lecturers on approaches to delivering the course. Please read these course support notes in
conjunction with the course specification and the specimen question paper and coursework.

Approaches to learning and teaching
At Advanced Higher, a significant amount of learning may be self-directed and require
candidates to demonstrate initiative and work on their own.

Some candidates may find this challenging, so it is important that you have strategies in
place to support them, for example planning time for regular feedback sessions and/or
discussions on a one-to-one or group basis.

You should encourage candidates to use an enquiring, critical and problem-solving approach
to their learning. Give them the opportunity to practise and develop research and
investigation skills, and higher-order evaluation and analytical skills.

Where possible, provide opportunities to personalise learning to enable candidates to have
choices in approaches to learning and teaching. The flexibility in the Advanced Higher course
and the independence with which candidates carry out the work lends itself to this.

Encourage candidates to participate fully in active learning and practical activities by working
together, analysing, investigating, debating and evaluating topics, problems and solutions,
while you act increasingly as a facilitator.

You should use an appropriate balance of teaching methodologies when delivering the
course. A variety of active learning approaches is encouraged, including the following:

Activity-based learning
You should balance whole-class, direct teaching opportunities with activity-based learning
using practical tasks. An investigatory approach is encouraged, with candidates actively
involved in developing their skills, knowledge and understanding by investigating a range of
real-life and relevant problems and solutions related to areas of study. You should support
learning with appropriate practical activities, so that skills are developed simultaneously with
knowledge and understanding.

Group work
Practical activities and investigations lend themselves to group work, and you should
encourage this. Candidates engaged in collaborative group working strategies can capitalise
on one another’s knowledge, resources and skills by questioning, investigating, evaluating
and presenting ideas to the group. Working as a team is a fundamental aspect of working in
the IT and related industries, and so should be encouraged and developed.

Version 3.2 24

Problem-based learning
Problem-based learning (PBL) is another approach that can support candidates to progress
through the course. This method may be best utilised at the end of a topic, where additional
challenge is required to ensure candidates are secure in their knowledge and understanding,
and to develop the ability to apply knowledge and skills in less familiar contexts. Learning
through PBL develops skills in problem solving, decision making, investigation, creative
thinking, team working and evaluation.

Computational thinking
Computational thinking is recognised as a key skill set for all 21st century candidates —
whether they intend to continue with computing science or not. It involves a set of
problem-solving skills and techniques used by software developers to write programs.

There are various ways of defining computational thinking. One useful structure is to group
these problem-solving skills and techniques under five broad headings (concepts):

♦ Abstraction: seeing a problem and its solution at many levels of detail and generalising

the necessary information. Abstraction allows us to represent an idea or a process in
general terms (for example variables) and use it to solve other problems that are similar
in nature.

♦ Algorithms: the ability to develop a step-by-step strategy for solving a problem.
Algorithm design is often based on the decomposition of a problem and the identification
of patterns that help to solve the problem. In computing science as well as in
mathematics, algorithms are often written abstractly, utilising variables in place of specific
numbers.

♦ Decomposition: breaking down a task so that we can clearly explain a process to
another person — or to a computer. Decomposing a problem frequently leads to pattern
recognition and generalisation/abstraction, and ultimately the ability to design an
algorithm.

♦ Pattern recognition: the ability to notice similarities or common differences that help us
make predictions or lead us to shortcuts. Pattern recognition is frequently the basis for
solving problems and designing algorithms.

♦ Generalisation: realising that we can use a solution to one problem to solve a whole
range of related problems.

Underpinning all of these concepts is the idea that computers are deterministic: they do
exactly what we tell them to do and so can be understood.

Computational thinking can be a component of many subjects; computing science delivers
this particularly well. You are encouraged to emphasise, exemplify and make these aspects
of computational thinking explicit, wherever there are opportunities to do so throughout the
teaching and learning of this course.

Using online and outside resources
Stimulating interest and curiosity should be a prime objective when teaching this course.
Engaging with outside agencies or industry professionals can greatly enhance the learning
process. Online resources can provide a valuable addition to teaching and learning activities,

Version 3.2 25

encouraging research, collation and storage of information and evaluation of these materials.
Using interactive multimedia learning resources, online quizzes, and web-based software
can also support teacher-led approaches.

Blending assessment activities with learning activities throughout the course can support
learning, for example:

♦ sharing learning intentions and/or success criteria
♦ using assessment information to set learning targets and next steps
♦ adapting teaching and learning activities based on assessment information
♦ boosting confidence by providing supportive feedback

If appropriate, you should encourage self-assessment and peer-assessment techniques.

Meeting the needs of all candidates
Within any class, each candidate has individual strengths and areas for improvement. If there
are candidates capable of achieving a higher level in some aspects of the course, you should
give them the opportunity to do so, where possible. Advanced Higher is particularly suited to
candidates researching knowledge and developing skills beyond the course requirements.

Where Advanced Higher candidates have studied National 5 and Higher in previous years, it
is important that you provide them with new and different contexts for learning to avoid
demotivation. For example, candidates could work in a different type of development
environment or language at Advanced Higher. You should also consider candidates’
previous experience in ‘Database design and development’ and ‘Web design and
development’ when planning delivery of integration across the different areas of the course.

Suggested learning activities
The course is structured around three areas of study.

Some aspects of analysis, testing and evaluation apply to all three practical areas of the
course (SDD, DDD and WDD), as well as solutions to problems that integrate these
technologies.

You are encouraged to use an investigatory approach, with candidates actively involved in
developing their skills, knowledge and understanding of a range of development problems
and solutions.

Development methodologies
♦ Working in groups, candidates could discuss using an agile methodology, compared to

an iterative development process. This is not assessed in the course but candidates have
to decide which approach they will follow for their project.

Analysis (SDD, DDD and WDD)
♦ Working individually or in groups, candidates could analyse a number of problems by

creating a use case diagram, and deciding on purpose and functional requirements.

Version 3.2 26

These could be SDD, DDD and WDD problems, as well as problems that integrate these
areas (which is a requirement of the project).

♦ Working individually or in groups, candidates could prepare requirements specifications
for end users.

Software design and development
♦ Design:

— You could present candidates with a variety of completed requirement specifications,
and ask them to complete the top level algorithm, data flow, and Unified Modelling
Language (UML) class diagram for each problem.

— Candidates could then design user interfaces using wireframes annotated with
underlying processes, inputs (including any necessary validation) and outputs.

♦ Implementation:
— You could provide candidates with working programs that demonstrate the use of

object-oriented programming techniques, including classes and methods.
— Ask candidates to identify and explain sections of code from within these programs.
— Using the pre-defined functions stated in the course content, candidates could tackle

a number of problems.
— Using appropriate programs created in Higher, candidates could think about how they

could use their knowledge of 2-D arrays and arrays of objects to implement them
using the new data structures.

— Working in groups, candidates could write code from designs provided in
pseudocode, structure diagrams or UML class diagrams. This would help them
implement object-oriented code.

— Using a range of working programs that use a variety of standard algorithms,
candidates could interpret and explain what is happening in the code. This would help
them develop their own modular programs that use these constructs and standard
algorithms.

— You could demonstrate how a program language is used to create a link to a
database and execute an SQL statement. You could then give candidates a
sequence of problems that requires them to update and query the database.

♦ Testing:
— Using a variety of modular programs, candidates could carry out component testing.
— You could demonstrate debugging techniques, for example dry runs, trace tables,

breakpoints and watchpoints, to show how they can help programmers find errors
within their code.

♦ Evaluation:
— In groups, candidates could evaluate completed programs in terms of efficient use of

coding constructs and usability.

Version 3.2 27

Database design and development
♦ Design:

— You could explain the differences between a data dictionary at National 5 and Higher,
and the same dictionary at Advanced Higher (which uses SQL data types and
validation).

— Candidates could complete different types of exercises to create a data dictionary
from given data.

— Using supplied scenarios with completed analysis, candidates could complete
entity-relationship diagrams, including notation of weak or strong entities and
mandatory or optional relationships.

— Using sample database tables, candidates could design queries to produce a
required output.

♦ Implementation:
— You could demonstrate the SQL operations required to create a database and

subsequently create or drop tables.
— You could demonstrate SQL operations using HAVING and Advanced Higher logical

operators. Candidates could then complete a number of exercises to solve problems
relating to using the appropriate SQL operations.

— Using SQL code and databases, candidates could explain what the output of the code
would be.

♦ Testing and evaluation:
— Using SQL code, candidates could test it and evaluate its fitness for purpose, and

accuracy of output.
— Using an incorrect SQL operation along with the correct expected output, candidates

could identify how to correct the SQL statement in order to produce the expected
output.

Web design and development
♦ Design:

— Candidates could use wire-framing design techniques to design website structures
and pages relating to multi-level websites. These could involve multiple screen views,
for example mobile and desktop.

— Using the completed website designs, candidates could create low-fidelity prototypes
to test their effectiveness.

— Candidates could complete pseudocode design for server-side processes.
♦ Implementation:

— Using HTML, Cascading Style Sheets (CSS) and PHP code from sample web pages,
candidates could explain which parts of the code relate to the web page.

— Using HTML, CSS and PHP, candidates could implement a design that requires data
to be retrieved from a database and displayed as a table.

— Using HTML, CSS and PHP, candidates could implement a design that requires form
data to be processed and stored in a database.

♦ Evaluation:
— Working in groups or individually, candidates could evaluate previous solutions for

usability.

Version 3.2 28

Testing (SDD, DDD and WDD)
These learning and teaching activities could be in the context of SDD, DDD or WDD
problems, as well as problems that integrate these areas (which is a requirement of the
project):

♦ Working in groups, candidates could discuss how to carry out testing of integrated

components.
♦ Working in groups, candidates could create prototypes and test each other’s solutions to

a problem. Following implementation of each prototype, the same end-user testing could
be carried out.

♦ Working individually or in groups, candidates could discuss or plan a final testing solution
for a given problem.

Evaluation (SDD, DDD and WDD)
These learning and teaching activities could be in the context of SDD, DDD or WDD
problems, as well as problems that integrate these areas (which is a requirement of the
project):

♦ Working in groups or individually, candidates could compare a solution to functional

requirements and discuss its fitness for purpose.
♦ Working in groups, candidates could discuss the maintainability of a solution in terms of

correcting, adapting or expanding a solution.
♦ Working in groups, candidates could perform destructive testing on each other’s solutions

to evaluate the robustness of the solution.

Resources
You need access to an SQL server and a web server to implement the following:

♦ PHP code to process form data
♦ PHP code to connect to a database
♦ server-side SQL execution
♦ create and maintain a database using SQL statements

You may wish to use prebuilt solutions installed locally, such as XAMPP or arrange access to
online resources.

You should ensure that the programming language used for the Advanced Higher course is
object-oriented (OO) capable and has the capacity to connect to a database file.

You also need:

♦ internet-enabled computers and a digital projector
♦ access to software development tools
♦ access to application development software and tools
♦ web development tools (for example HTML5 script enabled browsers and wire-framing

software)

Version 3.2 29

Some suggested software development environments
For this course, you can use any software development environment. You should base your
decision on the suitability of the chosen environment to support the delivery of the mandatory
content of the course.

Possible examples include:

♦ Python
♦ Visual Basic
♦ Java
♦ Live Code

Teaching and learning materials
A number of online resources are available.

♦ Software design and development

www.java.com
www.python.org
www.codeacademy.com
www.programiz.com/python-programming
www.livecode.com
www.draw.io

♦ Database design and development

www.w3schools.com
www.codeacademy.com
www.tutorialspoint.com/sql
www.sqlcourse.com
Apex.oracle.com/en

♦ Web design and development

www.w3schools.com
www.codeacademy.com
html.net/tutorials
www.khanacademy.org
pencil.evolus.vn
balsamiq.com
resources.infosecinstitute.com/prototyping
Goggles.mozilla.org
http://hackasaurus.toolness.org

[date accessed August 2019]

http://www.java.com/
http://www.python.org/
http://www.codeacademy.com/
http://www.programiz.com/python-programming
http://www.livecode.com/
http://www.draw.io/
http://www.w3schools.com/
http://www.codeacademy.com/
http://www.tutorialspoint.com/sql
http://www.sqlcourse.com/
https://apex.oracle.com/en/
http://www.w3schools.com/
http://www.codeacademy.com/
http://html.net/tutorials/
http://html.net/tutorials/
https://www.khanacademy.org/
http://pencil.evolus.vn/
https://balsamiq.com/
http://resources.infosecinstitute.com/prototyping/
https://goggles.mozilla.org/
http://hackasaurus.toolness.org/

Version 3.2 30

Comparison of skills, knowledge and understanding for Higher and Advanced Higher
The following table shows the relationship between the mandatory Higher and Advanced Higher skills, knowledge and understanding.

You can use this to:

♦ ensure seamless progression between levels
♦ identify important prior learning for candidates at Advanced Higher

Analysis

Area Higher Advanced Higher

SDD Identify the:

♦ purpose
♦ scope
♦ boundaries
♦ functional requirements

of a problem that relates to the design and
implementation at this level, in terms of:

♦ inputs
♦ processes
♦ outputs

Identify the purpose and functional requirements of a
problem that relates to the design and implementation at this
level in terms of:

♦ inputs
♦ processes
♦ outputs

Describe, exemplify, and implement research for:

♦ feasibility studies:

— economic
— time

Version 3.2 31

Analysis (continued)

Area Higher Advanced Higher

DDD Identify the end-user and functional requirements of a
database problem that relates to the implementation at
this level.

— legal
— technical

♦ user surveys

Describe, exemplify, and implement planning in terms of:

♦ scheduling
♦ resources
♦ Gantt charts

Produce requirement specifications for end users and
develop:

♦ end-user requirements
♦ scope, boundaries and constraints
♦ functional requirements

Describe, exemplify, and implement Unified Modelling
Language (UML):

♦ use case diagrams:

— actors
— use cases
— relationships

WDD Identify the end-user and functional requirements of a
website problem that relates to the design and
implementation at this level.

Version 3.2 32

Design

Area Higher Advanced Higher

SDD Identify the data types and structures required for a
problem that relates to the implementation at this level.

Read and understand designs of solutions to problems at
this level, using the following design techniques:

♦ structure diagrams
♦ pseudocode

Exemplify and implement efficient design solutions to a
problem, using a recognised design technique, showing:

♦ top level design
♦ the data flow
♦ refinements

Describe, exemplify and implement user-interface design,
in terms of input and output, using a wireframe.

Identify the data types and structures required for a problem
that relates to the implementation at this level.

Read and understand designs of solutions to problems at this
level using the following design techniques:

♦ structure diagrams
♦ pseudocode
♦ UML

Exemplify and implement efficient design solutions to a
problem at this level, using pseudocode, showing:

♦ top level design
♦ the data flow
♦ refinements

Describe, exemplify, and implement UML for the following:

♦ class diagrams:

— class name
— instance variables and data types
— methods
— public and private

Version 3.2 33

Design (continued)

Area Higher Advanced Higher

SDD — inheritance
— constructor
— array of objects

Describe, exemplify, and implement user-interface design
using a wireframe, indicating:

♦ visual layout
♦ inputs
♦ validation
♦ underlying processes
♦ outputs

DDD Describe and exemplify entity-relationship diagrams with
three or more entities, indicating:

♦ entity name
♦ attributes
♦ name of relationship
♦ cardinality of relationship (one-to-one, one-to-many,

many-to-many)

Describe and exemplify an instance using an entity-
occurrence diagram.

Describe, exemplify, and implement entity-relationship
diagrams with three or more entities indicating:

♦ entity name
♦ entity type (strong, weak)
♦ attributes
♦ relationship participation (mandatory, optional)
♦ name of relationship
♦ cardinality

Identify relationship participation from an entity-occurrence
diagram.

Version 3.2 34

Design (continued)

Area Higher Advanced Higher

DDD Describe and exemplify a compound key.

Describe and exemplify a data dictionary with three or
more entities:

♦ entity name
♦ attribute name
♦ primary and foreign key
♦ attribute type:

— text
— number
— date
— time
— Boolean

♦ attribute size
♦ validation:

— presence check
— restricted choice
— field length
— range

Exemplify a design of a solution to a query:

♦ tables and queries

Describe, exemplify, and implement surrogate keys.

Describe and exemplify a data dictionary, in relation to SQL,
with three or more entities for the following:

♦ entity name
♦ attribute name
♦ primary and foreign key
♦ attribute type:

— varchar
— integer
— float
— date
— time

♦ attribute size
♦ validation:

— presence check
— restricted choice
— field length
— range

Exemplify a design of a solution to a query using:

♦ tables and queries

Version 3.2 35

Design (continued)

Area Higher Advanced Higher

DDD ♦ fields
♦ search criteria
♦ sort order
♦ calculations
♦ grouping

♦ fields
♦ search criteria
♦ sort order
♦ calculations
♦ grouping
♦ having

WDD Describe and exemplify the website structure of a
multi-level website with a home page and two additional
levels, with no more than four pages per level.

Describe, exemplify and implement, taking into account
end-user requirements and device type, an effective
user-interface design (visual layout and readability) using
wire-framing:

♦ horizontal navigational bar
♦ relative horizontal and vertical positioning of the

media
♦ form inputs
♦ file formats of the media (text, graphics, video, and

audio)

Describe, exemplify and implement prototyping (low
fidelity) from wireframe design at this level.

Describe, exemplify, and implement wireframe designs
showing:

♦ visual layout
♦ navigation
♦ consistency
♦ underlying processes

Describe, exemplify, and implement low-fidelity prototype
from wireframe design.

Read and understand designs of server-side processes at
this level, using the following design techniques:

♦ structure diagrams
♦ pseudocode

Exemplify and implement the design of server-side
processes using pseudocode.

Version 3.2 36

Implementation

Area Higher Advanced Higher

SDD Data types and structures
Describe, exemplify and implement appropriately the
following structures:

♦ parallel 1-D arrays
♦ records
♦ arrays of records

Computational constructs
Describe, exemplify and implement the appropriate
constructs in a procedural high-level (textual) language:

♦ parameter passing (formal and actual)
♦ the scope of local and global variables
♦ sub-programs/routines, defined by their name and

arguments (inputs and outputs):
— functions
— procedures

Data types and structures
Describe, exemplify, and implement the following structures
in solutions to problems at this level:

♦ parallel 1-D arrays
♦ records
♦ arrays of records
♦ 2-D arrays
♦ array of objects

Describe and exemplify the operation of linked lists (double
and single).

Computational constructs
Describe, exemplify, and implement the following object-
oriented (OO) constructs:

♦ object
♦ property
♦ method
♦ class
♦ sub-class
♦ encapsulation
♦ inheritance

Version 3.2 37

Implementation (continued)

Area Higher Advanced Higher

SDD ♦ pre-defined functions (with parameters):
— to create substrings
— to convert from character to ASCII and vice versa
— to convert floating-point numbers to integers
— modulus

♦ file handling:
— sequential CSV and txt files (open, create, read,

write, close)

Read and explain code that makes use of the above
constructs.

Algorithm specification
Describe, exemplify and implement standard algorithms
using 1-D arrays or arrays of records:

♦ linear search
♦ find minimum and maximum
♦ count occurrences

♦ instantiation
♦ polymorphism

Describe, exemplify, and implement code to:

♦ open and close connection to database server
♦ execute SQL query
♦ format query results

Algorithm specification
Describe, exemplify, and implement standard algorithms
including:

♦ binary search
♦ insertion sort
♦ bubble sort

Read and explain code that uses constructs appropriate to
this level.

Version 3.2 38

Implementation (continued)

Area Higher Advanced Higher

DDD Describe, exemplify and use SQL operations for
pre-populated relational databases, with three or more
linked tables:

♦ UPDATE, SELECT, DELETE, INSERT statements

making use of:
— wildcards
— aggregate functions (MIN, MAX, AVG, SUM,

COUNT)
— computed values, alias
— GROUP BY
— ORDER BY
— WHERE

Read and explain code that makes use of the above
SQL.

Implement relational database using SQL Data Definition
Language (DDL) and Data Manipulation Language (DML) to
match the design.

Describe, exemplify, and implement the following SQL
operations:

♦ CREATE statement:

— CREATE DATABASE
— CREATE TABLE
— constraints:

o primary key
o foreign key
o not null
o check
o auto increment

♦ DROP statement:
— DROP DATABASE
— DROP TABLE

♦ HAVING clause of the SELECT statement
♦ subqueries used with the WHERE clause of SELECT

statements
♦ data types:

— varchar
— integer

Version 3.2 39

Implementation (continued)

Area Higher Advanced Higher

DDD — float
— date
— time

♦ logical operators:
— IN
— NOT
— BETWEEN
— ANY
— EXISTS

Read and explain code that uses the SQL at this level.

WDD CSS
Describe, exemplify and implement efficient inline,
internal and external Cascading Style Sheets (CSS)
using grouping and descendant selectors to:

♦ control appearance and positioning:

— display (block, inline, none)
— float (left, right)
— clear (both)
— margins/padding
— sizes (height, width)

♦ create horizontal navigation bars:
— list-style-type:none
— hover

CSS
Describe, exemplify, and implement responsive pages using
the following media queries:

♦ media type:

— print
— screen

♦ media feature:
— max-width

Version 3.2 40

Implementation (continued)

Area Higher Advanced Higher

WDD Read and explain code that makes use of the above
CSS.

HTML
Describe, exemplify and implement HTML code:

♦ nav
♦ header
♦ footer
♦ section
♦ main
♦ form
♦ id attribute

Describe, exemplify and implement form elements:

♦ form element: input

— text
— number
— textarea
— radio
— submit

♦ form element: select

HTML
Describe, exemplify, and implement form elements including:

♦ FORM element:

— action
— method (get and post)

♦ INPUT, SELECT and TEXTAREA elements:
— name
— value

♦ TABLE element:
— th, tr, td

Version 3.2 41

Implementation (continued)

Area Higher Advanced Higher

WDD Describe, exemplify and implement form data validation:

♦ length
♦ presence
♦ range
Read and explain code that makes use of the above
HTML.

JavaScript
Describe, exemplify and implement coding of JavaScript
functions related to mouse events:

♦ onmouseover
♦ onmouseout
♦ onclick

PHP
No content at Higher

JavaScript
No content at Advanced Higher

PHP
Describe, exemplify, and implement coding of server-side
processing to:

♦ assign form data to server-side variables:

— $_get()
— $_post()

♦ open and close connection to database server:
— die()

Version 3.2 42

Implementation (continued)

Area Higher Advanced Higher

WDD — mysqli_connect()
— mysqli_close()

♦ execute SQL query:
— mysqli_query()

♦ format query results:

— echo
— mysqli_fetch_array()
— mysqli_num_row()

and:

♦ assignment, repetition and selection using server-side

local and global variables
♦ sessions:

— session_start()
— session_destroy()

Read and explain code that uses constructs appropriate to
this level.

Version 3.2 43

Testing

Area Higher Advanced Higher

SDD Describe, exemplify and implement a comprehensive final
test plan to show that the functional requirements are
met.

Identify syntax, execution, and logic errors at this level.

Describe and exemplify debugging techniques:

♦ dry runs
♦ trace tables/tools
♦ breakpoints
♦ watchpoints

Describe, exemplify, and implement the following for SDD,
DDD and WDD:

♦ integrative testing
♦ usability testing based on prototypes
♦ final testing
♦ end-user testing

and for SDD only:

♦ component testing during the development of the solution

and for DDD only:

♦ SQL implemented tables match design
♦ SQL operations work correctly at this level

DDD Describe and exemplify testing:

♦ SQL operations work correctly at this level

WDD Describe, exemplify and implement usability testing using
personas, test cases and scenarios based on low-fidelity
prototypes.

Describe and exemplify testing:

♦ input validation
♦ navigational bar works
♦ media content displays correctly

Version 3.2 44

Testing (continued)

Area Higher Advanced Higher

SDD Describe and exemplify compatibility testing:

♦ device type:

— tablet, smartphone, desktop
♦ browser

Version 3.2 45

Evaluation

Area Higher Advanced Higher

SDD Describe, identify and exemplify the evaluation of a
solution in terms of:

♦ fitness for purpose
♦ efficient use of coding constructs
♦ usability
♦ maintainability
♦ robustness

Evaluate solution for SDD, DDD and WDD in terms of:

♦ fitness for purpose
♦ maintainability

— perfective
— corrective
— adaptive

♦ robustness

and for SDD only:

♦ efficiency
♦ usability

and for DDD only:

♦ accuracy of output

and for WDD only:

♦ usability

DDD Evaluate solution at this level in terms of:

♦ fitness for purpose
♦ accuracy of output

WDD Evaluate solution at this level in terms of:

♦ fitness for purpose
♦ usability

Version 3.2 46

Preparing for course assessment
The course assessment focuses on breadth, challenge and application. Candidates should
apply the skills, knowledge and understanding they have gained during the course.

In preparation, you should give candidates the opportunity to practise activities similar to
those expected in the course assessment. For example, you could develop questions and
tasks similar to those in the specimen question paper and coursework.

You may find the following information useful:

♦ course assessment overview
♦ question paper brief

Course assessment overview
Marks: 135

The course assessment has two components:

♦ question paper: 55 marks
♦ project: 80 marks

Proportion of ‘A’ and ‘C’ type questions:

♦ approximately 30% of marks ‘A’ type
♦ approximately 50% of marks ‘C’ type

The course assessment (question paper and project) is designed using the following
breakdown of marks for each skill assessed.

 Course assessment Project Question
paper

Skill % marks Total marks
(approximate) Marks Marks

Analysis 10% 14 10 3–8

Design 30% 41 20 16-24

Implementation 40% 54 30 20–28

Testing 15% 21 15 2–8

Evaluation 5% 7 5 0–5

Version 3.2 47

Question paper brief
Marks: 55

Duration: 2 hours

The question paper has three sections. Section 1 is mandatory, and candidates have the
option to complete either Section 2 or Section 3.

♦ Section 1: Software design and development — 35 marks
♦ Section 2: Database design and development — 20 marks
♦ Section 3: Web design and development — 20 marks

Proportion of ‘A’ and ‘C’ type marks:

♦ approximately 30% of marks ‘A’ type (primarily in context-based questions)
♦ approximately 50% of marks ‘C’ type

The question paper is designed using the following range of marks, against each area of
content and skills.

The skills, knowledge and understanding across the ‘Database design and development’ and
‘Web design and development’ areas of study are not directly comparable, for example, there
is more assessable content in design for DDD than WDD, but more for implementation in
WDD than DDD.

As a result, the mark breakdown across analysis, design, implementation, testing and
evaluation will not be identical across the options, however, there will be a balance of ‘A’ type
and ‘C’ type marks across the options.

Skill Range

Analysis 3–8

Design 16-24

Implementation 20–28

Testing 2-8

Evaluation 0–5

Version 3.2 48

Developing skills for learning, skills for life and skills
for work
You should identify opportunities throughout the course for candidates to develop skills for
learning, skills for life and skills for work.

Candidates should be aware of the skills they are developing and you can provide advice on
opportunities to practise and improve them.

SQA does not formally assess skills for learning, skills for life and skills for work.

There may also be opportunities to develop additional skills depending on the approach
centres use to deliver the course. This is for individual teachers and lecturers to manage.

Some examples of potential opportunities to practise or improve these skills are as follows:

Skill How to develop

Numeracy
2.3 Information handling

Develop skills by setting problem-solving contexts where
candidates use data set out in tables or a graphical
format as the basis for input to their programs,
processing the data to produce the required output.

Health and Wellbeing
3.1 Personal learning

Candidates work autonomously on their project, taking
responsibility for completing it within the time available to
them. They plan for this and have opportunities to follow
up on curiosity, think constructively and learn from
experience.

Employability, enterprise
and citizenship
4.2 Information and

communication technology
(ICT)

Throughout the course, candidates continually interact
with the technology around them. This should provide
plenty of opportunities to extend their ICT skills.

Thinking skills
5.3 Applying

Give candidates opportunities to analyse a wide range of
problems, apply the knowledge and skills they have
acquired, and then test and review their solutions.

5.4 Analysing and evaluating Develop skills through the process of creating computer
programs to solve problems and testing them.

Version 3.2 49

Resources to support the Advanced Higher
Computing Science course
These resources provide clarification and exemplification of some of the skills, knowledge
and understanding developed in the Advanced Higher course.

Note 1: appendix 10 uses a relational database that can be found on the Advanced Higher
page on SQA’s website.

Note 2: appendices 12-14 use the Advanced Higher example website to exemplify the
course requirements for teachers and lecturers. You can download the example website from
SQA’s secure site, but you must not distribute it to candidates, as it would provide a
framework for a web-based Advanced Higher project.

https://secure.sqa.org.uk/secure/Understanding-Standards-Materials/NQCourseAssessments/Computing_Science

Version 3.2 50

Appendix 1: problem analysis (SDD, DDD and WDD)
Requirements specification
In addition to the purpose, scope, boundaries, and requirements exemplified at Higher,
analysis of any development should identify the constraints of a problem.

Constraints
Constraints are restrictions that apply to the development. These restrict the changes made
to design decisions during the development. Time, scope and cost are the main constraints
of project management; however, depending on the type of development, other constraints
may apply, for example:

Technical constraints
♦ knowledge and/or availability of development tools and programming language
♦ the operating system or platforms that will be used to deliver the working solution
♦ hardware considerations such as capacity
♦ non-functional requirements such as performance considerations

Business constraints
♦ schedule and timescales that must be met
♦ available budget
♦ composition and makeup of the development team
♦ software licensing restrictions or requirements

Further constraints
♦ economic considerations
♦ political issues

Note: the requirements specification document is often the basis of a legal contract between
the client (customer) and the software company writing the software.

Worked example of a requirements specification (SDD)
Analysis
The purpose of a program is to allow the end user to search for an item on an unsorted list of
data. If a match is found, the program will display the row of data for the item.

Scope
This development involves creating a modular program. The deliverables include:

♦ a detailed design of the program structure
♦ a test plan with a completed test data table

Version 3.2 51

♦ a working program
♦ the results of testing
♦ an evaluation report

Boundaries
♦ the program will read the data (itemID, price, and number in stock) from a sequential file
♦ if the data is accurate, there is no need to implement input validation

End-user requirements
End users will expect:

♦ to enter an itemID while the program is running
♦ the data corresponding to the itemID to be displayed
♦ a user interface that is clearly labelled and easy to use for all user types

Functional requirements
Functional requirements are defined in terms of the inputs, processes, and outputs listed
below. All inputs are imported from a sequential file and all outputs displayed on the screen.
The program is activated by double clicking on the file icon and then selecting “Run” from the
menu. Each process should be a separate procedure or function that is called from the main
program.

Inputs
♦ itemID
♦ price
♦ number in stock

Processes
♦ read in data from an external file to a 2D array
♦ sort the data in order of itemID from low to high
♦ search the 2D array for the required itemID, based on the end-user input

Output
♦ if a match is found, the data (itemID, price, and number in stock) will correspond to the

end-user input
♦ if no match is found, a suitable message will inform the end user

Constraints
The constraints that apply to this development are:

♦ Live Code, Python, or Visual Basic must be used to develop the program.
♦ The working program will run on the Windows operating system.
♦ The work must be completed within 8 hours.

Version 3.2 52

Worked example of a requirements specification (DDD)
Analysis
GoGoGadgets.com is a company specialising in quirky and unusual gadgets that are
available for purchase through its online catalogue.

Before customers can make a purchase, they must first register with the GoGoGadgets
website and be allocated a unique customerID.

Customers can browse the product range through an online catalogue. Each item is
categorised as one of the following: Toys, Gizmos, Office Distractions, Personal Grooming,
and Computer Accessories. All items cost less than £50.

A database is required to store details of customers, items, and orders.

Scope
This development involves creating a relational database. The deliverables include:

♦ a detailed design of the database structure
♦ a test plan with a completed test data table
♦ a working database
♦ the results of testing
♦ an evaluation report

Boundaries
♦ the database will contain a maximum of 10 000 items
♦ each item will cost £50 or less
♦ all items should be categorised as one of the following: Toys, Gizmos, Office Distractions,

Personal Grooming, and Computer Accessories
♦ users must enter a valid email address to register

End-user requirements
End users (customers) will expect queries that enable them to:

♦ register as a user and store their details in the database
♦ search for items based on the category of the item
♦ search for items based on the name of an item
♦ sort items by price (low to high), price (high to low) or rating

End users (administrators) will expect queries that enable them to:

♦ edit the price of items
♦ edit customer contact details
♦ add and remove details of individual items
♦ remove details of customers from the database
♦ view details of all orders placed each month

Version 3.2 53

Functional requirements
Functional requirements are defined in terms of the inputs, processes and outputs listed
below.

Inputs (customers)
♦ register: user email, password, password re-entered, firstName, lastName, address, and

postcode:
— search details: category
— search details: itemName

♦ sort details: field (price or rating) and order required (ascending or descending)

Inputs (administrators)
♦ edit item details: itemID and price
♦ edit customer details: customerID, address, postcode, and email
♦ add item details: itemID, itemName, description, category, and price
♦ delete item details: itemID
♦ delete customer details: customerID
♦ monthly orders: month

Processes
♦ auto generate customerID whenever a new customer registers
♦ queries to:

— insert records into the Customer and Item tables
— sort item details in order of price and rating
— delete a specific customer and an item record from the database
— edit records in the Customer and Item tables
— search Item table
— display details of all orders placed in a particular month

Output
♦ confirmation of successful:

— insertions
— deletions
— edits

♦ answer tables showing details of:
— sorted items (sorts)
— required items (searches)

Version 3.2 54

Constraints
The constraints that apply to this development are:

♦ The Oracle MySQL server must be used to develop the database.
♦ The working database will run on the Windows operating system.
♦ The work must be completed within 15 hours.

Unified Modelling Language (UML)
Unified Modelling Language (UML) provides a standard way to visualise, specify, construct,
and document the analysis and design of a software system.

UML is a pictorial language used to make software blueprints that can be used to model
software and non-software systems.

UML use case diagram
To model a system, it is important to capture the dynamic behaviour of the system. Dynamic
behaviour is when the system is running or operating.

The purpose of a use case diagram is to capture the dynamic aspect of the system. Use
case diagrams:

♦ are used to gather the requirements of the system
♦ are used to get an outside view of the system
♦ identify the internal and external factors that influence the system
♦ show the interaction among the requirements as ‘actors’
♦ aid communication between the client and the developer

Drawing a use case diagram
Use case diagrams consist of four components:

♦ a system boundary
♦ actors
♦ use cases
♦ relationships

System boundary
In a UML case diagram, a system boundary is shown as a rectangle. All components of the
use case diagram are shown inside the system boundary.

The system boundary represents the limits of the system being developed: only those actors
and processes to be considered are illustrated within the system boundary.

Version 3.2 55

Actors
An actor interacts with the system being developed. The actor may be a human or an entity
that interacts with the system, for example another system or server, and is external to the
system being developed.

An actor performs a role in a system and may be a primary or secondary actor.

A primary actor is one that uses the system to achieve a goal, for example a customer
buying an item.

A secondary actor is one that supports the system in delivering the goal, for example a bank
used to pay for the item.

A UML case diagram shows an actor by using the symbol:

The following are examples of actors, depending on the problem being solved.

Human Systems software Hardware Timer (clock)

Actor

Payroll Phone network Customer

Passenger Library Server

Scheduled backup

Scheduled anti-virus

Version 3.2 56

Use cases
A use case describes an action (process) or a sequence of actions (processes) that must be
in the system being developed.

A UML case diagram shows a use case using an ellipse:

Use cases help to determine the requirements of the system under consideration, by
describing the functionality that the system will provide.

Use case functionality (process) may be initiated by an actor or may be started by the system
itself, providing a useful result to an actor.

Use Case

Naming use cases
Each use case must have the name written within the ellipse. The name describes some
observable or useful result to an actor.

Examples of naming are Update Subscription, Manage Account, and Place Order.

Update
Subscription

Relationships
A use case diagram can have five types of relationship:

♦ association between an actor and a use case
♦ generalisation of an actor
♦ extend between two use cases
♦ include between two use cases
♦ generalisation of a use case

Version 3.2 57

Association between actor and use case
Each actor must be associated with at least one use case, although it can be associated with
many use cases.

A line with no arrowheads connects an actor to a use case.

Generalisation of an actor
Generalisation of an actor means one actor can inherit the role of another actor. The
descendant actor inherits all the use cases of the ancestor.

A line, with a single solid arrowhead pointing at the ancestor actor, connects a descendant
actor to the ancestor actor.

Extend between two use cases
Extending a basic use case provides additional functionality to the system.

An extended use case is connected to a basic use case using a dashed line, with a single
solid arrowhead pointing at the basic use case. The label <<extend>> is placed on the line.

Make Purchase

Credit Card
Payment

Calculate
Interest <<extend>>

Customer

User Registered user

Version 3.2 58

Include between two use cases
An included use case is part of the basic use case. It is a mandatory process, as the basic
use case is incomplete without it.

An included use case is connected to the basic use case using a dashed line with a single
solid arrowhead, pointing at the common basic use case. The label <<include>> is placed on
the line.

Generalisation of a use case
This is similar to generalisation of an actor.

A line, with a single solid arrowhead pointing at the ancestor use case, connects a
descendant use case to the ancestor use case.

Credit Card
Application Credit Check <<include>>

Mortgage
Application

<<include>>

Make
Payment

Card Payment

Cash
Payment

Bank Transfer
Payment

Version 3.2 59

Creating a use case diagram
The following is an example of a use case diagram.

Example
This example appeared in the 2016 question paper for Advanced Higher Computing Science:

The owners of a monthly magazine decide to update the company website. The current
website allows users to access online versions of articles printed in the monthly magazines.

Requirements for the updated website are listed below.

The updated website will allow all users to:

♦ access a maximum of five free articles every month
♦ search for articles over 12 months old
♦ subscribe to the full service using a secure payment system

The updated website will allow subscribed users to:

♦ login to gain access to the full service
♦ access any number of articles
♦ search for articles without restriction
♦ renew their subscription at a reduced rate using a secure payment system

Draw a use case diagram to represent these requirements.

Version 3.2 60

The following is a sample use case diagram for this scenario.

Help on search

Credit check

Access free
articles

Renew
subscription

Subscribe

Search articles

Login

Access articles

Search articles

<<extend>>

<<include>>

<<include>>

Authentication
<<include>>

User

Registered
user

Bank

Server

Version 3.2 61

Appendix 2: Unified Modelling Language (UML) —
class diagrams (SDD)
To model a system, it is important to capture the static behaviour of the system.

A class diagram is used for a quick overview of the system. It describes the structure of a
system by showing its:

♦ classes
♦ variables, structures and types
♦ methods of the class
♦ relationships between the classes

The purpose of a class diagram is to model the static aspect of the system.

Drawing a class diagram
A class is a blueprint for an object. A class diagram describes each class and the
relationships between the classes.

UML class notation
A class diagram consists of:

♦ a class name
♦ instance variables and data types:

— public
— private

♦ methods:
— public
— private
— constructor

♦ inheritance between classes

Example
A program is being written for an estate agency to store the details of houses for sale or
available to rent.

Version 3.2 62

Class diagram for House
Part of the class diagram for the House class is shown below.

Explanation
The class diagram indicates the:

♦ class name
♦ instance variables with data types in the class (instantiation variables)
♦ methods associated with the class (including the constructor method)

House
−address: String
−town: String
−bedrooms: Integer
−description: String
−houseValue: Integer

+house()
+setAddress()
+getAddress()
+updateBedrooms()

Constructor
A constructor is shown on a UML class diagram in the methods section. The constructor will
have the same name as the class name. The constructor method is used to create an
individual object that belongs to the class.

Public and private
The instance variables and methods within a class can be public or private elements.

Public elements can be used by any class; however, private elements can only be used by
the owning class.

UML allows any variable or method to be shown as public or private.

Class name

Instance variables
with data types

Methods

Constructor

House
address: String
town: String
bedrooms: Integer
description: String
houseValue: Integer

house()
setAddress()
getAddress()
updateBedrooms()

Version 3.2 63

In a class diagram:

♦ public elements are preceded with a + sign
♦ private elements are preceded with a − sign

The House class, with public and private elements, will look as follows.

House
−address: String
−town: String
−bedrooms: Integer
−description: String
−houseValue: Integer

+house()
+setAddress()
+getAddress()
+updateBedrooms()

The set and get methods (sometimes called mutators and accessors) are needed to retrieve
(get) or edit (set) the values held in private variables.

Example code: setAddress()
Used to edit the value stored in the private instance variable address.

PROCEDURE setAddress(STRING newAddress)

SET THIS.address TO newAddress
END FUNCTION

Example code: getAddress()
Used to retrieve the value stored in the private instance variable address.

FUNCTION getAddress() RETURNS STRING

RETURN THIS.address
END FUNCTION

Inheritance
UML allows the object-oriented construct of inheritance to be exemplified.

A sub-class can inherit all of the properties and methods of a superclass.

On a UML class diagram, this type of inheritance is indicated by an arrow from the sub-class
to the superclass.

Version 3.2 64

Array of objects
The instance variables of a class or sub-class can include an array data structure. This can
be used to store instances of another class.

An array of objects is written as:

scores: Array of Score[]

where Score is another class. On a UML class diagram, the connection between the array of
objects and the object (class) is also indicated by an arrow.

Example
The program below is for an estate agency to store the details of houses available for sale or
to rent.

House
−address: String
−town: String
−bedrooms: Integer
−description: String
−houseValue: Integer

+house()
+setAddress()
+getAddress()
+updateBedrooms()

ForSale ForRent

−askingPrice: Real
−closingDate: String
−underOffer: Boolean
−offersReceived: Array of Offer[]
−sold: Boolean

 −rentalCost: Real
−deposit: Real
−rentalLength: Integer
−rented: Boolean

+forSale()
+updateAskingPrice()
+updateSoldStatus()

 +forRent()
+updateRentStatus

Offer
−dateOfOffer: String
−amountOfOffer: Integer

+offer()
+setOfferDate()
+getOfferDate()
+setOfferAmount()
+getOfferAmount()

Version 3.2 65

Appendix 3: entity-relationship diagrams (DDD)
The Advanced Higher course requires candidates to describe, exemplify and implement
entity-relationship diagrams with three or more entities, indicating:

♦ entity name
♦ entity type (strong, weak)
♦ attributes
♦ relationship participation (mandatory, optional)
♦ name of relationship
♦ cardinality

Candidates also need to be able to identify relationship participation from an entity-
occurrence diagram.

Entity type
A strong entity is one whose existence does not depend on the existence of any other entity
in the same database. The primary key of a strong entity uniquely identifies each occurrence
within the entity.

A weak entity is one that depends on one or more strong entities for its existence. For this
reason, strong entities are sometimes referred to as owner entities. A weak entity cannot be
used independently because its existence depends on one or more owner entities.

The primary key of a weak entity is formed, in part, using the primary key of its owner
entity(ies). The presence of a weak entity is indicated by using a double line. The weak entity
itself is indicated by using optionality.

Consider the (incomplete) entity-relationship diagram shown below. This illustrates three of
the entities that form part of an online ordering system.

In this situation, the Customer and Order entities both have a primary key that uniquely
identifies individual occurrences in each entity.

postcode

custCode name

address

orderDate

custCode *
orderNumber quantity

orderNumber * productID *

includes places
Customer OrderProduct Order

Version 3.2 66

However, only the Customer entity is a strong entity. Order is a weak entity. Since an order
occurrence can only be added if the customer details are known, the Order entity relies on
the existence of the Customer entity.

The primary key of the OrderProduct entity is a compound key that is formed using the
primary key of the Order entity. This means that OrderProduct is a weak entity. The double
line is used to represent the weak entity.

Relationship participation
Participation refers to the nature of the relationship between entities. Participation can be
either mandatory or optional.

Mandatory participation describes a relationship where at least one
occurrence of an entity must exist before any occurrences can be added to
its associated entity. The mandatory side of any relationship is indicated by
using a vertical line.

Optional participation describes a relationship between two entities where
it is possible to add occurrences of one entity without the need to have
existing occurrences in the associated entity. The optional side of a
relationship is indicated by using a bold circle.

Participation has been added to the entity-relationship diagram introduced earlier and is
shown below. For completeness, the Product entity has also been added to show all four
entities that form the online ordering system.

Customer is a strong entity, as it has its own uniquely identifying primary key and is not
dependent on any other entity.

The Customer entity is linked to the Order entity using the places relationship. Each
customer in the Customer entity can place many orders but it is also possible for details of a
customer to be stored without them placing any orders.

includes places
Customer OrderProduct

Product

appears in

 Order

Version 3.2 67

As each order in the Order entity must always have one set of corresponding customer
details in the Customer entity, it is not possible to add a new set of details to the Order entity
without first having added details of the relevant customer to the Customer entity.

Order is a weak entity. Although it does have its own identifying primary key, its entity
occurrence relies on the existence of a matching occurrence in the Customer entity.

The Order entity is linked to the weak OrderProduct entity using the includes relationship.
The entity-relationship diagram shows that a new order can be created without a
pre-existing, corresponding occurrence in the OrderProduct entity. Once it has been added
to the Order entity, the order can be linked to several occurrences within the OrderProduct
entity; it is also possible for an order to have no corresponding OrderProduct occurrences.

As OrderProduct is a weak entity, it is not possible to add an OrderProduct occurrence
without first having an existing, corresponding occurrence in the Order entity.

The Product entity is linked to OrderProduct entity using the appears in relationship. As
Product is a strong entity with its own uniquely identifying primary key, new product details
can be added without the need to have any corresponding occurrences in the OrderProduct
entity. The entity-relationship diagram shows that each product can appear in many
individual OrderProduct occurrences, but it is possible that a product is never ordered.

As OrderProduct is a weak entity, it is not possible to add an OrderProduct occurrence
without first having an existing, corresponding occurrence in the Product entity.

Example
A travel agency uses a relational database to store details on a booking system.

It stores details of Scottish holiday resorts, hotels in each resort, customers and their
bookings. These details are arranged in four separate entities.

The attributes stored in each entity are shown below.

Resort Hotel Customer Booking

resortID
resortName
resortType

hotelRef
hotelName
resortID *
starRating
seasonStartDate
mealPlan
checkInTime
pricePersonNight

customerNo
firstname
surname
address
town
postcode

hotelRef *
customerNo *
startDate
numberOfNights
numberInParty

Version 3.2 68

Strong and weak entities
From the list of attributes, we can see that Resort, and Customer are all strong entities
because they have primary keys that uniquely identify each occurrence within the entities.
Booking is a weak entity because its primary key relies on attributes from the Hotel and
Customer entities. Hotel is a weak entity because its existence relies on the resortID
attribute from the Resort entity.

Version 3.2 69

Relationship participation
An entity-occurrence diagram indicating the relationships between the entities is shown below.

Using an entity-occurrence diagram helps to clarify the nature of each relationship.

168

212

234

347

406

 AY19

 AY72

 FW01

 FW02

 FW03

 GL13

 GL31

 PR04

 FW02, 315, 26/04/2019

 AY72, 426, 30/04/2019

 AY19, 426, 04/05/2019

 PR04, 290, 05/05/2019

 PR04, 315, 01/06/2019

 AY72, 111, 01/06/2019

 PRO04, 290, 07/07/2019

 AY19, 315, 12/07/2019

 GL31, 290, 12/07/2019

 111

 290

 315

 426

 428

 457

Resort Hotel Booking Customer

Version 3.2 70

The entity-occurrence diagram for the travel agency booking system makes it clear that:

♦ Resort: Hotel is a 1: M relationship:

— Resort has mandatory participation in this relationship:

o every hotel must be located in exactly one resort

— Hotel has optional participation in this relationship:

o a resort may or may not have a hotel

♦ Hotel: Booking is a 1: M relationship:

— Hotel has mandatory participation in this relationship:

o each booking must be associated with exactly one hotel

— Booking has optional participation in this relationship:

o a hotel may exist without any bookings

♦ Customer: Booking is a 1: M relationship:

- Customer has mandatory participation:

o every booking must be associated with a customer

— Booking has optional participation in this relationship:

o it is possible that some customers never make a booking (for example, details
of customers on the mailing list will be stored in the database, even though
they have never made any bookings)

Entity-relationship diagram
The complete entity-relationship diagram that represents the relationships between the
entities and relationships in the travel agency booking system is shown below.

makes

is location for Resort

Customer Booking

is associated with

Hotel

Version 3.2 71

Appendix 4: data dictionary (DDD)
A travel agency uses a relational database to store details on a booking system.

It stores details of Scottish holiday resorts, hotels in each resort, customers and their
bookings. These details are arranged in four separate entities.

A data dictionary is used to indicate the properties of each attribute needed to define the
entities.

Sample data stored in each table of the database are shown below.

Sample data for resort
Resort ID Resort name Resort type
168 Ayr coastal
347 Portree island

Sample data for hotel
Hotel
ref

Hotel
name

Resort
ID

Star
rating

Season
start date Meal plan

Check-in
time

Price/person/night
(£)

AY72 Cliff Top 168 3 2019/04/29 Half Board 14:30:00 85.50

PR04 Sea
View

347 5 2019/05/01 Bed and
Breakfast

16:00:00 58.99

AY19 Glee 168 2 Full Board 15:00:00 179.00

Sample data for customer
Customer No Firstname Surname Address Town Postcode
315 Edwina Jones 121 Main Street Greenock PA16 1JK
426 Omar Shakir 26a High Bridge Perth PH42 6QW

Sample data for booking
Hotel ref Customer No Start date Number of nights Number in party
PR04 315 2018/06/01 3 2
AY19 315 2018/07/12 4 4
PR04 315 2019/06/02 2 2

Version 3.2 72

In the Advanced Higher course, data dictionary attribute types are expressed as SQL data
types.

The completed data dictionary for the travel agency database is shown below.

Entity: Resort
Attribute name Key Type Size Required Validation
resortID PK integer yes
resortName varchar 20 yes

resortType varchar 20 yes Restricted choice: coastal, city,
island, country

Entity: Hotel
Attribute name Key Type Size Required Validation
hotelRef PK varchar 4 yes Length=4
hotelName varchar 20 yes
resortID FK integer Yes Existing resortID from Resort table
starRating integer yes Range: >=1 and <=5
seasonStartDate date no
mealPlan varchar 17 yes Restricted choice: see list below*
checkInTime time yes
pricePersonNight float yes Range: >=50 and <=250

* Restricted choice for mealPlan: Room Only, Bed and Breakfast, Half Board, Full Board

Entity: Customer
Attribute name Key Type Size Required Validation
customerNo PK integer yes Auto increment
firstname varchar 20 yes
surname varchar 20 yes
address varchar 40 yes
town varchar 20 yes
postcode varchar 8 yes Length<=8

Entity: Booking
Attribute name Key Type Size Required Validation

hotelRef PK
FK

varchar 4 yes Existing hotelRef from Hotel table

customerNo PK
FK integer yes Existing customer# from Customer

table
startDate PK date yes
numberNights integer yes Range: >=1
numberInParty integer yes Range: >=1

Version 3.2 73

Appendix 5: query design (DDD)
A travel agency uses a relational database to store details on a booking system.

It stores details of Scottish holiday resorts, hotels in each resort, customers and their
bookings. These details are stored in four separate entities.

The attributes stored in each entity are shown below.

Resort Hotel Customer Booking

resortID

resortName

resortType

hotelRef

hotelName

resortID *

starRating

seasonStartDate

mealPlan

checkInTime

pricePersonNight

customerNo

firstname

surname

address

town

postcode

hotelRef*

customerNo*

startDate

numberOfNights

numberInParty

The design of an SQL query should indicate:

♦ the fields and/or calculations required
♦ the table(s) or query(-ies) needed to provide the details required
♦ any search criteria to be applied
♦ what grouping is needed (if appropriate)
♦ the criteria to be applied to the grouping (if appropriate)
♦ the field(s) used to sort the data and the type(s) of sort required

Encourage candidates to plan — this helps to reduce the amount of frustration they may
otherwise encounter when working with the SQL code.

Candidates can use a simple table template to indicate the planned design of the SQL query,
see the following examples.

Version 3.2 74

Example 1: HAVING with GROUPING and row COUNT
Display the resort name and number of hotels in any resort that has at least two hotels.

Field(s)/
calculation(s)

resortName, Number of Hotels = COUNT(*)

Table(s) query(-ies) Resort, Hotel

Search criteria

Grouping resortName

Having COUNT(*) >= 2

Sort order

Example 2: HAVING with GROUPING and sort
Display the full name and the total cost of all bookings for each customer. The query should
only list details of customers whose total cost exceeds £2000 and should list the details of
the biggest spending customer first.

Field(s)/
calculation(s)

firstName, surname, Total cost of all Bookings =
SUM(pricePersonNight * numberNights * numberInParty)

Table(s) query(-ies) Customer, Booking, Hotel

Search criteria

Grouping firstName, surname

Having SUM(pricePersonNight * numberNights * numberInParty) >= 2000

Sort order SUM(pricePersonNight * numberNights * numberInParty) DESC

Example 3: HAVING with conditional statement
Display the average price per person, per night for each holiday resort. Display only those
resorts with an average price per person, per night that exceeds £100.

Field(s)/
calculation(s)

resortName, Average Price = AVG(pricePersonNight)

Table(s) query(-ies) Resort, Hotel

Search criteria

Grouping resortName

Having AVG(pricePersonNight) > 100

Sort order

Version 3.2 75

Example 4: NOT operator
Display the name and type of non-coastal resort, together with the name and meal plan for
each hotel that meets these criteria.

Field(s)/
calculation(s) resortName, resortType, hotelName, mealPlan

Table(s) query(-ies) Resort, Hotel

Search criteria resortType NOT "coastal"

Grouping

Having

Sort order

Example 5: BETWEEN operator with numeric values
Display the full name and total number of bookings made by each customer who has made
between two and four bookings.

Field(s)/
calculation(s) firstName, surname, Total Bookings = COUNT(*)

Table(s) query(-ies) Customer, Booking

Search criteria

Grouping surname, firstName

Having COUNT(*) BETWEEN 2 and 4;

Sort order

Example 6: BETWEEN operator with text
Display the surname, postcode, and town of customers who live in towns that begin with the
letters ‘E’ through to ‘M’. The query should list customers in alphabetical order of town.

Field(s)/
calculation(s) surname, postcode, town

Table(s) query(-ies) Customer

Search criteria town BETWEEN "E" and "M"

Grouping

Having

Sort order town ASC

Version 3.2 76

Example 7: IN operator
Display the hotel name and meal plan for hotels that offer room only, half board or full board.

Field(s)/
calculation(s) hotelName, mealPlan

Table(s) query(-ies) Hotel

Search criteria mealPlan IN the list ("Room Only", "Half Board", "Full Board")

Grouping

Having

Sort order

Example 8: NOT with the IN operator
Display the name and type of resorts that are neither city nor country resorts.

Field(s)/
calculation(s) resortName, resortType

Table(s) query(-ies) Resort

Search criteria resortType NOT IN the list ("city", "country");

Grouping

Having

Sort order

Version 3.2 77

Example 9: subquery in the where clause

Display the hotel name, star rating, and price per person for the most expensive hotel.

Field(s)/
calculation(s) hotelName, starRating, pricePersonNight

Table(s) query(-ies) Hotel

 Field(s)/

calculation(s) MAX(pricePersonNight)

Search
criteria

pricePersonNight = Inner query Table(s) Hotel

 Search criteria

Grouping

Having

Sort order

Example 10: subquery in the where clause
Display the resort name, hotel name, and star rating of all hotels that have a below-average
star rating.

Field(s)/
calculation(s) resortName, hotelName, starRating

Table(s) query(-ies) Resort, Hotel

 Field(s)/

calculation(s) AVG(starRating)

Search
criteria

starRating < Inner query Table(s) Hotel

 Search criteria

Grouping

Having

Sort order

Version 3.2 78

Example 11: subquery using the NOT operator
Display the full name and postcode of the customer who booked the same hotel as the
customer with ID 111.

Field(s)/
calculation(s) resortName, hotelName, starRating

Table(s) query(-ies) Resort, Hotel

 customerNo NOT 111

Search
 Field(s)/

calculation(s) hotelRef

criteria AND hotelRef = Inner query Table(s) Booking

 Search criteria customerNo = 111

Grouping

Having

Sort order

Example 12: subquery using the IN operator
Display the hotel name and star rating of all hotels booked by the customer with ID 315.

Field(s)/
calculation(s) hotelName, starRating

Table(s) query(-ies) Hotel

 Field(s)/

calculation(s) hotelName

Search
criteria hotelName IN Inner query Table(s) Hotel, Booking

 Search criteria customerNo = 315

Grouping

Having

Sort order

Version 3.2 79

Example 13: subquery using the NOT and IN operators
Display the names and types of resort not booked by the customer with ID 315.

Field(s)/
calculation(s) resortName, resortType

Table(s) query(-ies) Resort

 Field(s)/

calculation(s) resortName

Search
criteria

resortName NOT IN Inner query Table(s) Resort, Hotel, Booking

 Search criteria customerNo = 315

Grouping

Having

Sort order

Example 14: subquery using the ANY operator
Display the customer number, hotel reference, and booking cost for any booking that costs
more than any bookings made by customers with surnames Lowden, Shawfair or Sheriffhall.

Field(s)/
calculation(s)

customerNo, hotelRef, Booking Cost = pricePersonNight *
numberNights * numberInParty

Table(s) query(-ies) Booking. Hotel

 Field(s)/
calculation(s)

pricePersonNight *
numberNights *
numberInParty

Search
criteria

pricePersonNight *
numberNights *
numberInParty >
ANY

Inner query Table(s) Booking, Hotel,
Customer

 Search criteria

surname in
("Sheriffhall",
"Lowden", "Shawfair")

Grouping

Having

Sort order

Version 3.2 80

Example 15: subquery using the EXISTS operator
Display the details (hotel name, star rating, meal plan and resort name) of all 3-star hotel
bookings. The query should list the hotels in alphabetical order of meal plan.

Field(s)/
calculation(s) hotelName, mealPlan, starRating, resortName

Table(s) query(-ies) Hotel, Resort

 starRating = 3

Search
 Field(s)/

calculation(s) *

criteria AND EXISTS Inner query Table(s) Booking

 Search criteria

Grouping

Having

Sort order mealPlan ASC

Example 16: subquery using the NOT and EXISTS operators
Display the full name and address of customers who have never made a booking.

Field(s)/
calculation(s) firstName, surname, address

Table(s) query(-ies) Customer

 Field(s)/

calculation(s)

Search
criteria NOT EXISTS Inner query Table(s) Booking

 Search criteria

Grouping

Having

Sort order

Version 3.2 81

Example 17: query requiring two subqueries
Display the name, star rating, and total number of customer nights booked for hotels that
have:

♦ a total number of customer nights booked that is more than the total number of nights

booked by the customer with ID 290 (number of nights booked multiplied by number in
party)

and
♦ a star rating which is less than that of the hotel with the highest star rating

The query should list the hotels from lowest star rating to the highest.

Field(s)/
calculation(s)

hotelName, starRating, Nights x Number in Party =
SUM(numberNights*numberInParty)

Table(s) query(-ies) Hotel, Booking

 Field(s)/

calculation(s)
SUM(numberNights *
numberInParty)

Search
criteria

numberNights *
numberInParty > Inner query Table(s) Booking

 Search criteria customerNo = 290

 Field(s)/

calculation(s) MAX(starRating)

Search
criteria

AND starRating < Inner query Table(s) Hotel

 Search criteria

Grouping hotelName, starRating

Sort order starRating ASC

Version 3.2 82

Appendix 6: server-side process design (WDD)
In this course, candidates are required to read and understand pseudocode, and structure
diagram designs for server-side processes. They are also required to write pseudocode for
design server-side processes.

Processes can include:

♦ opening and closing a database connection
♦ initialising and assigning session variables
♦ selection using conditions
♦ executing SQL statements
♦ displaying the results of SQL queries

Examples of these processes are in the structure diagrams and pseudocode below.

Example 1: executing an SQL query and displaying results
In this example, the user enters search criteria into a web form to find contact details for
companies in a ‘Suppliers’ database. The results of the query are displayed in an HTML
table.

Pseudocode

1 assign server connection variables
2 open connection to Suppliers database on database server
3 receive search criteria from HTML ‘find suppliers’ form
4 assign search criteria to PHP variables
5 execute SQL query to find company names and phone numbers of selected suppliers
6 display the results of the query in an HTML table
7 close connection to Suppliers database server

6.1 if number of rows = 0
6.2 display ‘no companies found’
6.3 else
6.4 display opening HTML table element
6.5 display field names (companyName, phoneNo) in header row of the HTML table
6.6 display names and phone numbers results in individual HTML table rows
6.7 display closing HTML table element
6.8 end if

Version 3.2 83

Structure diagram

Version 3.2 84

Refinement of ‘Display results’

Version 3.2 85

Example 2: authenticating a user login
In this example, the user (customer) needs to log into a website. The customer username
and password are authenticated by checking that the values exist within a ‘Customers’
database. Once authenticated, the customer login details are stored in PHP session
variables.

Pseudocode

1 start PHP session
2 use HTML to display login form
3 authenticate username and password submitted by the customer
4 if authenticated, assign contents of login variables to session variables

3.1 assign server connection variables
3.2 open connection to Customers database on database server
3.3 assign customer login details to PHP variables
3.4 execute SQL query to confirm customer login details
3.5 close connection to Customers database server

Version 3.2 86

Structure diagram

Refinement of ‘Authenticate customer username and password’

Version 3.2 87

Appendix 7: linked lists (SDD)
Single linked list
A linked list is a dynamic data structure. Unlike a 1-D array (which stores each piece of data sequentially in memory), a linked list stores each
data item and a pointer (address) to the next data item.

A linked list is a dynamic data structure, as it has no fixed size — it grows and shrinks as required; whereas a 1-D array typically has a set size
based on its declaration.

Each element of a linked list is called a NODE. The start of a linked list is called the HEAD and the last element points to the NULL. Each node
has its own address in memory, and stores the data item and a pointer to the next node.

The following diagram represents a node.

A simple example of a single linked list with four nodes is shown below. The four node linked list stores the words ‘Computing’, ‘Science’, ‘is’,
and ‘fun’.

Version 3.2 88

Points to note:

♦ A linked list can store data of multiple data types; a 1-D array is usually limited to one.
♦ A linked list is a linear data structure; to get to a specific data item, it must always start at the HEAD and work through each node until the

data is found.
♦ A single linked list can only be traversed in one direction — from HEAD to NULL.
♦ Inserting data into a linked list is more efficient than a 1-D array, as only a pointer is changed rather than shifting the contents of the list

(array) into different memory locations.
♦ Deleting data from a linked list is more efficient than a 1-D array, as only a pointer is changed rather than shifting the contents of the list

(array) into different memory locations.

Inserting new data
To insert new data into the list, for example inserting the word ‘really’ between ‘is’ and ‘fun’, a new node is created somewhere in memory and
the pointers updated accordingly. To then update the pointer, the list is traversed until ‘is’ is found.

Original

The following is an updated diagram with the word ‘really’ inserted at memory location 555.

Version 3.2 89

Updated

Using a 1-D array data structure and inserting data at a given index means that all data beyond that point is shifted along one location in
memory. A linked list is more efficient than a 1-D array, as no data is moved and just one pointer is updated.

Removing data
To remove data from the list, for example removing the word ‘Science’, the memory location where the node is stored is freed up and the pointer
on the node removed before it is updated. To do this, the list is traversed until the node before ‘Science’ is found.

Original

The following is an updated diagram with the word ‘Science’ removed.

Version 3.2 90

Updated

Using a 1-D array data structure and removing data at a given index means that all data beyond that point is shifted along one location in
memory. A linked list is more efficient than a 1-D array, as no data is moved and just one pointer is updated.

Double linked list
A double linked list is very similar to a single linked list, but has an additional pointer in each node that stores the address of the previous node.

The following diagram represents a node.

Version 3.2 91

Using the same example as for the single linked list, a sample of a double linked list with four nodes is shown below. The four node linked list
stores the words ‘Computing’, ‘Science’, ‘is’, and ‘fun’.

Points to note:

♦ A double linked list can be traversed in both directions.
♦ A double linked list requires additional memory, as an extra pointer is being stored on each node.
♦ If the pointer to the node to be removed is known, then removing a node in a double linked list is more efficient than in a single linked list:

— In a single linked list, to remove a node, the pointer from the previous node is required — to find the pointer, the list is traversed.
— In a double linked list, the previous node is determined using the previous pointer.

♦ To insert a node into a single linked list, the list is traversed until the position is found.
♦ To insert a node into a double linked list, the list is not traversed if the node is being inserted:

— at the start of the list
— at the end of the list
— after a given node

or
— before a given node

Version 3.2 92

Inserting new data
To insert new data into the list, for example the word ‘really’ to go after the node at address 302, a new node is created somewhere in memory
and the pointers before it and after it are updated accordingly.

Original

The following is an updated diagram with the word ‘really’ inserted at memory location 555.

Updated

Version 3.2 93

Removing data
To remove data from the list, for example the word ‘Science’, the memory location where the node is stored is freed up and the pointer on the
node before and after it is updated.

Original

The following is an updated diagram with the word ‘Science’ removed.

Updated

Version 3.2 94

Appendix 8: connecting to a database using a
programming language (SDD)
The Advanced Higher Computing Science course specifies that candidates use a
programming language to read from, and write data to, database files using SQL. Python,
Visual Basic and Java are all popular languages used by many centres to deliver the course
content. Note: all of these languages can create a database connection and execute an SQL
statement.

The question paper will only contain SQA’s standardised reference language, so the code
included in this appendix does not appear in the question paper. This appendix focuses on
supporting teachers and lecturers to deliver the content, and helping candidates develop
their projects.

For each of the three languages above, the following is included:

♦ advice on set-up requirements
♦ examples of instructions and syntax required to create a database connection
♦ examples of SQL execution

Python
Set-up requirements
To connect to a MySQL database using Python, the database driver ‘MySQL Connectors’
must be installed. In a school or college, IT technicians will probably install this, as teachers
and lecturers are unlikely to have the required administration rights.

If candidates want to install Python at home, they can use the following instructions for
Windows 10. Similar instructions for Linux or Apple OS are available online — these set-up
instructions assume that Python is already installed.

Step 1 — checking the system path to Python is set up
Before installing Python, check that a system path is set up. This ensures that the operating
system knows where the python.exe application is located.

Version 3.2 95

Open the folder containing the python.exe program. Click on the address bar at the top of the
window, type ‘cmd’ and press enter to open the command window.

Type ‘python’ in the command window. If the system path is already set up, a message
stating the version of Python installed is displayed — move on to step 2.

If an error is displayed, close the command window, click on the address at the top of the
window again and copy the address. The address is required later.

Version 3.2 96

Open the ‘Window Settings’ folder and type ‘advanced’ into the search bar at the top.

Select ‘View advanced system settings’ followed by Environment Variables.

Version 3.2 97

The system path is set up using this window. Click ‘Path’ followed by the ‘Edit’ button, as
shown below.

In the ‘Edit environment variable’ window, click ‘New’ and paste in the location of Python
copied earlier from the address bar of the Python window.

Step 2 — installing the ‘mysql-connector’ library using pip
Python maintains a list of online installable libraries. Any of these libraries can be installed
using the cmd prompt from within the Python folder (see step 1).

Version 3.2 98

Open the window containing the python.exe file, and type ‘cmd’ into the address bar to open
the command window.

Enter the following instruction: pip install mysql-connector

Note: if when using ‘pip install’ it generates the error “'pip' is not recognized as an
internal or external command, operable program or batch file.”, then pip
also requires a system path set up. Repeat the system path instructions using the address of
the pip.exe file. You can find this file inside the Python Scripts folder. Once the path is added,
close and reopen the cmd window from the Python folder. Re-enter the pip install
mysql-connector instruction.

Creating a connection
The code below creates a connection to a MySQL database.

Line 1 imports the mysql-connector library.

Lines 3 to 8 assign the database connection parameters for a chosen database and make a
connection, ‘conn’.

To ensure connection errors do not crash the program, place the connection code inside a
Python try structure. The ‘try’ statement prints an error if the connection fails. If the
connection is successful, any code placed within the ‘else’ statement will be executed.

Version 3.2 99

SQL execution
The following examples use a single table. Set this up using MySQL before any code is
executed, ensuring that:

♦ the database name is ‘StudentData’
♦ the table name is ‘Student’

A data dictionary for the Student table is shown below.

Insert example data for the table before executing the examples.

Example 1 — SELECT and display results
The code below displays every row from the Student table.

Line 13 associates the database connection with a new instance of a cursor object. Cursor
objects contain a variety of methods used to manipulate databases and data.

Line 14 uses the cursor’s execute() method to execute an SQL statement.

Entity Attributes Type Size

Student studentid int 4

 firstname VARCHAR 25

 lastname VARCHAR 25

 address VARCHAR 40

Version 3.2 100

Line 15 uses the fetchall() method to return the result as a list of tuples as shown below.

[(1001, 'Jane', 'White', '12 Holburn Crescent'), (1002, 'Mary',
'Cromwell', '4 Fraser Street'), (1003, 'Tessa', 'Bolden', '10
Fraserboo St')]

Lines 17 and 18 display each of the tuples, on a single line, generating the output shown
below.

(1001, 'Jane', 'White', '12 Holburn Crescent')
(1002, 'Mary', 'Cromwell', '4 Fraser Street')
(1003, 'Tessa', 'Bolden', '10 Fraserboo St')

Rather than displaying the whole tuple unformatted, edit line 18 to separate out each of the
four values within each tuple (x[0], x[1], x[2] and x[3]) to display a concatenated
string.

This produces the formatted output shown below.

1001- Jane White, 12 Holburn Crescent
1002- Mary Cromwell, 4 Fraser Street
1003- Tessa Bolden, 10 Fraserboo St

Example 2 — INSERT using user inputted values
The code below uses input boxes to input and store the details of a new student.

Lines 20 to 23 ask the user to input data for a new student.

Lines 25 and 26 build an INSERT statement. The placeholders, used in place of values, are
replaced by the variables specified in line 26, when line 27 is executed.

Line 28 is required to confirm the change to the database.

Version 3.2 101

Example 3 — counting the number of rows returned by a query
The code below asks the user to enter a name. The number of times that name appears in
the Student table is displayed.

Lines 30 to 32 build and execute a SELECT statement. A placeholder is replaced by the
user’s input.

Line 34 displays concatenated output, including the number of rows returned by the SELECT
statement. Note: the rows must be fetched before the method rowcount can be used
(line 33).

Visual Basic
Set-up requirements
The following instructions are for:

♦ Microsoft Visual Studio 2012 or later
♦ Microsoft Access 2016

This code should still be compatible with newer editions of the software.

Creating a connection
Load Visual Basic and create a new Windows Forms Application.

Version 3.2 102

Add the following to the blank SQL Connection Form:

♦ one list box named ‘lstoutput’
♦ one command button named ‘cmd_read’
♦ one text box named ‘txterror’

Double click on the command button to bring up the coding window.

Add the highlighted line of code to the very top of the code, ensuring it is above the Form
Class Code — as shown below.

This adds the required additional libraries.

A ‘Try Catch’ block is used to connect to the database. If any code within the try block returns
an error, the catch block is called to display the returned error message.

Version 3.2 103

Add the following code to the ‘cmd_read’ button.

Try

Catch ex As Exception

 lstoutput.Items.Add(ex.Message)

End Try

Add all subsequent code between the ‘Try’ and ‘Catch’ statements.

Use the following code to create a connection to the example database.

Dim SQLReader As OleDbDataReader
Dim connection_type As String = "Provider=Microsoft.ACE.OLEDB.12.0;"
Dim file_location As String = "Data Source=c:\desktop\test.accdb"
Dim conn As OleDbConnection
conn = New OleDbConnection(connection_type & file_location)
conn.Open()

The first line creates an object called SQLReader that is used to read data from the
database.

Next, the connection type and the location of the database file are stored as strings.

A new object called conn is used to create the connection to the database.

The conn object is set as a new OleDBConnection, with the parameters stored earlier. Note:
a single string is passed into this procedure, as the parameters have been concatenated.

The final line opens the connection to the database.

SQL execution
The following examples use a simple one-table Access database:

♦ The database file is called test.accdb
♦ The table is called Customers

Version 3.2 104

Screen shots of the table design and contents are shown below.

Example 1 — SELECT and display results
The following code reads and displays all the data in the example database.

Dim query As String = "Select * FROM [Customers]"
Dim command As New OleDbCommand(query, conn)
SQLReader = command.ExecuteReader()

If SQLReader.HasRows Then
 While SQLReader.Read
 lstoutput.Items.Add(SQLReader("ID") & " " &
 SQLReader("Firstname") & " " & SQLReader("Surname"))
 End While
Else
 lstoutput.Items.Add("No Results Returned")
End If

A simple string object is created to store the SQL query. Note: table names require square
brackets.

A new OleDbCommand object called command is created. This object contains the query
and the connection data.

The SQLReader object stores the results of the executed query.

Version 3.2 105

Example 2 — INSERT using user inputted values
The code below uses input boxes to input and store the details of a new customer.

Ask the user to enter the details of a new customer. Note: all the data entered has to be
stored as string, regardless of the datatype in the database.
Add the following code to a new button.

Dim id As String = InputBox("Please enter customer ID")
Dim firstname As String = InputBox("Please enter customer’s
firstname")
Dim surname As String = InputBox("Please enter customer’s
surname")

Convert the stored data into an SQL query, as shown below.

Dim query As String = "INSERT INTO [customers] VALUES (" &
id & " , ' " & firstname & " ', ' " & surname & " ');"

When inserting partial data, field names are required. ID information is not necessary,
because ID is an auto number and the database uses the next available number.

Dim query As String = "INSERT INTO [customers] (firstname,
surname) VALUES (' " & firstname & " ', ' " & surname & "');"

Note: the above example now specifies the two fields that data is entered into.

Execute the built query, as shown below.

Dim command As New OleDbCommand(query, conn)
SQLReader = command.ExecuteReader()

Example 3 — counting the number of rows returned by a query
The code counts the number of times that name appears in the Customer table.

Ask the user to enter the customer’s name.

Dim firstname As String = InputBox("Please enter firstname of
person(s) you would like to count")

A counter is required later to count the number of rows returned by the query.

Dim counter As Integer = 0

A SELECT statement is built using the user’s input.

Dim query As String = "SELECT * FROM [customers] WHERE firstname =
'" & firstname & "';"

Version 3.2 106

To count the rows returned, add two additional lines to the output code used in example 1:

♦ one line to store the result of a running total for each row
♦ one line to display this result

Dim command As New OleDbCommand(query, conn)
SQLReader = command.ExecuteReader()

If SQLReader.HasRows Then
 While SQLReader.Read
 lstoutput.Items.Add(SQLReader("ID") & " " &
 SQLReader("Firstname") & " " & SQLReader("Surname"))
 counter = counter + 1
 End While

lstoutput.Items.Add(counter & " Results Returned")

Else
 lstoutput.Items.Add("No Results Returned")
End If

Java
Set-up requirements
The following Java database connection examples require two installations:

♦ Java SE Development Kit (often referred to as JDK) — this can be downloaded from the

Oracle website.
https://www.oracle.com/technetwork/java/javase/downloads/index.html

♦ NetBeans — a popular integrated development environment (IDE) used to develop Java
applications.
https://netbeans.org/features/

If candidates wish to code in Java at home, they can download and install both examples at
no cost.

To connect to a database, Java Database Connectivity (JDBC) is required. JDBC drivers are
software libraries that communicate between a Java application and a database. JDBC is
already included in NetBeans, so requires no further installation.

If candidates use a different IDE for Java development, they must ensure that it includes the
JDBC library, as this is required to create a database connection.

https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://netbeans.org/features/

Version 3.2 107

Follow the instructions below to download the JDBC library, if required:

1 Open the webpage

https://dev.mysql.com/downloads/

2 Scroll down to MySQL Connectors and click the download link shown below.

3 Select ‘Connector/J’ from the list.

4 Choose ‘Select Operating System: Select platform independent’

5 Download the ZIP or TAR file.

Note: it is not necessary to login or sign up — click ‘No thanks, just start my download’.

6 It does not matter where the JDBC library is saved.

Creating a connection
Before any coding can be implemented, a new project must be created.

Open NetBeans and create a new project using the following steps:

1 File
2 New
3 Java
4 Java Application
5 Name the application — the following example is named ‘School Application’

To create a database connection, the JDBC library must be included in your project.

https://dev.mysql.com/downloads/

Version 3.2 108

Right click on Libraries and select Add Library.

Select MySQL JDBC Driver from the list as shown.

Version 3.2 109

Use the code shown below create a database connection.

Version 3.2 110

Lines 3 to 9 list several libraries that must be included at the top of the code. These contain
methods that are called when creating the connection or executing SQL.

Lines 13 to 15 initialise three variables to the database connection parameters. This is similar
to PHP but in Java, the server and database names are contained in a single URL.

Line 18 creates the connection using the parameters assigned above.

Place the connection within a ‘try’ statement (lines 18 to 26), to ensure the program does
not crash if the connection fails. If the connection is successful, a message stating this is
displayed (this message can be used during testing and removed when the successful
connection is confirmed).

If the connection fails, a system error is printed stating the issue that occurred.

Further code should be contained within the success section of the ‘try’ statement at line
22.

SQL execution
The following examples use a single table. Set this up using MySQL before any code is
executed, ensuring that:

♦ the database name is ‘StudentData’
♦ the table name is ‘Student’

A data dictionary for the Student table is shown below.

Entity Attributes Type Size

Student studentid int 4

 firstname VARCHAR 25

 lastname VARCHAR 25

 address VARCHAR 40

Version 3.2 111

Insert example data for the table before executing the examples.

Example 1 — SELECT and display results
The code below displays every row from the Student table.

Line 24 creates a statement object that allows basic SQL queries to be executed.

Line 25 executes a SELECT query by calling the executeQuery(String) method with the SQL
to be used. The results of a query are retrieved through the ResultSet class.

Lines 27 to 33 exemplify one of many solutions that could be used to display the result of the
query, now stored in ‘rs’. This solution uses StringBuilder to concatenate each row of the
results.

The output from this code is shown below.

Version 3.2 112

Example 2 — INSERT using user inputted values
The code below uses input boxes to input and store the details of a new student.

Lines 36 to 41 use the JOptionPane library to create four input boxes, one for each item of
student data. Note: as each input is stored as a string, it is necessary to convert the student
id to an integer (line 41).

Line 43 creates an INSERT statement that contains four markers (?). PreparedStatement
then replaces each marker with the student data stored earlier in the id, first, last and
address variables.

Line 49 uses the executeUpdate() method to execute the now complete SQL statement.

To directly INSERT values, use the following code.

stmt.executeUpdate("INSERT INTO Student VALUES
(1010,'Cameron','Stott','17 Dover Heights')");

Example 3 — counting the number of rows returned by a query

The code below displays the number of rows returned by an SQL SELECT query.

Line 52 executes an SQL query to return all the students called Jane. Note: the ResultSet,
used at the beginning of the same code earlier is not required, as the ‘rs’ object has already
been initialised.

Line 53 uses the last() method to move the cursor to the last row of the result set.

Line 54 displays the current row number using the getRow() method.

Version 3.2 113

Appendix 9: standard algorithms (SDD)
The following Advanced Higher standard algorithms are exemplified below in pseudocode
and SQA reference language:

♦ bubble sort
♦ insertion sort
♦ binary search

The two sort algorithms presented both sort into ascending order. With small changes, they
are easily adapted to descending order.

Bubble sort
A bubble sort continually swaps values in adjacent array elements until the entire list is in the
correct order.

Version 3.2 114

Pseudocode
Consider an array that stores the following values:

0 1 2 3 4 5 6 7 8
45 23 99 7 3 64 37 63 34

After one pass through the array, the largest value will always ‘bubble’ up to the end of the
array.

23 45 7 3 64 37 63 34 99

After a second pass, the second-largest number is also sorted.

23 7 3 45 37 63 34 64 99

When bubble sorting a list of values, the number of iterations carried out by each nested loop
can be reduced by one each pass. This improves the efficiency of the bubble sort algorithm.

Design Commentary

n equals the length of an array called list The length of the array is
stored in a variable

set swapped to true

start conditional loop while swapped = true

set swapped to false

fixed loop i = 0 to n - 2 Loop from the first element to
the penultimate array
element

if list[i] > list[i+1] then

swap the two values

set swapped to true

end if

end fixed loop

n = n - 1 Each fixed loop reduces the
iterations by 1, as one more
element is sorted correctly at
the end of the array

end conditional loop

Version 3.2 115

SQA reference language: bubble sort implementation

PROCEDURE bubble_sort(list)
 DECLARE n INITIALLY length(list)
 DECLARE swapped INITIALLY TRUE
 WHILE swapped
 SET swapped TO False
 FOR i = 0 to n-2 DO
 IF list[i] > list[i+1] THEN
 SET temp TO list[i]
 SET list[i] TO list[i+1]
 SET list[i+1] TO temp
 SET swapped TO TRUE
 END IF
 END FOR
 SET n TO n - 1
 END WHILE
END PROCEDURE

Insertion sort
An insertion sort traverses an array from the second element to the last. Each element is
compared to the elements before in turn, working backwards down the list. Values are
swapped until the element being compared is placed in order.

The following is a worked example of an insertion sort.

Iteration 1
Start with element 1 of the list to be sorted. This value is temporarily stored.

0 1 2 3 4 5 6 7 8 temp
45 23 99 7 8 64 37 63 34 23

If the temporary value (23) is smaller than the value before it (45), then the value before it is
copied to the right.

45 45 99 7 8 64 37 63 34 23

Each value, to the left of the element where the temporary value was originally stored, is
compared in turn until:

♦ the value being compared is smaller than the stored temporary value
or
♦ the start of the list has been reached

Version 3.2 116

When either of the previous bullets is true, the temporary value is copied back into the list.

23 45 99 7 8 64 37 63 34 23

Iteration 2
When the next element (99) is examined, the element before it (45) is smaller, so no further
action is required.

0 1 2 3 4 5 6 7 8 temp
23 45 99 7 8 64 37 63 34 99

Iteration 3
When the value in element 3 is compared to every element before it, the result is that the
values in indexes 0, 1 and 2 are all copied one element to the right (as 7 is smaller than 23,
45 and 99).

0 1 2 3 4 5 6 7 8 temp
23 45 99 7 8 64 37 63 34 7

The temporary value is copied into element index 0.

7 23 45 99 8 64 37 63 34 7

Iteration 4
When the value in element 4 is compared to the values in indexes 0 to 3, it is smaller than
every value, except element 0 (7).

0 1 2 3 4 5 6 7 8 temp
7 23 45 99 8 64 37 63 34 8

The values 23, 45 and 99 all move right. The temporary value this time is copied into index 1.

7 8 23 45 99 64 37 63 34 8

By this stage, the algorithm of an insertion sort should be apparent, as follows:

♦ Each element from 1 to the length of the array is copied into temporary storage and dealt

with in turn.
♦ Every larger value to the left is moved up one element.
♦ The temporary value is copied back into the list when the next value is smaller, or when

the end of the array is reached.

Version 3.2 117

Pseudocode

Design Commentary

fixed loop i = 1 to length(list)-1 Loop from the second
element to the last

store the value at array index i Store the current temporary
value

store the starting position of the
inner loop

Store the current position in
the array — this will be used
as a starting point to count
backwards during the
comparisons

while index > 0 and value < list[index-1] Continue comparing previous
values in the list with the
temporary value until the
start of the array is reached
or the two values are in the
correct order

copy the value at index i into
index i+1

The compared value is
copied into the element to the
right

reduce the index by 1 Decrement the element being
compared next

end while

copy the stored value into index i The temporarily stored value
is copied into the correct
place

end fixed loop

SQA reference language: insertion sort implementation

PROCEDURE insertion_sort(list)
 DECLARE value INITIALLY 0
 DECLARE index INITIALLY 0
 FOR i = 1 to length(list)-1 DO
 SET value TO list[i]
 SET index TO i
 WHILE (index > 0) AND (value < list[index-1]) DO
 SET list[index+1] TO list[index]
 SET index TO index - 1
 END WHILE
 SET list[index] TO value
 END FOR
END PROCEDURE

Version 3.2 118

Binary search
A binary search finds a value by continually halving a sorted list until a target is, or is not,
found.

The code begins by designating a start (S) point and an end (E) point in the list. These are
initially the first and last elements of the array.

From these, the target value positioned in the middle of the sorted list is identified
(M=(E-S)/2).

Target = 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 5 8 10 11 14 17 25 30 37 38 39 50 51 60 65 77
S M E

The algorithm compares the target to the value stored at M and makes one of three
decisions:

1 If the middle value is larger than the target, then the target must be in the half of the
list that contains smaller values.

2 If the middle value is smaller, the target must be in the larger half of the list.
3 If the middle value is equal to the target, then the target has been found and the

search ends.

If either bullet points 1 or 2 are true, then the start or end are reassigned as required. The
middle point is then calculated for the remaining list and the same decision is made again.

Target = 8

2 5 8 10 11 14 17 25 30 37 38 39 50 51 60 65 77
S M E

This is carried out again, until a match is found at M.

Target = 8

2 5 8 10 11 14 17 25 30 37 38 39 50 51 60 65 77
S M E

Version 3.2 119

Pseudocode
Note: pseudocode is not a fixed design notation, and candidates may prefer to use more
‘code-like’ pseudocode when designing algorithms. An example of this approach is shown
below.

Design Commentary

low = 0 The lowest index point (S) is
stored

high = length(list)-1 The highest index point (E) is
stored

found = false Set a flag variable to show
that a match has not yet
been found

while not found and low <= high Conditional loop until the
target is found or there are
no elements left to examine

set mid = (low + high) / 2 Find the midpoint (M) as
halfway between the lowest
and highest index

if target = list[mid] then If a match with the target is
found…

display "found" …display found to user…

set found to true ...and end the conditional
loop using the flag variable

else if target > list[mid]
set low = mid + 1

else
set high = mid – 1

end if

Reset the lowest or highest
index depending on whether
the target is greater or
smaller than the value in the
middle index

end while

If not found then
display "not found"

end if

An optional ‘not found’ may
be added to the end of the
algorithm, if required

Version 3.2 120

SQA reference language: binary search implementation (procedure)
The procedure below displays the position of the target, if it is found within the passed list.

PROCEDURE binary_search(list,target)
 DECLARE low INITIALLY 0
 DECLARE high INITIALLY length(list)-1
 DECLARE mid INITIALLY 0
 DECLARE found INITIALLY FALSE

 WHILE NOT found AND low <= high
 SET mid TO (low+high)/2

 IF target = list[mid] THEN
 SEND "Found" TO DISPLAY
 SET found TO TRUE
 ELSE IF target > list[mid] THEN
 SET low TO mid+1
 ELSE
 SET high TO mid–1
 END IF
 END WHILE

 IF NOT found THEN
 SEND "Not found" TO DISPLAY
 END IF

END PROCEDURE

Version 3.2 121

SQA reference language: binary search implementation (function)
The function below returns a Boolean value used to store whether the target value is found,
or not, in the array. The main program can then use the returned value.

FUNCTION binary_search(list,target) RETURNS BOOLEAN

 DECLARE low INITIALLY 0
 DECLARE high INITIALLY length(list)-1
 DECLARE mid INITIALLY 0
 DECLARE found INITIALLY FALSE

 WHILE NOT found AND low <= high
 SET mid TO (low+high)/2

 IF target = list[mid] THEN

 SET found TO TRUE
 ELSE IF target > list[mid] THEN
 SET low TO mid+1
 ELSE
 SET high TO mid–1
 END IF
 END WHILE

 RETURN found
END FUNCTION

#main program
DECLARE numList AS ARRAY OF INTEGER INITIALLY [3,4,7,10,15,21,36]
RECEIVE find FROM KEYBOARD
foundIt = binary_search[numList, find]
IF foundIt THEN
 SEND "Target found" TO DISPLAY
ELSE
 SEND "Target not found" TO DISPLAY

Version 3.2 122

Appendix 10: SQL operations (DDD)
Candidates need to implement relational databases using SQL Data Definition Language
(DDL) and Data Manipulation Language (DML) in the Advanced Higher course.

DDL
♦ CREATE statement — used to create a database and the structure of each table in the

database
♦ DROP statement — used to remove individual tables from a database or even the entire

database

DML
♦ INSERT statement — used to populate a table by adding records (this was introduced at

National 5)
♦ UPDATE statement — used to edit values stored in database records (this was introduced

at National 5 and extended at Higher)
♦ DELETE statement — used to remove records from a database table (this was introduced

at National 5)

In addition, Advanced Higher candidates should be able to describe, exemplify and
implement SQL SELECT statements that make use of:

♦ the HAVING clause
♦ logical operators IN, NOT, ANY, BETWEEN, EXISTS in the WHERE or HAVING clause
♦ a subquery in the WHERE clause

SQL data types
When using the SQL CREATE statement, SQL data types must be used.

Data
type Sample SQL

implementation Comment

integer 32, -846 int
using a size parameter is optional; it is
used to restrict the maximum display
width

float 3.14 float(size, d)

the size parameter specifies the total
number of digits displayed, while d
specifies the number of digits after the
decimal point

varchar ABC123D varchar(size)
the size parameter is mandatory, to
restrict number of characters possible
between 0 and 65535

date 2019-05-23 date
format is YYYY-MM-DD

time 09:12:47 time
format is hh:mm:ss

Version 3.2 123

Information about each of these data types and examples of SQL statements are on the
following pages.

CREATE statement
A database is defined as being a structured set of data. The first step in building an SQL
database is to create the database structure using CREATE DATABASE.

CREATE DATABASE databaseName;

Once a database has been created, the structure for each table in the database needs to be
built using CREATE TABLE.

CREATE TABLE tableName (
 fieldName1 dataType,
 fieldName2 dataType,

);

Validation constraints
The following can be specified for individual fields:

PRIMARY KEY: uniquely identifies each record in the table

fieldName dataType PRIMARY KEY
 or
PRIMARY KEY (fieldName1)
 or
PRIMARY KEY (fieldName1, fieldName2, ...)

FOREIGN KEY: links two tables together by referencing the primary key of another table

fieldName dataType FOREIGN KEY REFERENCES tableName (fieldName)
 or
FOREIGN KEY(fieldName) REFERENCES tableName (fieldName)

NOT NULL: ensures that a field always contains a value and is not left empty

fieldName dataType NOT NULL

Version 3.2 124

CHECK: ensures that all values in a field satisfy a specific condition

fieldName dataType CHECK(fieldName condition)

AUTO INCREMENT: automatically generates a unique number when a new record is
inserted

fieldName dataType AUTO_INCREMENT

Additional notes on constraints
PRIMARY and FOREIGN KEY constraints
♦ Some dialects of SQL allow the PRIMARY or FOREIGN KEY constraint to be applied in

the clause used to identify the data type for the field; other dialects require the PRIMARY
or FOREIGN KEY constraint to be applied in a separate clause.

♦ Users should refer to the relevant documentation or reference guide to check the syntax
for the version of SQL they are using.

♦ If the primary or foreign key consists of multiple columns, users must specify them in a
separate clause at the end of the CREATE TABLE statement.

CHECK constraint
♦ Standard SQL provides the CHECK constraint, as described and exemplified in this

appendix. However, the CHECK constraint is not provided in all dialects of SQL (for
example, MS Access and MySQL do not support the use of CHECK).

♦ In the case of MySQL, the CHECK constraint is ignored and the intended data validation is
not carried out. To implement the CHECK constraint in MySQL, triggers or views must be
used.
Note: candidates should implement triggers or views within their project solution, as
required; however, these constraints are not assessed in the Advanced Higher
Computing Science course.

♦ Users should refer to the relevant documentation or reference guide to check the syntax
for the version of SQL they are using.

Applying multiple constraints
It is possible to apply several constraints to one field, for example:

fieldName dataType NOT NULL PRIMARY KEY

Version 3.2 125

DROP statement
The DROP statement is used to drop or delete a whole database. Be careful when using this
statement, as all the tables and data stored in them are removed and cannot be restored.
This statement is often exploited by cyber criminals in SQL injections.

The DROP statement can be used to permanently remove an entire database.

DROP DATABASE databaseName;

It can also be used to delete individual tables from a database. Used in this format, the
statement results in the complete loss of all data stored in the named table.

DROP TABLE tableName;

Note: The DROP statement is not supported in MS Access.

HAVING clause of a SELECT statement
The SQL HAVING clause is used in combination with the GROUP BY clause or an aggregate
function, to restrict the returned rows to only those where the HAVING condition is true.

HAVING is used to filter records that work on summarised GROUP BY results. It was added to
the SQL language because the WHERE clause cannot be used with aggregate functions. The
HAVING clause is applied to grouped records, but WHERE is applied to individual records.
Only groups that meet the HAVING criteria will be returned.

HAVING can also be used in combination with WHERE and ORDER BY clauses, for example:

♦ the WHERE clause is used to restrict the rows that are returned from the tables(s)
♦ the ORDER BY clause is used to sequence the rows in the answer table
♦ the HAVING clause is used to filter summarised and/or aggregated data or grouped data

Note: using HAVING requires a GROUP BY clause to be present.

SELECT list of field names
FROM list of table names
WHERE condition
GROUP BY list of field names
HAVING condition
ORDER BY list of field names;

Logical operators
Logical operators are used, together with the comparison operators =, <, >, <=, >= and
LIKE, in the WHERE clause of a SELECT query to form a condition that restricts the rows

Version 3.2 126

returned from the tables. At National 5, logical operators AND and OR were introduced. At
Advanced Higher, five specialist operators are introduced.

NOT This returns a record from the underlying tables when the specified
condition is not true.

SELECT list of field names
FROM list of table names
WHERE NOT condition;

BETWEEN This selects values that fall within a specified range of (inclusive) values.

SELECT list of field names
FROM list of table names
WHERE fieldname BETWEEN value1 AND value2;

IN This allows multiple values to be specified as an alternative to multiple OR
conditions.

SELECT list of field names
FROM list of table names
WHERE fieldName IN (value1, value2,);

subquery
SELECT list of field names
FROM list of table names
WHERE fieldName IN (SELECT statement);

ANY This returns true if any of the subquery values meet the condition specified
in the main query.

subquery
SELECT list of field names
FROM list of table names
WHERE fieldName operator ANY (SELECT statement);

EXISTS This tests for the existence of records within the subquery and returns true
when the subquery returns one or more records (this is very useful to
obtain records that do not meet a certain condition).

subquery
SELECT list of field names
FROM list of table names
WHERE EXISTS (SELECT statement);

subquery
SELECT list of field names
FROM list of table names
WHERE NOT EXISTS (SELECT statement);

Version 3.2 127

Additional notes on operators
ANY operator
The images below provide pictorial explanations of the SQL ANY operator.

Query 1: using the ANY operator, generates TRUE and so returns data to the main query.

Query 2: using the ANY operator, generates FALSE and so does not return data to the main

query.

Version 3.2 128

Query 3: using the ANY operator, generates TRUE and so returns data to the main query.

EXISTS operator

The images below provide pictorial explanations of the SQL EXISTS operator.

Query 4: general format of an SQL query that uses the EXISTS operator.

WHERE EXISTS (subquery);

EXISTS…
♦ is a comparison operator
♦ is used in the WHERE clause to validate an ‘it exists’ condition
♦ will tell whether a query returned results
♦ returns a Boolean, (TRUE or FALSE)
♦ returns TRUE if a subquery contains any rows

Query 5: using the EXISTS operator, returns TRUE.

The subquery contains more than one row, so it returns TRUE. Data is therefore returned
from the main query.

Version 3.2 129

Query 6: using the EXISTS operator, returns FALSE.

The subquery contains no rows, so it returns FALSE. No data is therefore returned from the
main query.

Subquery in the WHERE clause of a SELECT query
A subquery is a query embedded within the WHERE clause of another SQL query. A subquery
is sometimes referred to as an inner query or a nested query, and an SQL query is
sometimes referred to as the outer query or the parent query.

The subquery executes before the main query, so the results can be passed to the main
query as a condition to further restrict the data to be retrieved.

There are a few rules that subqueries must follow:

♦ Subqueries must be enclosed within brackets.
♦ Unless the main query has multiple fields in its SELECT clause, a subquery can have only

one field in its SELECT clause.
♦ The BETWEEN operator can be used within a subquery but cannot be applied to the

results of a subquery returned to the main query.
♦ Although an ORDER BY clause can be used with the main query, an ORDER BY clause

cannot be used in a subquery; if it is needed, the GROUP BY clause can be used to
perform the same function as the ORDER BY within a subquery.

♦ Many subqueries return exactly one record (called single-value subqueries); the
developer must check that this is the case, because an error will be generated if a
subquery returns more results than expected.

♦ Subqueries that return more than one row (called multiple-value subqueries), can only be
used with multiple-value operators such as EXISTS, IN and ANY.

SELECT list of field names
FROM list of table names
WHERE fieldName OPERATOR
 (SELECT list of field names
 FROM list of table names
 WHERE condition)
ORDER BY list of field names;

Version 3.2 130

Example queries: travel agency database
A travel agency uses a relational database to store details on a booking system.

It stores details of Scottish holiday resorts, hotels in each resort, customers and their
bookings. These details are stored in four separate entities.

The attributes stored in each entity are shown below.

Resort Hotel Customer Booking

resortID
resortName
resortType

hotelRef
hotelName
resortID *
starRating
seasonStartDate
mealPlan
checkInTime
pricePersonNight

customerNo
firstname
surname
address
town
postcode

hotelRef *
customerNo *
startDate
numberOfNights
numberInParty

SQL CREATE statement
The SQL statements below can be used to build the structure of the travel agency database.
The full data dictionary for this database is in appendix 4: data dictionary.

CREATE DATABASE TravelAgency;

CREATE TABLE Resort (
 resortID int NOT NULL PRIMARY KEY,
 resortName varchar(20) NOT NULL,
 resortType varchar(20) NOT NULL CHECK (resortType IN('coastal',

'city', 'island', 'country'))
);

CREATE TABLE Hotel (
 hotelRef varchar(4) NOT NULL PRIMARY KEY,
 hotelName varchar(20) NOT NULL,
 resortID int NOT NULL,
 starRating int NOT NULL CHECK(starRating >=1 AND starRating <=

5),
 seasonStartDate date,
 mealPlan varchar(17) NOT NULL CHECK(mealPlan IN('Room Only',

'Bed and Breakfast', 'Half Board', 'Full Board')),
 checkInTime time NOT NULL,
 pricePersonNight float(6,2) NOT NULL CHECK(pricePersonNight >=50

AND pricePersonNight <= 250),
 FOREIGN KEY (resortID) REFERENCES Resort(resortID)
);

Version 3.2 131

CREATE TABLE Customer (
 customerNo int AUTO_INCREMENT PRIMARY KEY,
 firstname varchar(20) NOT NULL,
 surname varchar(20) NOT NULL,
 address varchar(40) NOT NULL,
 town varchar(20) NOT NULL,
 postcode varchar(8) NOT NULL
);

CREATE TABLE Booking (
 hotelRef varchar(4) NOT NULL,
 customerNo int NOT NULL,
 startDate date NOT NULL,
 numberNights int NOT NULL CHECK(numberNights >=1),
 numberInParty int NOT NULL CHECK(numberInParty >=1),
 PRIMARY KEY (customerNo, hotelRef, startDate),
 FOREIGN KEY (customerNo) REFERENCES Customer(customerNo),
 FOREIGN KEY (hotelRef) REFERENCES Hotel(hotelRef)
);

The following example queries match the examples in appendix 5: query
design.
Queries making use of the HAVING clause

Query 7: display the resort name and number of hotels in any resort that has at least two

hotels.

SELECT resortName, COUNT(*) AS [Number of Hotels]

FROM Resort, Hotel

WHERE Resort.resortID = Hotel.resortID

GROUP BY resortName

HAVING COUNT(*) >= 2;

Query 8: display the full name and the total cost of all bookings for each customer. The

query should only list details of customers whose total cost exceeds £2000 and
should list the details of the biggest spending customer first.

SELECT firstName, surname, SUM(pricePersonNight * numberNights *
numberInParty) AS [Total cost of all Bookings]

FROM Customer, Booking, Hotel

WHERE Customer.customerNo = Booking.customerNo

AND Booking.hotelRef = Hotel.HotelRef

GROUP BY firstName, surname

HAVING SUM(pricePersonNight * numberNights * numberInParty) >=
2000

ORDER BY SUM(pricePersonNight * numberNights * numberInParty)
DESC;

Version 3.2 132

Query 9: display the average price per person, per night for each holiday resort. Display only
those resorts with an average price per person, per night that exceeds £100.

SELECT resortName, ROUND(AVG(pricePersonNight),2) AS [Average
Price]

FROM Resort, Hotel

WHERE Resort.resortID = Hotel.resortID

GROUP BY resortName

HAVING AVG(pricePersonNight) > 100;

Queries using logical operators

Query 10: display the name and type of non-coastal resort, together with the name and meal

plan for each hotel that meets these criteria.

SELECT resortName, resortType, hotelName, mealPlan

FROM Resort, Hotel

WHERE Resort.resortID = Hotel.resortID

AND NOT resortType = "coastal";

Query 11: display the full name and total number of bookings made by each customer who

has made between two and four bookings.

SELECT firstName, surname, COUNT(*) AS [Total Bookings]

FROM Customer, Booking

WHERE Customer.customerNo = Booking.customerNo

GROUP BY surname, firstName

HAVING COUNT(*) BETWEEN 2 AND 4;

Query 12: display the surname, postcode, and town of customers who live in towns that

begin with the letters ‘E’ through to ‘M’. The query should list customers in
alphabetical order of town.

SELECT surname, postcode, town

FROM Customer

WHERE town BETWEEN "E" AND "M"

ORDER BY town;

Version 3.2 133

Query 13: display the hotel name and meal plan for hotels that offer room only, half board or
full board.

SELECT hotelName, mealPlan

FROM Hotel

WHERE mealPlan IN ("Room Only", "Half Board", "Full Board");

Query 14: display the name and type of resorts that are neither city nor country resorts.

SELECT resortName, resortType

FROM Resort

WHERE NOT resortType IN ("city", "country");

Queries with a subquery in the WHERE clause

Query 15: display the hotel name, star rating, and price per person for the most expensive

hotel.

SELECT hotelName, starRating, pricePersonNight

FROM Hotel

WHERE pricePersonNight =

 (SELECT MAX(pricePersonNight)FROM Hotel);

Query 16: display the resort name, hotel name, and star rating of all hotels that have a

below-average star rating.

SELECT resortName, hotelName, starRating

FROM Resort, Hotel

WHERE Resort.resortID = Hotel.resortID

AND starRating <

 (SELECT AVG(starRating)FROM Hotel);

Query 17: display the full name and postcode of the customer who booked the same hotel

as the customer with ID 111.

SELECT firstName, surname, postcode

FROM Customer, Booking

WHERE Customer.customerNo = Booking.customerNo

AND NOT Customer.customerNo = 111

AND hotelRef =

 (SELECT hotelRef FROM Booking

 WHERE customerNo = 111);

Version 3.2 134

Query 18: display the name and star rating of all hotels booked by the customer with ID 315.

SELECT hotelName, starRating

FROM Hotel

WHERE hotelName IN

 (SELECT hotelName FROM Hotel, Booking

 WHERE Hotel.hotelRef = Booking.hotelRef

 AND customerNo = 315);

Query 19: display the names and types of resort not booked by the customer with ID 315.

SELECT resortName, resortType

FROM Resort

WHERE resortName NOT IN

 (SELECT resortName FROM Resort, Hotel, Booking

 WHERE Resort.resortID = Hotel.resortID

 AND Hotel.hotelRef = Booking.hotelRef

 AND customerNo = 315);

Query 20: display the customer number, hotel reference, and booking cost for any booking

that costs more than any bookings made by customers with surnames Lowden,
Shawfair or Sheriffhall.

SELECT customerNo, Hotel.hotelRef,
pricePersonNight*numberNights*numberInParty AS [Booking Cost]

FROM Booking, Hotel

WHERE Booking.hotelRef = Hotel.hotelRef

AND pricePersonNight*numberNights*numberInParty > ANY

(SELECT pricePersonNight*numberNights*numberInParty

 FROM Booking, Hotel, Customer

 WHERE Booking.hotelRef = Hotel.hotelRef

 AND Booking.customerNo = Customer.customerNo

 AND surname IN ("Danderhall", "Lowden", "Shawfair"));

Version 3.2 135

Query 21: display the details (hotel name, star rating, meal plan, and resort name) of all
3-star hotel bookings. The query should list the hotels in alphabetical order of
meal plan.

SELECT hotelname, mealPlan, starRating, resortName

FROM Hotel, Resort

WHERE Hotel.resortID = Resort.resortID

AND starRating = 3

AND EXISTS

 (SELECT * FROM Booking

 WHERE Booking.hotelRef = Hotel.hotelRef)

ORDER BY mealPlan ASC;

Query 22: display the full name and address of customers who have never made a booking.

SELECT firstName, surname, address

FROM Customer

WHERE NOT EXISTS

 (SELECT * FROM Booking

 WHERE Customer.customerNo = Booking.customerNo);

Query 23: display the name, star rating, and total of nights booked for hotels that have:

♦ a total number of customer nights booked that is more than the total number of nights

booked by the customer with ID 290 (number of nights booked multiplied by number in
party)

and

♦ a star rating which is less than that of the hotel with the highest star rating

The query should list the hotels from lowest star rating to the highest.

SELECT hotelName, starRating, SUM(numberNights*numberInParty)
AS[Nights x Number in Party]

FROM Hotel, Booking

WHERE Hotel.hotelRef= Booking.HotelRef

AND numberNights*numberInParty >(

 SELECT SUM(numberNights*numberInParty) FROM Booking

 WHERE customerNo =290)

AND starRating < (SELECT MAX(starRating) FROM Hotel)

GROUP BY hotelName, starRating

ORDER BY starRating;

Version 3.2 136

Appendix 11: HTML forms (WDD)
Continuation from Higher
The Higher Computing Science course defined the use of form elements and input types to
include validated input for text, numeric, and restricted-choice entry (select and radio). There
are no additional input methods or validation in the Advanced Higher course.

The focus of web content in the Advanced Higher course is the use of PHP to integrate with
an SQL database. This includes server-side processing of HTML form code introduced at
Higher.

Form action and method attributes
To process the contents of an HTML form, an action and method must be initiated when the
form’s ‘submit’ button is clicked. These are coded as attributes of the <form> element.

The action shown above states the file “registerStudent.php” will be opened when the form is
submitted. As this is a PHP file, the web server where it is stored will automatically execute
the PHP code contained in the file.

You can submit a form using one of two HTTP methods:

♦ GET
♦ POST

The submission process for both methods begins the same way, with the browser
constructing a form data set.

GET
If you submit a form with method="GET", the browser constructs a URL by taking the value
of the action attribute, appending a ? to it, then appending the form data set. It then
processes this URL as if following a link. The browser divides the URL into parts and
recognises a host, then sends a GET request to that host, with the rest of the URL as an
argument.

Version 3.2 137

Advantages of using GET:

♦ If security is not an issue, the URL can be bookmarked, allowing it to be re-used without

having to complete and submit the original form.
♦ If there is a network connection issue when a form is submitted, the browser will

automatically resend the form, as it assumes it does not contain sensitive data.
♦ GET submissions can usually be cached. If the same submission is used regularly (for

example form data used to generate the same database query), this could have a
significant effect on efficiency.

Disadvantages of using GET:

♦ The form data in the constructed URL is visible and so less secure.
♦ URLs can only contain ASCII codes, which will cause issues if the form data contains

non-ASCII characters.
♦ The URL constructed will be stored in the user's web browsing history, making it

inappropriate for sensitive data.
♦ URLs have a limited number of characters, which limits the form data submitted.

Recommended use
GET is usually used when non-sensitive data (like the parameters of a database query) is
sent to a server.

POST
When you submit a form using the POST method, the form data set is encoded within a
message that is sent to the server.

Advantages of using POST:

♦ The submitted form data is not visible and so more secure than GET.
♦ Non-ASCII characters can be submitted within the form data set.
♦ There is no URL character limit, so form data can be much larger.

Disadvantages of using POST:

♦ The submitted form cannot be bookmarked for later use.
♦ If there is a network issue while the form is being submitted, the browser will ask the user

to resubmit the form.

Recommended use
POST is usually used when sensitive data (like personal information) is sent to a server.
A database update would usually be initiated with the POST method.

POST can also be used for non-sensitive data: if the submitted data is likely to contain
non-ASCII characters or the length is over the limit of a URL.

Version 3.2 138

Name and value attributes for form element and input types
The form data set is comprised of key/value pairs, where key is a declared attribute of the
form input called name and value is the data entered by the user.

In the case of text and numeric input, the name attribute is defined within the input type.
These attributes are used when processing the form and must match the attributes used
when the submitted form data is assigned to server-side variables.

The value can be a number, a character or a string that the user types into the form’s field
or one that has been defined in the HTML form.

In the case of a drop-down menu or a radio button input, both the name and value are
defined in the HTML code.

Version 3.2 139

Appendix 12: PHP form processing (WDD)
The Advanced Higher course requires candidates to execute server-side code to:

♦ process HTML form data, using PHP
♦ store submitted form data within a database table, using SQL and PHP
♦ query a database, using SQL and PHP
♦ display the results of a query within HTML table elements, using PHP

Database and web servers
To execute PHP files, you need a database server (connected to a database to store or
retrieve data) and a web server. Although we usually think of a server as hardware, a web
and/or database server setup is a collection of software technologies that may be:

♦ installed on and run from a local PC or hardware server
♦ installed on and run from a USB flash drive
♦ installed on and run from an external PC or hardware server across the World Wide Web

There are many ways to install the required software. These range from builds of individual
components (which requires knowledge, expertise and time), to prebuilt, simple installations
that require a single install such as XAMPP, WampServer or EasyPHP.

Executing PHP files
You must have the following to execute .php files:

♦ web server software installed and running
♦ .php files saved to a specific folder within the installed server folders

Version 3.2 140

The following examples demonstrate this for an XAMPP setup.

XAMPP control panel showing both Apache (web server)
and MySQL (database server) applications running

XAMPP folder htdocs where .php files are
located

What is a PHP file?
PHP files are text files that can contain HTML, CSS, JavaScript, and PHP code.

When a .php file is executed on a server, the PHP code it contains can:

♦ collect form data
♦ add, delete and modify data in your database
♦ generate dynamic page content

When a .php file is executed, the results are returned to the browser as a plain HTML file.

The following examples use code taken from the Advanced Higher example website. You
can download the example website from SQA’s secure site.

https://secure.sqa.org.uk/secure/Understanding-Standards-Materials/NQCourseAssessments/Computing_Science

Version 3.2 141

HTML forms
The Drama page on the Advanced Higher example website contains the following form.

To process a form, the server requires the following:

♦ action=""

This contains the name of the file to be executed when the form is submitted. This can be
the current file or a different file.

♦ method=""
The method used to submit the form can be GET or POST:
— GET — the submitted data is visible to the user and therefore not secure
— POST — the submitted data is hidden from the user (forms are almost always

submitted using the POST method)

♦ name="" and value=""
When the data in the form is submitted to the server, it is converted into an array of
key/value pairs (where key is the name of the form controls and value is the data
entered by the user).

Note: with <select> and radio input, the values are defined in the form code.

Version 3.2 142

PHP form processing
When the form on the Drama web page is submitted, the following file is executed:
registerStudent.php

A .php file may contain HTML, CSS and JavaScript, so you must identify any PHP code by
placing it inside a PHP script.

<?php

// PHP code goes here
?>

Assign form data to server-side variables
The values in the array passed from the submitted form are assigned to separate variables in
the lines below. Each of these lines uses the $_POST[" "] method to extract values from
matching variables first declared in the form.

if ($_SERVER["REQUEST_METHOD"] == "POST") {

$forename = $_POST["firstname"];
 $surname = $_POST["lastname"];
 $play = $_POST["play"];
 $tickets = $_POST["tickets"];
 $age = $_POST["age"];
 $requirements = $_POST["message"];
}

Note: these assignments are placed within a conditional statement, which checks that the
form has been submitted:

If a form is submitted using the $_GET method, POST would be changed to GET as shown
below.

if ($_SERVER["REQUEST_METHOD"] == "GET") {

$forename = $_GET["firstname"];
 $surname = $_GET["lastname"];
 $play = $_GET["play"];
 $tickets = $_GET["tickets"];
 $age = $_GET["age"];
 $requirements = $_GET["message"];
}

Version 3.2 143

Open and close connection to database
To connect to a database, you need to define the following parameters. You can enter these
directly into the connection function or store them in variables, as shown below.

Line 3 defines the host name of the server. Line 4 defines the username used to connect to
the server. "root" is a default value that is usually set with administration rights for the server.

For security purposes, server access is usually password protected (for example
$password="hsd56XC89"). For teaching purposes, the password string can be left empty
as shown in line 5. The name of the database the script will connect to is stored in line 6.

The function mysqli_connect()is used to connect to the server:

or to connect to a database stored on the server:

This function returns a Boolean True if the connection is successful. You can use the
Boolean value to:

♦ ensure the script only proceeds when a proper connection is made
♦ return an error message if the function returns false
♦ kill the script using die() if a connection is not made, as shown below

$conn stores a single instance of a connection.

Connections should be closed using the function mysqli_close()at the end of a script.

Version 3.2 144

Executing an SQL query to insert submitted form data into a
database table
After the submitted form data has been assigned to PHP variables and a connection to the
database has been established, you can use SQL to add the form data to a database table.

The function mysqli_query() is used to execute an SQL statement, as shown below.

The function requires two parameters:

♦ the connection ($conn) used to identify the connection to the database being used
♦ the SQL statement including the PHP variables, that now store the form data

Line 67 shows the use of echo to output a message. The echo statement is often used in
PHP coding to output HTML code, which is then interpreted by the browser and displayed.

echo "<p>Hello world</p>";

Additional notes:

1 You can write the SQL statement directly into the function, but it is common practice to

assign the SQL statement to a variable, which is then used in the function. This makes
the code more readable.

2 For an SQL INSERT statement, the function returns a Boolean value (True = success,
False = failed). This can then be used to return messages.

3 The example above uses a JavaScript alert to inform the user that their drama trip details
have been successfully added to the database. This is not a requirement of the
Advanced Higher course, but may be a useful tool to visually demonstrate the success of
the mysqli_query() function, without using echo.

Version 3.2 145

Executing an SQL query and displaying formatted results using
PHP
The staff page on the Advanced Higher example website includes two further examples of
web and database integration.

Check ticket purchases
This example uses a simple form to input the name of a play. The web page outputs a list of
students, with the number of tickets each student has purchased.

When the ‘Generate List’ button is clicked,
the page is reloaded, with the query output
displayed in a table.

The results of an SQL SELECT statement returns output in the form of an array. The
following code was used to display the returned data.

Version 3.2 146

When the ‘Generate List’ button is clicked, line 63 assigns the selected play to the PHP
variable $play.

An SQL statement is used with mysqli_query() to query the database for students who
have tickets for the selected play.

SELECT forename, surname, tickets FROM studentData WHERE play =
'$play'

The PHP function mysqli_num_rows() is used in line 71, to display the number of rows
returned by the query — which is the number of students found.

Lines 75 to 81 use PHP to display an HTML table. This output is built in three stages:

♦ the static top part of the table
♦ the dynamic middle part of the table, where the number of rows displayed will depend on

the query result
♦ the static bottom part of the table

A while loop on line 78 uses the function mysqli_fetch_array() to extract each row
returned by the SQL select statement in turn. Each extracted row is stored as an associative
array. The contents of the array are concatenated with the HTML table elements; this is
required to create a single row of a three-column table.

<tr> <td></td> <td></td> <td></td> </tr>

Note: the first row of the table is displayed as a header row using <th> in place of <td>. Also,
mysqli_num_rows()is used to ensure the table is only displayed when >0 rows are
returned by the query (line 73). If zero rows are returned, "0 results" is displayed instead
of the table.

Check if places are available
In addition to the name of the play, this form also includes numerical input. The web page
counts the total number of tickets purchased for the selected play and calculates the number
of places remaining.

Version 3.2 147

This is achieved using the code below.

Note: the first element of the array returned by mysqli_fetch_array() stores the
numeric, aggregate result of the query.

$countArray[0]

Version 3.2 148

Building web pages generated by PHP code
You can generate the HTML returned to a browser by a .php file in the following ways:

♦ If the PHP script is contained within the same page as a submitted form, then the entire

page will be reloaded when the GET or POST script is executed. Any output produced by
the script will be included according to the position of the script within the HTML. This is
the simplest solution if you wish to stay on the same web page when a form is submitted.

♦ If you want to generate a completely different page, then the form should load a different
.php file. In this case, the PHP file will have to contain all the HTML elements required to
build the new page.

The PHP include function
This is not a requirement of the Advanced Higher course, but is an efficient way to build
pages without repeating lots of code.

The Advanced Higher example website separates out the <header>, <nav> and <footer>
elements of each page, storing them in separate HTML files.

You can include these elements in each page using the PHP function include.

In addition to substantially reducing the amount of code in each page, this also makes
maintenance of these three elements easier, as their contents are stored in a single location
and not repeated across every page of the website.

Version 3.2 149

Appendix 13: PHP sessions (WDD)
Definition and use
When a browser loads a new web page, it forgets all the information from the previous page.
A PHP session is a way of storing information within a website, so that it can be retained and
used across multiple pages.

Sessions work in a similar way to a program. The website code opens (starts) the session.
Information is generated, stored and sometimes changed. The website code then closes
(destroys) the session to end it.

Examples of session use are:

♦ retaining selected items in a shopping cart, as the user navigates from page to page
♦ displaying a user’s id on multiple pages, following a successful login
♦ retaining values, such as a user’s quiz Score, when each new question page loads

Starting a session
The following PHP function is used to start a session. This should be placed at the top of a
page, before any HTML code. If data is being passed between multiple pages, each page
that requires access to the session should contain the PHP code below.

<?php
// Start a new session
 session_start();
?>

<!DOCTYPE html>
<html>
<head>

When a new session starts, a user key is stored on the user’s computer. The
session_start() function looks to see if a user key exists. If it does, the current session is
continued. If no user key exists, a new session is started.

Session variables
Session variables are assigned values, as shown below.

$_SESSION['staffLogin']="False";

A PHP file that contains session_start()has access to any session variables previously
created.

Version 3.2 150

Ending a session
The PHP function session_destroy() is used to end a session. On the Advanced Higher
example website, clicking the ‘Log Out’ button calls the file logout.php. The code below
destroys the session and then reloads the staff page.

Note: this page must also include session_start(), as the current session must be
continued before it can be destroyed.

Worked example
The following examples use code taken from the Advanced Higher example website. You
can download the example website from SQA’s secure site.

To view the staff page, a password is required. The original page content remains hidden
until the correct password is entered. On the example website, the staff password is
‘password’ and has been implemented using session variables.

https://secure.sqa.org.uk/secure/Understanding-Standards-Materials/NQCourseAssessments/Computing_Science

Version 3.2 151

The page initially hides the content, and instead displays a simple form. The form calls the
PHP file login.php when the ‘staff password’ button is clicked.

<div>

<h2>Staff Page</h2>
<p>You need to enter the staff password to view this area.</p>
<form action="login.php" method="POST">

<input class="signInGap" type="text" name="staffpass"
value="">
<input class="signButton" type="submit" value="Staff
Password">

</form>
</div>

When executed, the login.php file:

1 connects to the current session
2 compares the user’s password (from the form) with the string "password"
3 sets the session variable staffLogin to True , if the user’s input and the string match
4 uses the PHP function include 'staff.php' to display the staff page

The above code contains alternative outcomes if the user’s password field is empty or the
password is incorrect.

Note: the empty() function used in this example is not a requirement of the Advanced
Higher course.

Version 3.2 152

This example could be extended to retrieve users’ names and passwords stored within a
database. PHP and SQL could be used to retrieve and then compare a stored password to
the user’s login attempt.

When the staff.php file is reloaded, the session variable staffLogin now stores True ,
indicating the user has successfully logged in. The staff page uses the value stored in the
session variable to determine if the login form or the page content is displayed.

if ($_SESSION['staffLogin']=="True") {

displays the page content

} elseif ($_SESSION['staffLogin']=="False") {

 displays the login form
}

The full code can be viewed using the Advanced Higher example website. You can download
the example website from SQA’s secure site.

https://secure.sqa.org.uk/secure/Understanding-Standards-Materials/NQCourseAssessments/Computing_Science

Version 3.2 153

Appendix 14: media queries (WDD)
The function of media queries
The @media rule is used to define alternative CSS rules that are only implemented when certain defined expressions are true.

For example, alternative CSS rules could be declared if the width of the viewport (usually a browser window or screen) is less than a maximum
of 600 pixels (px).

Screen width greater than or equal to 600px Screen width less than 600px
— original CSS applied — media query CSS applied

Version 3.2 154

Media query syntax and code structure
A media query is formatted as:

@media not|only mediatype and (expressions) {
 CSS Code;
}

Three media types are in the Advanced Higher course: all, screen and print.

Only one media feature has been defined in the Advanced Higher course: max-width. This limits using media query expressions to checking the
width of the viewport.

If candidates wish to explore media queries further, a complete list of media types and features are available using the following resource:

https://www.w3schools.com/cssref/css3_pr_mediaquery.asp

Within the CSS, default values are written first, with media queries defined underneath.

When coding media queries, only the changes are styled. All the original styles are still applied to the page elements when the media query is
triggered, so they do not need to be repeated within the @media rule.

The following example uses the Advanced Higher example website to demonstrate how a media query could be used within a candidate’s
project. You can download the example website from SQA’s secure site.

Note: only the media query declaration itself is included in the Advanced Higher course.

https://www.w3schools.com/cssref/css3_pr_mediaquery.asp
https://secure.sqa.org.uk/secure/Understanding-Standards-Materials/NQCourseAssessments/Computing_Science

Version 3.2 155

body{margin:auto;background-color:LightBlue}

body{width:800px}
header {height:80px}
footer {height:60px}
nav {height:35px}

nav ul {list-style-type:none}
nav ul li {float:left;width:80px;text-align:center}
nav ul li a {display:block;padding:8px}
nav ul li a:hover {background-color:#000;color:White}
…

When the screen width is reduced below the maximum 600px, the above media query is triggered. Any declarations within the @media rule
then become active, overriding the original declarations in the code.

When the screen width is greater than 600px, the trigger is no longer active and the original declarations once again become active.

@media screen and (max-width:600px) {

/*Alternative Body Styles */
body {background-color:red;width:300px}

/* Alternative Navigation Styles */
nav {height:125px}
nav ul li {width:100%;height:20px;font-
size:8pt}

…

}

Version 3.2 156

Media queries and design
Implementing interactive layouts should be based on multiple wireframe designs.

Version 3.2 157

Version 3.2 158

Media query examples
The following examples use code taken from the Advanced Higher example website. You can download the example website from SQA’s
secure site.

Example 1 — general page structure
The wireframes show that when the media query is triggered, some general changes are applied to the page styles.

This changes the heights and widths of the general page structure.

https://secure.sqa.org.uk/secure/Understanding-Standards-Materials/NQCourseAssessments/Computing_Science
https://secure.sqa.org.uk/secure/Understanding-Standards-Materials/NQCourseAssessments/Computing_Science

Version 3.2 159

A decision has been made to hide the news articles on smaller screen sizes, this is done by styling the id of the <section> that contains both the
news icon and text as display:none.

Example 2 — navigation bar
The horizontal navigation is not appropriate for smaller screen sizes. When the media query is triggered, the CSS of the <nav> element is
styled to create a vertical layout.

Note: only some of the <nav> styles need to be changed to achieve the different layout.

A height is added to each list item () to control the vertical spacing. This is not required in the default rules, as the height of the <nav>
element limits the height of each link.

Version 3.2 160

Example 3a — alternative layouts
The Drama web page was previously styled to position the <section> elements containing the <form> and the Drama Opportunities
information side by side. Reducing the width of the screen automatically forces the form section to appear below the paragraph.

Some styling is still required to control the width of the Drama Opportunities section (which was previously wider than the new body width) and
the margins of the form section.

Version 3.2 161

Example 3b — alternative layouts
The study page previously had three graphics with onclick JavaScript events that were used to reveal text. In the narrower layout, these were
changed to simple text links.

This was achieved by creating two matching <section> elements within the HTML file. One section includes three elements (with
JavaScript code) and the other includes three <h3> elements (with JavaScript code). The original styles and the media query styles alternately
hide or show one of these two <section> elements.

Original styles Media query styles

Version 3.2 162

Appendix 15: integrative testing (SDD, DDD and
WDD)
Integrative testing is the second level of testing used in any development and takes place
after component testing has been carried out. Component testing takes place during the
development of the solution, when individual functions or modules are created.

Integrative testing is needed for projects that require integration of separate components.
Testing is carried out to verify interaction between components and to detect interface
defects. These tests determine whether independently developed units of software work
correctly when connected to each other.

Due to the nature of integrative testing, some of the test cases needed require temporary
code. This code can generate results not explicitly mentioned in the requirements
specification. Once these tests are proved successful, any temporary code is removed.

In the examples that follow, test cases that require temporary code are marked with an
asterisk*.

Example 1: a project that combines SDD and DDD
A program is being developed to act as a personal diary app. The program will:

♦ allow the user to add new diary entries with a date, title, and description
♦ search diary entries by date
♦ list diary entries with the most recent entry first
♦ delete any diary entries that have expired
♦ allow a maximum of three images to be associated with each diary entry
♦ store details of all diary entries in a secure database server

This development meets the requirements of the Advanced Higher project, because:

♦ it is based on the SDD content of the course:

— details of diary entries are stored and processed in an array of records
— a sort algorithm is used to display diary entries with the most recent entry first

♦ it integrates with the DDD content of the course:
— details of diary entries are stored in a database table
— a connection with the database server is used to execute SQL queries
— SQL queries are used to add and delete diary entries
— an SQL query is used to search for diary entries using date entered by the user
— an SQL query is used to select all diary entries, to enable processing to take place

Version 3.2 163

On-going testing is used throughout the development to test each component as it is created.
Integrative testing is needed, as the development integrates SDD and DDD content. The
following three examples describe integrative tests for this development.

Test
case ID

Test case objective Test case description Expected result

1

Check communication from
the program to the secure
database server*

Use program code to
connect to the secure
database server

Message is displayed
confirming a successful
connection with the
database server

2

Check that all diary entries
are selected from the
database and stored in the
array of records*

Use program code to
execute the SQL query,
store the query results in
the array of records, and
then display the contents

Details of all diary
entries in the database
are stored in the array
of records and are
displayed successfully

3

Check the details of a new
diary entry have been added
to the database

Enter details of a new
diary entry, use program
code to execute the SQL
query to store the details
in a new record of the
database table

A new record has been
added to the database
table to store the new
diary entry (check
contents of the
database table)

Example 2: a project that combines SDD and WDD
An object-oriented program is being developed to act as a recipe manager. The program will:

♦ use a recipe class to define the data types and methods associated with a recipe
♦ store recipe details in an array of objects for processing
♦ allow the user to add new recipes
♦ save recipe details to a sequential file
♦ allow the user to search for recipes by ingredient or category (starter, main course or

dessert)
♦ display recipe details in alphabetical order of recipe title

This development meets the requirements of the Advanced Higher project, because:

♦ it is based on the SDD content of the course:

— a recipe class is defined
— an array of objects is used to store and process recipe details
— the linear search algorithm is used to search the recipe details
— a sort algorithm is used to arrange the search results, in alphabetical order of recipe

title
♦ it integrates with the WDD content of the course. A web page is used to:

— present the user with output
— allow the user to enter details of a new recipe and indicate search criteria
— display the search results

Version 3.2 164

On-going testing is used throughout the development to test each component as it is created.
Integrative testing is needed, as the development integrates SDD and WDD content. The
following three examples describe integrative tests for this development.

Test case ID Test case objective Test case description Expected result

1

Check communication
between the program
code and the web page*

Use a HTML textbox to
enter the recipe title,
then use Java code to
display the title entered

Message is displayed on
the web page showing
the recipe title entered

2

Check that all recipe
details are stored in the
array of objects*

Use Java code to import
recipe details, store in
the array of objects, and
then display the array
contents

Details of all recipes in
the array of objects are
displayed correctly on
the web page

3

Check the recipes are
displayed in alphabetical
order of title

Use Java code to sort
contents of the array of
objects in alphabetical
order of recipe title, and
display the results

Recipe details are
displayed on the web
page in alphabetical
order of recipe title

Example 3: a project that combines DDD and SDD
A movie review database is being developed. The database will:

♦ store details of movies, actors, reviews, and reviewers in five linked tables of a relational

database
♦ allow users to search for details of individual movies
♦ allow users to add details of new movies to the database
♦ allow users to add a review and rating for any movie
♦ use forms to create an interface for all SQL functionality
♦ use subqueries to display details of the highest rated movie(s) and details of any movie

that has at least five reviews
♦ use a query to display details of any movie that was not made in the UK

This development meets the requirements of the Advanced Higher project, because:

♦ it is based on the DDD content of the course:

— details of movies, actors, reviews, and reviewers are stored in five linked tables of a
relational database

— subqueries are used to extract details from the database
— queries make use of logical operators to search for required details
— queries and subqueries make use of at least three database tables

♦ it integrates with the SDD content of the course:
— forms created using toolbox controls provided within the integrated development

environment provide an interface for all SQL functionality
— the program forms a connection with the secure database server to execute SQL

queries
— the program is used to format and display query results

Version 3.2 165

On-going testing is used throughout the development to test each component as it is created.
Integrative testing is needed, as the development integrates DDD and SDD content. The
following three examples describe integrative tests for this development.

Test case ID Test case objective Test case description Expected result

1

Check communication
between the program
form used to enter
details of a new review
and the secure database
server*

Use program code to
connect to the secure
database server

Message is displayed
confirming a successful
connection with the
database server

2

Check that the query
selected by the user has
executed correctly*

Use program code to
generate the query
required, execute the
query and display a
query confirmation
message

Message is displayed to
confirm a successful
execution of the query

3

Check the details of the
highest rated movie(s)
have been displayed
correctly

Use program code to
execute the SQL query
required and then display
the results

Details of the highest
rated movie(s) are
formatted and displayed

Example 4: a project that combines DDD and WDD
A music albums database is being developed. The database will:

♦ store details of albums, artists, and tracks in five linked tables of a relational database
♦ allow the user to search for details of individual albums, artists, and tracks
♦ allow details of new albums to be added to the database and stored in the relevant tables
♦ use web pages to create an interface for all SQL functionality
♦ use subqueries to display details of the most popular albums, artists, and tracks
♦ use a subquery to display details of the tracks in any album, that has at least ten tracks

This development meets the requirements of the Advanced Higher project, because:

♦ it is based on the DDD content of the course:

— details of albums, artists, and tracks are stored in five linked tables of a relational
database

— subqueries are used to extract required album, artist and track details
— queries and subqueries use at least three database tables

♦ it integrates with the WDD content of the course:
— web pages provide an interface to display results of SQL queries
— online forms are used to enter query search criteria
— online forms are used to gather details of new albums
— PHP code is used to form a connection with the secure database server and to

execute SQL queries
— PHP is used to format and display the results returned by SQL queries

Version 3.2 166

On-going testing is used throughout the development to test each component as it is created.
Integrative testing is needed, as the development integrates DDD and WDD content. The
following three examples describe integrative tests for this development.

Test case ID Test case objective Test case description Expected result

1

Check communication
between the online form
used to enter details and
the secure database
server*

Enter the title of a new
album, then use PHP
code to connect to the
database server

Message is displayed
confirming a successful
connection with the
database server

2

Check that the query
selected by user has
been formed correctly
and has executed
successfully*

Search for details of all
albums by the band
Genesis, use PHP code
to generate the SQL
query required. Use an
‘echo’ statement to
display the syntax of the
query formed, then
execute the query and
display the query
confirmation message

The ‘echo’ statement is
used to display the
correct SQL query and a
message is displayed on
the web page confirming
successful execution of
the query

3

Check the details of the
most popular artist are
displayed correctly

Use PHP code to
generate the SQL query
required, to execute the
query and display the
results

Details of the most
popular artist are
formatted and displayed
on the web page

Example 5: a project that combines WDD and SDD
A website is being developed to allow the user to play a game of ‘Connect Counters’.

This is a 2-player game played on a 5 x 5 grid. Users take it in turns to either position a
coloured counter in the grid to form a continuous sequence of counters (horizontally,
vertically or diagonally), or block their opponent’s sequence. Once the grid is full, the player
who has the longest sequence of counters gets a point (in the event of a draw, both players
receive points).

The software will:

♦ allow each player’s name to be entered at the start of the game, together with the number

of rounds being played (the maximum number of rounds is three)
♦ allow players to take it in turn to indicate the position of their coloured counter in the grid
♦ control the game play and award points
♦ display the name of the winner(s) and points awarded at the end of each round
♦ display the name of the overall winner, once all rounds of the game have been played

Version 3.2 167

This development meets the requirements of the Advanced Higher project, because:

♦ it is based on the WDD content of the course:

— an online form is used to gather and submit details at the start of the game
— players use an online form of submit buttons to indicate the grid position they want to

use on the ‘Game Play’ page
— PHP is used to assign variables and process the form data
— session variables are used to store details entered by the players for the duration of

the game
— external CSS is used to format the layout of all web pages in the website
— a media query is used to create multiple layouts

♦ it integrates with the SDD content of the course:
— a 2-D array is used to represent the position of the players’ counters

On-going testing is used throughout the development to test each component as it is created.
Integrative testing is needed, as the development integrates WDD and SDD content. The
following three examples describe integrative tests for this development.

Test case ID Test case objective Test case description Expected result

1

Check that the number of
rounds entered by the
user is passed to the
game code successfully*

Enter the number of
rounds = 2, assign to a
PHP session variable and
use this to control a fixed
loop displaying the round
number being played

Messages
‘Round 1 being played’
‘Round 2 being played’
are displayed
successfully on the
‘Game Play’ page of the
website

2

Check that the grid
position selected by player
1 is updated correctly in
the 2-D array*

Once the game starts, the
first grid position selected
by player 1 is (2,4), a value
of 1 should be assigned to
position (1,3) of the 2-D
array and the full contents
of the array displayed

Contents of 2-D array are
displayed correctly on
the ‘Game Play’ page of
the website

0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

3

Check that players’ names
entered at the start are
displayed correctly at the
end of each round

Enter players’ names and
number of rounds = 2 at
the start of the game, play
the game for two rounds,
and player details
displayed at the end of
each round

At the end of rounds 1
and 2, a message is
displayed showing the
correct player names and
both scores on the
‘Game Play’ page of the
website

Version 3.2 168

Example 6: a project that combines WDD and DDD
A photo gallery website is being developed. The website will:

♦ allow all users to view thumbnails of all publicly available images
♦ allow new users to create an account for the website
♦ allow registered users to login and view thumbnails of images that they have stored and

have marked as ‘private’
♦ allow all users to click a thumbnail image and display a full-sized image
♦ allow registered users to add details of new images to the database, indicating whether

access to the images is ‘public’ or ‘private’
♦ use web pages to create an interface for all SQL functionality

This development meets the requirements of the Advanced Higher project, because:

♦ it is based on the WDD content of the course:

— users login to the website using an online form
— PHP is used to assign variables and process the form data
— session variables are used to store a user’s login details while they are logged in to

the website
— external CSS is used to format the layout of all web pages in the website
— media query is used to create multiple layouts

♦ it integrates with the DDD content of the course:
— details of uploaded images are stored in a database table
— a separate database table is used to store users’ login details
— a connection with the database server is used to execute SQL queries
— an SQL query is used to check a user’s login credentials
— SQL queries are used to select the images to be displayed

On-going testing is used throughout the development to test each component as it is created.
Integrative testing is needed, as the development integrates WDD and DDD content. The
following three examples describe integrative tests for this development.

Version 3.2 169

Test case ID Test case objective Test case description Expected result

1

Check communication
between the online form
used to login to the
website and the secure
database server*

Login to the website with
any username and
password, then use PHP
code to connect to the
database server

Message is displayed
confirming successful
connection with the
database server

2

Check that the user is
successfully logged into
the website and their
login details have been
passed to a new page*

Login to the website with
a stored username and
password, execute the
SQL query to check the
login details, assign
details to the session
variables. Display a
personalised
confirmation message on
a separate page

Personalised message is
displayed on the ‘User
Gallery’ page of the
website, confirming
successful login to the
website

3

Check that only
thumbnails of images
marked ‘public’ are
displayed on the ‘Public
Gallery’ page of the
website

Click the link to load the
‘Public Gallery’ page,
execute the SQL query
to identify the images
marked ‘public’, then
only display thumbnails
of these images

Only thumbnails of the
images marked ‘public’
are displayed on the
‘Public Gallery’ page of
the website. (compare
with the details stored in
the Photos database
table)

Version 3.2 170

Appendix 16: fitness for purpose (SDD, DDD and
WDD)
Functional requirements and fitness for purpose
During the analysis stage of the development cycle, candidates identify the functional
requirements when creating a requirements specification. The functional requirements are
the inputs, processes, and outputs that must be included in the design and implementation
of any solution to a problem.

A solution is fit for purpose if (following design, implementation and testing) it meets all the
functional requirements. In the evaluation stage of the Advanced Higher project, candidates
discuss if their solution is fit for purpose.

The following examples use functional requirements identified in appendix 1. Both examples
assume that a program, website, and database are designed, implemented, and tested.

Example of an evaluation of a solution that is fit for purpose (SDD)
Functional requirements (from appendix 1)
The functional requirements are defined in terms of the inputs, processes, and outputs listed
below.

All inputs are imported from a sequential file and all outputs are displayed on the screen. The
program is activated by double clicking on the file icon and then selecting ‘Run’ from the
menu. Each process should be a separate procedure or function that is ‘called’ from the main
program.

Inputs:

♦ itemID
♦ price
♦ number in stock

Processes:

♦ read in data from external file to a 2-D array
♦ sort the data in order of itemID, from low to high
♦ search a 2-D array, based on end-user input, for the required itemID

Output:

♦ If a match is found, the data (itemID, price, number in stock) corresponds to the end-user

input.
♦ If no match is found, a suitable message informs the end-user.

Version 3.2 171

Fitness for purpose
Following comprehensive testing, the program is fit for purpose.

The solution:

♦ reads data from an external stock file, splits the data and allocates it to a 2-D array
♦ sorts the data in numerical order using the itemID
♦ allows the user to display a stock item by selecting an itemID
♦ searches the data in the 2-D array for the itemID selected and returns the result
♦ displays formatted output, showing the itemID, price, and number in stock for the

selected items
♦ displays a message ‘sorry your item has not been found’ if the stock item is not found in

the 2-D array

Example of an evaluation of a solution that is NOT fit for purpose
(DDD)
Functional requirements (from appendix 1)
The functional requirements are defined in terms of the inputs, processes, and outputs
detailed below.

Inputs (customer):

♦ register: user email, password, password re-entered, firstName, lastName, address,

postcode, email
♦ search details: category
♦ search details: itemName
♦ sort details: Field (price or rating) and order required (ascending or descending)

Input (administrator):

♦ edit item details: itemID, price
♦ edit customer details: customerID, address, postcode, email
♦ add item details: itemID, itemName, description, category, price
♦ delete item details: itemID
♦ delete customer details: customerID
♦ monthly orders: month

Processes:

♦ auto generate the customerID when a new customer registers
♦ queries to insert records into the Customer and Item tables
♦ queries to sort the item details in order of price and rating
♦ queries to delete specific customer and item records from the database
♦ queries to edit records in the Customer and Item tables
♦ queries to search Item table
♦ queries to display details of all orders placed in a particular month

Version 3.2 172

Output:

♦ confirmation of successful insertions
♦ confirmation of successful deletions
♦ confirmation of successful edits
♦ answer tables showing details of sorted items (sorts)
♦ answer tables showing details of required items (searches)

Fitness for purpose
Following comprehensive testing, the database-driven website and its user interface are not
fit for purpose.

Although the solution successfully implements all insertions, deletions, and edits of the
back-end database table data, it does not:

♦ provide confirmation of these actions
♦ allow the customer to sort the results of a stock item search

The solution does successfully:

♦ store the required information for each new customer (including an auto-generated

customerID) when they register
♦ allow a customer’s address, postcode, and email to be edited and deleted by an

administrator
♦ store the required information for each new stock item
♦ allow stock item details to be edited and deleted by an administrator
♦ display stock items (descriptions, categories and prices) following a customer search for

stock items by either name or category
♦ display all the orders for a month selected by an administrator

Version 3.2 173

Copyright acknowledgements

Appendix 10: all images copyright SQA

Appendix 13 and 14: all images Shutterstock:

School activities banner — 553188940

Appendix 14: Footballers lifting trophy — 370092275

Table tennis — 87611998
Karate — 740133061
Drama opportunities — 329907647

Version 3.2 174

Administrative information

Published: September 2024 (version 3.2)

History of changes

Version Description of change Date

2.0 Course support notes added as appendix — it includes the
‘Resources to support the Advanced Higher Computing Science
course’ appendices.

Diagram in appendix 1 altered to move actors outside system
process box.

Amended ‘entries’ to ‘entities’ in the ‘Skills, knowledge and
understanding for course assessment’ section.

August
2019

3.0 Amendments to the ‘Course overview’ section, ‘Course content’
section, ‘Course Assessment’ section and ‘Course support notes’.
This provides information on the structure of the question paper,
the scope for integration in each optional section, and reflects
changes to the marks and duration.

Appendix 3: amendments to exemplification of mandatory/optional
relationships

Appendices 12 and 13: deletions of additional HTML/PHP
functions.

Appendices 17, 18 and 19: deleted.

May 2023

3.1 Appendix 3: text changed to remove reference to ‘dotted line’, to
match diagrams.

September
2023

3.2 Additional guidance on time and volume for project component

Appendix 3: amended to provide greater clarity on strong/weak
entities.

Appendix 9: amended to ensure consistency across pseudocode
design and SQA Reference Language examples of standard
algorithms.

September
2024

Version 3.2 175

Note: please check SQA’s website to ensure you are using the most up-to-date version of
this document.

© Scottish Qualifications Authority 2014, 2019, 2023, 2024

	Advanced Higher Computing Science
	Course code:
	Course assessment code:
	SCQF:
	Valid from:
	Contents
	Course overview
	Conditions of award
	Course rationale
	Purpose and aims
	Who is this course for?

	Duration
	Marks
	Component
	Progression
	Recommended entry
	Course content
	Software design and development
	Database design and development
	Web design and development
	Integration
	Skills, knowledge and understanding
	Skills, knowledge and understanding for the course
	Skills, knowledge and understanding for the course assessment

	Skills for learning, skills for life and skills for work

	CSS
	SQL
	Data types and structures
	PHP
	Course assessment
	Course assessment structure: question paper
	Question paper 55 marks
	Integration
	Design
	Implementation
	SQA’s standardised reference language
	Setting, conducting and marking the question paper

	Course assessment structure: project
	Project 80 marks
	Setting, conducting and marking the project
	Assessment conditions
	Time
	Supervision, control and authentication
	Resources
	Reasonable assistance

	Evidence to be gathered
	Volume

	Grading
	Grade description for C
	Grade description for A

	Equality and inclusion
	Further information
	Appendix: course support notes
	Introduction
	Approaches to learning and teaching
	Activity-based learning
	Group work
	Problem-based learning
	Computational thinking
	Using online and outside resources
	Meeting the needs of all candidates
	Suggested learning activities
	Analysis (SDD, DDD and WDD)
	Software design and development
	Database design and development
	Web design and development
	Testing (SDD, DDD and WDD)
	Evaluation (SDD, DDD and WDD)

	Resources
	Some suggested software development environments
	Teaching and learning materials

	Comparison of skills, knowledge and understanding for Higher and Advanced Higher
	Implementation (continued)
	Implementation (continued)
	Implementation (continued)
	Testing
	Testing (continued)
	Evaluation

	Preparing for course assessment
	Course assessment overview
	Question paper brief

	Developing skills for learning, skills for life and skills for work
	Resources to support the Advanced Higher Computing Science course
	Appendix 1: problem analysis (SDD, DDD and WDD)
	Requirements specification
	Constraints
	Technical constraints
	Business constraints
	Further constraints

	Worked example of a requirements specification (SDD)
	Analysis
	Scope
	Boundaries
	End-user requirements
	Functional requirements
	Inputs
	Processes
	Output

	Constraints

	Worked example of a requirements specification (DDD)
	Analysis
	Scope
	Boundaries
	End-user requirements
	Functional requirements
	Inputs (customers)
	Inputs (administrators)
	Processes
	Output

	Constraints

	Unified Modelling Language (UML)
	UML use case diagram
	Drawing a use case diagram
	System boundary
	Actors
	Use cases
	Naming use cases
	Relationships

	Association between actor and use case
	Generalisation of an actor
	Extend between two use cases
	Include between two use cases
	Generalisation of a use case

	Creating a use case diagram
	Example

	Appendix 2: Unified Modelling Language (UML) — class diagrams (SDD)
	Drawing a class diagram
	UML class notation
	Class diagram for House
	Explanation
	Constructor
	Public and private
	Example code: setAddress()
	Example code: getAddress()
	Inheritance

	Array of objects
	Example

	Appendix 3: entity-relationship diagrams (DDD)
	Entity type
	Relationship participation
	Example
	Strong and weak entities

	Relationship participation
	Entity-relationship diagram

	Appendix 4: data dictionary (DDD)
	Sample data for resort
	Sample data for hotel
	Sample data for customer
	Sample data for booking
	Entity: Resort
	Entity: Hotel
	Entity: Customer
	Entity: Booking

	Appendix 5: query design (DDD)
	Example 1: HAVING with GROUPING and row COUNT
	Example 2: HAVING with GROUPING and sort
	Example 3: HAVING with conditional statement
	Example 4: NOT operator
	Example 5: BETWEEN operator with numeric values
	Example 6: BETWEEN operator with text
	Example 7: IN operator
	Example 8: NOT with the IN operator
	Example 10: subquery in the where clause
	Example 11: subquery using the NOT operator
	Example 12: subquery using the IN operator
	Example 13: subquery using the NOT and IN operators
	Example 14: subquery using the ANY operator
	Example 15: subquery using the EXISTS operator
	Example 16: subquery using the NOT and EXISTS operators
	Example 17: query requiring two subqueries

	Appendix 6: server-side process design (WDD)
	Example 1: executing an SQL query and displaying results
	Pseudocode

	Example 2: authenticating a user login
	Pseudocode

	Appendix 7: linked lists (SDD)
	Single linked list
	Inserting new data
	Removing data

	Double linked list
	Inserting new data
	Removing data

	Appendix 8: connecting to a database using a programming language (SDD)
	Python
	Set-up requirements
	Step 1 — checking the system path to Python is set up
	Step 2 — installing the ‘mysql-connector’ library using pip

	Creating a connection
	SQL execution
	Example 1 — SELECT and display results
	Example 2 — INSERT using user inputted values
	Example 3 — counting the number of rows returned by a query

	Visual Basic
	Set-up requirements
	Creating a connection
	SQL execution
	Example 1 — SELECT and display results
	Example 2 — INSERT using user inputted values
	Example 3 — counting the number of rows returned by a query

	Java
	Set-up requirements
	Creating a connection
	SQL execution
	Example 1 — SELECT and display results
	Example 2 — INSERT using user inputted values
	Example 3 — counting the number of rows returned by a query

	Appendix 9: standard algorithms (SDD)
	Bubble sort
	Pseudocode
	SQA reference language: bubble sort implementation

	Insertion sort
	Iteration 1
	Iteration 2
	Iteration 3
	Iteration 4
	Pseudocode
	SQA reference language: insertion sort implementation

	Binary search
	Pseudocode
	SQA reference language: binary search implementation (procedure)
	SQA reference language: binary search implementation (function)

	Appendix 10: SQL operations (DDD)
	DDL
	DML
	SQL data types
	CREATE statement
	Validation constraints
	Additional notes on constraints
	PRIMARY and FOREIGN KEY constraints
	CHECK constraint
	Applying multiple constraints

	DROP statement
	HAVING clause of a SELECT statement
	Logical operators
	Additional notes on operators
	ANY operator
	EXISTS operator

	Subquery in the WHERE clause of a SELECT query
	Example queries: travel agency database
	SQL CREATE statement
	Queries making use of the HAVING clause
	Queries using logical operators
	Queries with a subquery in the WHERE clause

	Appendix 11: HTML forms (WDD)
	Continuation from Higher
	Form action and method attributes
	GET
	POST

	Name and value attributes for form element and input types

	Appendix 12: PHP form processing (WDD)
	Database and web servers
	Executing PHP files
	What is a PHP file?

	HTML forms
	PHP form processing
	Assign form data to server-side variables

	Open and close connection to database
	Executing an SQL query to insert submitted form data into a database table
	Executing an SQL query and displaying formatted results using PHP
	Check ticket purchases
	Check if places are available

	Building web pages generated by PHP code
	The PHP include function

	Appendix 13: PHP sessions (WDD)
	Definition and use
	Starting a session
	Session variables
	Ending a session
	Worked example

	Appendix 14: media queries (WDD)
	The function of media queries
	Media query syntax and code structure
	Media queries and design
	Media query examples
	Example 1 — general page structure
	Example 2 — navigation bar
	Example 3a — alternative layouts
	Example 3b — alternative layouts

	Appendix 15: integrative testing (SDD, DDD and WDD)
	Example 1: a project that combines SDD and DDD
	Example 2: a project that combines SDD and WDD
	Example 3: a project that combines DDD and SDD
	Example 4: a project that combines DDD and WDD
	Example 5: a project that combines WDD and SDD
	Example 6: a project that combines WDD and DDD

	Appendix 16: fitness for purpose (SDD, DDD and WDD)
	Functional requirements and fitness for purpose
	Example of an evaluation of a solution that is fit for purpose (SDD)
	Functional requirements (from appendix 1)
	Fitness for purpose

	Example of an evaluation of a solution that is NOT fit for purpose (DDD)
	Functional requirements (from appendix 1)
	Fitness for purpose

	Copyright acknowledgements

	Administrative information
	History of changes

