

Higher Computing Science
Assignment
Assessment task

This document provides information for teachers and lecturers about the coursework
component of this course in terms of the skills, knowledge and understanding that are
assessed. It must be read in conjunction with the course specification.

Specimen — valid from session 2024-25 and until further notice.

This edition: September 2024 (version 2.0)

© Scottish Qualifications Authority 2024

Contents
Introduction 1

Instructions for teachers and lecturers 2

Marking instructions 7

Instructions for candidates 16

Version 2.0 1

Introduction
This document contains instructions for teachers and lecturers, and instructions for
candidates for the Higher Computing Science assignment. You must read it in conjunction
with the course specification.

This assignment has 40 marks out of a total of 120 marks available for the course
assessment.

This is one of two course assessment components. The other component is a question
paper.

Version 2.0 2

Instructions for teachers and lecturers
This is a specimen assessment task for Higher Computing Science.

SQA publishes a new assessment task on the secure website each academic year. The task
is valid for that year only. Once complete, you must send the assignment responses to SQA
to be marked.

You must conduct the assignment under a high degree of supervision and control. This
means:

♦ candidates must be supervised throughout the session(s)
♦ candidates must not have access to email or mobile phones
♦ candidates must complete their work independently — no group work is permitted
♦ candidates must not interact with each other
♦ with no interruption for targeted learning and teaching
♦ in a classroom environment

You can use any integrated development environments (IDE) that enables candidates to
generate evidence — this includes online IDEs. However, the IDE must have a facility that
prevents candidates accessing their files and tasks outside the supervised classroom
environment.

Time
Candidates have 6 hours to carry out the assignment, starting at an appropriate point in
the course, after all content has been delivered. It is not anticipated that this is a
continuous 6-hour session, although it can be, but conducted over several shorter sessions.
This is at your discretion.

You have a responsibility to manage candidates’ work, distributing it at the beginning and
collecting it in at the end of each session, and storing it securely in between. This activity
does not count towards the total time permitted for candidates to complete the
assignment.

Candidates are prompted to print their work at appropriate stages of the tasks. They can
print on an ongoing basis or save their work and print it later. Whatever approach they
take, time for printing is not part of the 6 hours permitted for the assignment.

Resources
Each candidate must have access to a computer system with a high-level (textual)
programming language and either:

♦ a database application or software that can create, edit and run SQL
♦ software that can create, edit and run HMTL, CSS and JavaScript

Version 2.0 3

This is an open-book assessment. Candidates can access resources such as programming
manuals, class notes, textbooks and programs they have written throughout the course.
These may be online resources.

You must not create learning and teaching tasks that make use of constructs required in
the assessment task, with the specific purpose of developing a solution that candidates
can access during the assignment.

You can provide candidates with templates, however these templates must only contain
general starter code used in learning and teaching (for example, a web page that contains
the HTML, title and body elements) — templates must not be tailored to this year’s task.

There may be instances where restriction of network use is prohibited (for example, a
local authority-managed network with specific limitations). However, it remains your
professional responsibility to make every effort to meet the assessment conditions.

Reasonable assistance
The assignment consists of three independent tasks. They are designed in a way that does
not require you to provide support to candidates, other than to ensure that they have
access to the necessary resources. Candidates can complete the tasks in any order.

Once the assignment is complete, you must not return it to the candidate for further work
to improve their mark. You must not provide feedback to candidates or offer an opinion on
the perceived quality or completeness of the assignment response, at any stage.

You can provide reasonable assistance to support candidates with the following aspects of
their assignments:

♦ printing, collating and labelling their evidence to ensure it is in the format specified by

SQA
♦ ensuring candidates have all the materials and equipment required to complete the

assignment — this includes any files provided by SQA
♦ ensuring candidates understand the conditions of assessment and any administrative

arrangements around the submission and storage of evidence, and the provision of files
♦ technical support

Evidence
All candidate evidence (whether created manually or electronically) must be submitted to
SQA in a paper-based format. The evidence checklist details all evidence to be gathered.
You can use it to ensure you submit all evidence to SQA.

You should advise candidates that evidence, especially code, must be clear and legible.
This is particularly important when pasting screenshots into a document.

There is no need for evidence to be printed single sided or in colour.

Version 2.0 4

If evidence is handwritten, candidates must use a blue or black pen.

When packaging, ensure that:

♦ each assignment is accompanied by an SQA A4 flyleaf
♦ all completed task sheets and additional evidence of screenshots or printouts from

development environments are included and ordered in line with the task
♦ where possible, sheets that do not contain candidate evidence are removed
♦ candidates’ SCNs are on every page
♦ the flyleaf and candidate evidence are stapled together in the top left corner

Alteration or adaptation
The tasks are in PDF and Word formats. Each task is available as a separate file from the
secure site. Word files allow candidates to word process their responses to parts of the
task.

You must not adapt the assignment in any way that changes the instructions to the
candidate and/or the nature and content of the tasks. However, you can make changes to
font size, type and colour and to the size of diagrams for candidates with different
assessment needs, for example, visual impairment.

If you are concerned that any particular adaptation changes the nature and/or the content
of the task, please contact our Assessment Arrangements Team for advice as soon possible
at aarequests@sqa.org.uk.

Submission
Each page for submission has the number of the assignment task that it refers to, for
example 1a, and contains space for candidates to complete their candidate number. Any
other pages submitted, for example, prints of program listings or screenshots, must have
this information added to them.

mailto:aarequests@sqa.org.uk

Version 2.0 5

Specific instructions for teachers and lecturers:
specimen assignment
All candidates must complete task 1 (software design and development) and either task 2
(database design and development) or task 3 (web design and development).

It is at your discretion how you approach this optionality in assessment. The task your
candidates complete might be pre-determined by your progress through the course, or you
may be able to let candidates choose which task to complete.

You must follow these specific instructions and ensure that candidates are aware of what
you will give them at each stage in the assessment.

Print each task on single-sided paper, where applicable:

♦ this allows candidates to refer to information on other pages
♦ this helps you manage tasks that are split into more than one part

Task 1 — part A requires candidates to analyse and design a solution to a software
problem. They must submit their evidence to you before you issue part B.

Task 1 — part B is a separate section. This ensures that candidates do not access part A
and change their responses. Candidates must still have access to the problem description
page during part B.

Give the following data file to candidates:

♦ athletes.csv

A CSV file is provided for candidates to use in this part of the task. You must not convert
the CSV file into a different format. Candidates are assessed on their ability to implement
a solution to the given task, using the specific file type provided.

Task 2 — part A requires candidates to analyse and design a database problem. They must
submit their evidence to you before you issue part B.

Task 2 — part B is a separate section. This ensures that candidates do not access part A
and change their responses.

A Microsoft Access file (MyTreat.accdb) is provided for candidates to use in part B. If your
centre uses a different database management system, you can create the relational
database using the CSV files or the text files provided.

The CSV files contain the data for each table. The text files contain SQL create and insert
statements for each table. In both cases, you will have to add primary keys and foreign
keys as specified below.

Version 2.0 6

Specific instructions for database setup
The ‘MyTreat’ database includes table names, field names, primary keys and foreign keys.

You do not need to add validation to any of the fields in the database tables.

MyTreat database

Customer CustomerOrder Voucher Supplier
custID orderID voucherID supplierCode

firstName custID* voucherName supplierName

surname voucherID* category email

email quantityPurchased price£

 dateOrdered expiryDate

supplierCode*

 quantityAvailable

Task 2e — requires candidates to test an SQL statement. You must provide this to
candidates as part of the database. The SQL statement is already included in the MS Access
file. If you use a different database management system, you should use the supplied text
file (Q2e_Query.txt) to add it to the database you provide to candidates.

Task 3 — part A requires candidates to design a website. They must submit their evidence
to you before you issue part B.

Task 3 — part B is a separate section. This ensures that candidates do not access part A
and change their responses. Candidates must still have access to the end-user and
functional requirements page during part B.

A folder named ‘Web files’ is provided. This contains the CSS, HTML and media files
candidates need to complete this task. These files must not be renamed and they must
remain in the folders provided. However, the case of suffixes may be changed if the
environment you work in requires them to be lower or upper case.

Candidates do not need to print completed web pages in colour.

Version 2.0 7

Marking instructions
In line with SQA’s normal practice, the following marking instructions for the Higher
Computing Science assignment are addressed to the marker. They will also be helpful for
those preparing candidates for course assessment.

Candidates’ evidence is submitted to SQA for external marking.

General marking principles
Always apply these general principles. Use them in conjunction with the specific marking
instructions, which identify the key features required in candidates’ responses.

a Always use positive marking. This means candidates accumulate marks for the

demonstration of relevant skills, knowledge and understanding; marks are not
deducted for errors or omissions.

b If a candidate response does not seem to be covered by either the principles or
detailed/specific marking instructions, and you are uncertain how to assess it, you
must seek guidance from your team leader.

c Award marks regardless of spelling, as long as the meaning is unambiguous and does
not result in a syntax error in implemented code.

d For design and implementation tasks, a sample response may be shown in the
detailed marking instructions. This will not be the only valid response. You must use
the detailed marking instructions and additional guidance to ensure that you consider
alternative approaches and nuances of different programming languages. If in doubt
you should refer to your team leader.

e If a candidate puts a score through their entire response to a question and makes a
further attempt, you should only mark the further attempt. If no further attempt is
made and the original is legible, you should mark the original response.

f In the marking instructions, if a word is underlined then it is essential; if a word is in
brackets() then it is not essential. Words separated by / are alternatives.

Version 2.0 8

Specific marking instructions
Task 1 — software design and development

Task Expected response
Max
mark

Additional guidance

1a Correct input (1 mark):

♦ entryID, location, forename,

surname, and jumps from CSV file

All three processes (1 mark):

♦ generate bib value
♦ find the most jumps
♦ find the full name of athlete(s)

who completed the highest
number of jumping jacks

2 Award 0 marks for inputs if each
input is not explicitly listed or it is
not stated that inputs are read
from a CSV file.

All bullet points listed under
processes must be included for
mark to be awarded.

Ignore any additional writing
or/reading to/from file processes.

1b Generate bib values:

♦ IN: entryID (), forename (),

surname(), location()

Find the highest number of jumps:

♦ OUT: maxJumps

Display the full name of athletes:

♦ IN: maxJumps, forename(),

surname(), jumps ()

3 Variable and arrays should be
correctly identified.

The same variable name selected
for maximum jumps passed out in
the 3rd procedure should match
the variable passed in to the 4th
procedure.

Version 2.0 9

Task Expected response
Max
mark

Additional guidance

1c(i) Read in athletes’ data
(3 marks):

♦ read data from file
♦ assign athletes’ data to parallel

arrays
♦ module with data passed or

returned to arrays

Generate and store bib value
(4 marks):

♦ module with correct parameters

passed
♦ substrings extracted in loop and

bib value concatenated
♦ ASCII value of first letter of

location concatenated
♦ write entry ID and bib value to file

Find max number of jumps
(3 marks):

♦ module with correct parameters

passed in and out
♦ loop from second athlete
♦ initialise and find max jumps

Display athletes with most jumps
(1 mark):

♦ module with correct parameters

passed in and athletes’ full names
displayed

Implementation (2 marks):

♦ matching top level design (use

function to find max jumps)
♦ modular and maintainable

(meaningful variable names and
appropriate internal commentary)

13 Award 1 mark for each bullet
point.

A minimum of one comment
describing the purpose of each
module is required.

Version 2.0 10

Task Expected response
Max
mark

Additional guidance

1c(ii) Location of next year’s host
(2 marks):

♦ module with correct parameters

passed in
♦ correct values counted for each

location

2

1d ♦ maxjumps set to jumps(0) with
corresponding value of 100

♦ watchpoint triggered at index 2
with value 102

♦ watchpoint triggered at index 3
with value 108

3 Do not award marks for bullets
two and three if treated as a
trace table.

1e Evaluation of the following:

♦ Fitness for purpose (1 mark):

— meets requirements to
generate bib values and store
to file

or
— not fit for purpose as bib

values may not be unique
♦ Maintainability (1 mark):

— linking modularity to
maintainability, for example,
the use of local variables allow
modules to be edited
independently

2

Version 2.0 11

Task 2 — database design and development

Task Expected response
Max
mark

Additional guidance

2a ♦ (A query to) calculate total
customer spend

♦ (A query to) calculate the number
of vouchers sold by a single
supplier

♦ (A query to) search for offers
within a specific category

♦ (A query to) sort offers from best
to worst

♦ (Queries to) update, insert or
delete data

2 Award 1 mark for each bullet.
Maximum 2 marks.

Functional requirements must be
extracted from end-user
information.

Award a maximum of 1 mark for
update/insert/delete example.

2b ♦ entity names, in the correct
♦ order
♦ adding the correct number of
♦ instances
♦ adding the correct associations

3 Entities can be written in reverse
order.

Version 2.0 12

Task Expected response
Max
mark

Additional guidance

2c ♦ fields and alias
— firstname, surname, voucherID
— calculation as Amount of

Money Spent on Voucher £
♦ joins and category criteria
♦ wildcard

3 Accept alternatives of escape
room wildcard that produce the
correct output.

Sample query shown below.

SELECT firstname, surname, Voucher.voucherID, (quantityPurchased *
price£) AS [Amount of Money Spent on Voucher £]
FROM Customer, CustomerOrder, Voucher
WHERE Customer.custID = CustomerOrder.custID AND
Voucher.voucherID = CustomerOrder.voucherID and category =
"Adventure" AND voucherName LIKE "*escape room*";

Task Expected response
Max
mark

Additional guidance

2d ♦ sum to find number of vouchers
already purchased

♦ calculation to subtract quantity
purchased from quantity available

♦ correct fields, tables and aliases
♦ joins and criteria

4 Combined query shown below.

SELECT Voucher.voucherID, supplierName, voucherName,
(quantityAvailable - SUM(quantityPurchased)) AS [Still Available]
FROM CustomerOrder, Voucher, Supplier
WHERE CustomerOrder.voucherID = Voucher.voucherID AND
Voucher.supplierCode = Supplier.supplierCode AND
Voucher.voucherID = "V543"
GROUP BY Voucher.voucherID,supplierName, voucherName,
quantityAvailable;

Version 2.0 13

Task Expected response
Max
mark

Additional guidance

2e ♦ change aggregate function to
Count(*)

♦ ORDER by aggregate function
descending

2

2f ♦ expiry date might be in the past
♦ invalid category entered
♦ invalid number of vouchers/price

1 Award 1 mark for any bullet.

Version 2.0 14

Task — web design and development

Task Expected response
Max
mark

Additional guidance

3a ♦ Home with links to History,
Animals, Events pages on level 1

♦ Profile, Donate and Adopt on
level 2 of Animals page

♦ Excursions and Parties level 2 of
Events page

3 Candidates can use alternative
names for level 2 pages, for
example:

3b ♦ edited HTML pages:
— list of hyperlinks
— associated page names

♦ edited colours (CSS):
— hover text colour

(Crimson/#DC143C)
— hover background colour

(White)
— text colour (White)
— background colour

(Crimson/#DC143C)
♦ layout of navigation bar (CSS)

— list style type: none
— float left
— centre-align text
— 8px padding within the links

3

3c ♦ two sections created with:
— white backgrounds
— width 432 pixels
— height 1040 pixels

♦ 10px margin between the two
sections

2 Accept any solution that creates a
10px margin between the two
sections.

Version 2.0 15

Task Expected response
Max
mark

Additional guidance

3d ♦ sections hidden when page first
loads classes

♦ IDs addedclass
♦ ID revealed when an image is

clicked

3 Marks should be awarded from CSS
and HTML code, not the printout of
web page as viewed in a browser.

Candidates must amend the HTML
file for the first two marks.

Candidates can use inline JavaScript
or call a function to display the
hidden sections.

3e ♦ the drop-down list is not set to
required

♦ the drop-down list allows
multiple options to be selected

2

3f ♦ no video included in profile page
♦ comment on fitness for purpose

in relation to JavaScript code

2 This comment should be consistent
with the candidate’s own code for
task 3d.

[END OF MARKING INSTRUCTIONS]

Version 2.0 16

Instructions for candidates
This assessment applies to the assignment for Higher Computing Science.

This assignment has 40 marks out of a total of 120 marks available for the course
assessment.

It assesses the following skills, knowledge and understanding:

♦ applying aspects of computational thinking across a range of contexts
♦ analysing problems within computing science across a range of contemporary contexts
♦ designing, implementing, testing and evaluating digital solutions (including computer

programs) to problems across a range of contemporary contexts
♦ demonstrating skills in computer programming
♦ applying computing science concepts and techniques to create solutions across a range

of contexts

Your teacher or lecturer will let you know if there are any specific conditions for doing this
assessment.

In this assessment, you have to complete two short practical tasks.

You must complete task 1 (software design and development) and either task 2 (database
design and development) or task 3 (web design and development).

You may complete the tasks in any order.

Advice on how to plan your time
You have 6 hours to complete the assignment. Marks are allocated as follows:

♦ Task 1 — software design and development 25 marks (63% of total)

AND EITHER
♦ Task 2 — database design and development 15 marks (37% of total)

OR
♦ Task 3 — web design and development 15 marks (37% of total)

You can use this split as a guide when planning your time for each of the two tasks.

Advice on gathering evidence
As you complete each task, you must gather evidence as instructed.

Your evidence, especially code, must be clear and legible. This is particularly important
when you paste screenshots into a document. You can print code from the software
environment or copy and paste this into other packages such as notepad or Word.

Version 2.0 17

Use the evidence checklist provided to make sure you submit everything necessary at the
end of the assignment. Make sure you include your candidate number on all your evidence.

Evidence may take the form of printouts of code, screenshots, typed answers, handwritten
answers or drawings of diagrams and designs.

You must use a blue or black pen for any handwritten answers.

Advice on assistance
This is an open-book assessment. This means that you can use:

♦ any classroom resource as a form of reference (for example programming manuals,

class notes, and textbooks) — these may be online resources
♦ any files you have previously created throughout the course

The tasks are designed so you can complete them independently, without any support from
your teacher or lecturer. This means that you:

♦ cannot ask how to complete any of the tasks
♦ cannot access any assignment files outside the classroom

Version 2.0 18

Computing Science assessment task: evidence
checklist

You should complete the checklist for task 1 and either task 2 or task 3.

Task 1 — software design and development

Task Evidence Tick

1a Completed task sheet identifying the functional requirements

1b Completed task sheet showing the data flow for the program

1c(i) Printout of your completed program code
Printout of your output, showing athlete(s) with the maximum number of
jumps
Printout of your CSV file containing the entry ID and bib values

1c(ii) Printout of your edited program code
Printout of the display produced by the new sub-program

1d Completed task sheet showing lines of code and value of jumps

1e Completed task sheet evaluating fitness for purpose and maintainability

Task 2 — database design and development

Task Evidence Tick

2a Completed task sheet identifying two functional requirements

2b
Completed entity-occurrence diagram showing the entity names, sample
instances and association between instances

2c
Printout of the SQL statement(s) to find customers who have purchased
vouchers for an escape room from the ‘Adventure’ category
Printout of the output produced

2d
Printout of the SQL statement(s) to find how many vouchers are available
for voucher ID V543
Printout of the output produced

2e Printout of the amended SQL statement to produce the expected output

2f Completed task sheet evaluating one potential problem

Version 2.0 19

Task 3 — web design and development

Task Evidence Tick

3a Completed task sheet showing a design of a multi-level navigation
structure

3b Printout of edited ‘styles.css’ file and ‘home.html’ file

3c
Printout of edited ‘styles.css’ file and ‘animals.html’ file
Printout of ‘Animals’ page as viewed in a browser

3d
Printout of your edited code
Printouts of the ‘Profile’ page as viewed in a browser

3e Completed task sheet describing validation issues with the donation
amount element

3f Completed task sheet evaluating the fitness for purpose of the ‘Profile’
page

Please follow the steps below before handing your evidence to your teacher or lecturer:

♦ Check you have completed all parts of tasks 1, and either task 2 or task 3.
♦ Label any printouts and screenshots with the task number (for example 1a, 2a).
♦ Clearly display your candidate number on each printout.

Version 2.0 20

Task 1: software design and development
Problem description
Thirty athletes have qualified for the final of the Scottish Jumping Jacks competition.
Qualifying events were held at four locations, where each athlete performed as many
jumping jacks as they could in 1 minute.

The following details are stored in a CSV file, for each athlete who qualified for the final:

♦ Entry ID
♦ Qualifying location
♦ Forename
♦ Surname
♦ Number of jumping jacks completed

Purpose
A program is required to read each of the athlete’s data from the existing CSV file. A bib
value for each of the finalists will be generated and stored in a new CSV file along with the
entry ID. The program will also display the full name of the athlete(s) who completed the
highest number of jumping jacks.

An example of the bib value generated for the athlete Daniel Currie, who qualified at the
Inverness event, is shown below. Note that 73 is the ASCII value of ‘I’, the first character
of Inverness.

Assumptions

♦ The CSV file has data for thirty athletes, is formatted correctly and is error-free.
♦ Each line of the CSV file stores the entry ID, qualifying location, forename, surname

and number of jumping jacks completed at qualification, as shown below:

f01,Motherwell,Ellie,McAninch,85
f02,Inverness,Ayat,Whyte,83
f03,Kirkcaldy,Simra,Zamora,42
f04,Motherwell,Dai,Nguyen,37
f05,Coatbridge,Max,Hughes,113
…

Version 2.0 21

Task 1: software design and development (part A)

1a Using the problem description, identify the functional requirements of the program.

(2 marks)

Input(s)

Process(es)

Output(s)

♦ Store entry ID and bib values in file

♦ Full name of athlete(s)

Candidate number____________________

Version 2.0 22

1b Each athlete at the national final will be identified by their bib value, as shown previously.

A top-level design of the main steps of the program is shown below. Data read from the CSV file is stored in parallel arrays in the
program.

 Complete the diagram to show the data flow for the program. Your completed diagram should include:

♦ the required data (arrays and variables)
♦ arrows to indicate the flow of the data

(3 marks)
♦ Check your answers carefully, as you cannot return to part A after you hand it in.
♦ When you are ready, hand part A to your teacher or lecturer and collect part B.

Candidate number__

Version 2.0 23

Task 1: software design and development (part B)
The program design is shown below.

Program top-level design (pseudocode)

1. Get qualifying athletes’ data

OUT: entryID(), location(), forename(),
surname(), jumps()

2. Generate bib values and write to new file with
entry IDs

IN: entryID(), location(), forename(), surname()

3. Find the highest number of jumping jacks

completed
IN: jumps(),
OUT:maxJumps

4. Display the full name of the athlete(s) who

completed the highest number of jumping jacks
IN: maxJumps,forename(), surname(), jumps()

Refinements

1.1 Open athletes.csv file
1.2 Loop for thirty athletes
1.3 Store entryID, location, forename, surname, jumps for athlete in parallel arrays
1.4 End loop
1.5 Close athletes.csv file

2.1 Create bibValues.csv file
2.2 Loop for thirty athletes
2.3 Set bibValue to first letter of forename & full surname & ASCII value of first letter of location
2.4 Write entryID and bibValue to file
2.5 End loop
2.6 Close bibValues.csv file

3.1 Set maximum jumps to the value stored in the first index of the jumps array
3.2 Start loop from second index to end of array
3.3 If the current number of jumps is more than maximum jumps then
3.4 Set maximum jumps to current number of jumps
3.5 End if
3.6 End loop
3.7 Return maximum jumps

4.1 Loop for thirty athletes
4.2 If current number of jumps equals maximum jumps then
4.3 Display forename and surname
4.4 End if
4.5 End loop

Version 2.0 24

1c(i) Using the problem description and design, implement the program in a language of
your choice. Your program should:

♦ be maintainable and modular
♦ use a function to find and return the maximum number of jumps
♦ follow the design and the refinements provided

(13 marks)

Print evidence of:

♦ your completed program code
♦ your output, showing athlete(s) with the maximum number of jumps
♦ your CSV file containing the entry ID and bib values

1c(ii) The location with the fewest number of athletes qualifying will host the next final.

A new sub-program is to be implemented to find the total number of athletes from
each location in the final. An example of the output is shown below.

Coatbridge has 6 finalists
Inverness has 8 finalists
Kirkcaldy has 7 finalists
Motherwell has 9 finalists

Implement the additional sub-program.

(2 marks)

Print evidence of:

♦ your edited program code
♦ the display produced by the new sub-program

Version 2.0 25

1d The function to find the maximum number of jumps is tested using the following
test data.

 jumps = [100,87,102,108,95]

A watchpoint is placed on the variable storing the maximum number of jumps.

 Complete the table below by entering:

♦ the lines of code from your program where the watchpoint is triggered
♦ the value of the maximum number of jumps variable when the watchpoint is

triggered
(3 marks)

Line of code from your program
Value of the maximum
number of jumps

1e With reference to your program code, evaluate:

(2 marks)

The fitness for purpose of the function to generate bib values

The maintainability of your program, referring to modularity

Candidate number____________________

Version 2.0 26

Task 2: database design and development (part A)
MyTreat is a company that is developing a database of voucher offers from a range of
suppliers.

Suppliers will offer vouchers in the following categories: Food, Beauty, Adventure and
Family. A supplier may have more than one active offer in the database at a time and can
sell many vouchers for each offer.

Customers registered with MyTreat will be able to purchase multiple voucher offers.
Vouchers will be sent to the customer’s email address.

Vouchers will be promoted on the MyTreat website. An example is shown below.

The database development team at MyTreat asked the staff how they would like to use
the database. Some of the comments are shown below.

Version 2.0 27

2a Using the information gathered from the staff comments, create two functional
requirements of the database.

(2 marks)

Functional requirement 1

Functional requirement 2

Candidate number____________________

Version 2.0 28

2b The following tables have sample data showing:

♦ vouchers included in each customer order
♦ customers who made orders
♦ supplier of each voucher

Voucher CustomerOrder
Voucher2 Order1
Voucher4 Order2
Voucher5 Order3
Voucher4 Order4
Voucher1 Order5
Voucher3 Order6

Customer CustomerOrder
Customer1 Order1
Customer3 Order2
Customer1 Order3
Customer2 Order4
Customer1 Order5
Customer2 Order6

Voucher Supplier
Voucher1 Supplier3
Voucher2 Supplier1
Voucher3 Supplier3
Voucher4 Supplier2
Voucher5 Supplier2

Using the information from the sample data, complete the blank entity-occurrence
diagram on the following page by:

♦ naming the entities
♦ completing the sample instances provided for each entity
♦ showing the association between those instances

(3 marks)

Version 2.0 29

Entity-occurrence diagram

♦ Check your answers carefully, as you cannot return part A after you hand it in.
♦ When you are ready, hand part A to your teacher or lecturer and collect part B.

Candidate number______________________________________

Version 2.0 30

Task 2: database design and development (part B)
The entity-relationship diagram for the MyTreat database is shown below.

The design is then implemented.

Your teacher or lecturer will provide you with a completed and populated database file.

2c MyTreat would like to know how much money is being spent on the different types of

escape room vouchers.

A query is required to find customers who have purchased vouchers for an escape
room from the ‘Adventure’ category. The output should include the amount of money
spent by the customer on the voucher.

Implement the SQL statement to produce the following output.

(3 marks)

firstName surname voucherID Amount of Money Spent on Voucher £
Neville Wilson V368 32
Bailey Donald V369 80
Aziah Moqsud V890 172
Chukka Radebe V890 86
Becky Bennett V890 344

Version 2.0 31

2d MyTreat would like to know how many vouchers are still available for voucher
ID V543.

 Implement the SQL statement(s) to produce the following output.

 (4 marks)

For 2c and 2d print evidence of:

♦ the implemented SQL statement(s)
♦ the output produced

2e A query is designed to find the number of customers who bought a voucher from the
‘Family’ category that costs less than £15.00.

The expected output from the query is shown below.

supplierName voucherName price£ Number of Customers
Cuddle World Teady Bears’ Picnic 10.00 4
WonderPlay Trampoline 4.00 3
WonderPlay Softplay and lunch for 2 12.00 2
Family Fun Club Softplay and cake 6.00 1

The SQL statement shown below was implemented.

SELECT Supplier.supplierName, Voucher.voucherName,

Voucher.price£, Sum(Voucher.price£) AS [Number of Customers]

FROM CustomerOrder, Supplier, Voucher

WHERE CustomerOrder.voucherID=Voucher.voucherID AND

Supplier.supplierCode=Voucher.supplierCode AND

Voucher.price£<15 AND Voucher.category="Family"

GROUP BY Supplier.supplierName, Voucher.voucherName,

Voucher.price£;

voucherID supplierName voucherName Still Available
V543 SkatePark Skate park and lunch 198

Version 2.0 32

The query to test the above SQL statement is provided with the database.

Test the SQL statement by running the query.

Amend the query to produce the expected output as shown above.

(2 marks)

Print evidence of the amended SQL statement.

2f The Voucher table has no validation.

 Evaluate one potential problem that may occur when adding new data to this table.

 (1 mark)

Candidate number____________________

Version 2.0 33

Task 3: web design and development
Springfield Zoo wants to create a website to provide information about the zoo and to
attract new visitors.

They commissioned a web developer to create the website.

After discussions with users, the following end-user requirements and functional
requirements were identified.

End-user requirements
Users want to:

♦ see pictures of the animals in the zoo
♦ watch real-time footage of animals
♦ read a daily animal profile
♦ apply to adopt an animal
♦ donate money to the zoo
♦ find information on educational excursions and booking birthday parties
♦ read about the history of the zoo
♦ find contact information and location details

Functional requirements
The ‘Home’, ‘History’, ‘Animals’ and ‘Events’ pages should contain:
— text displaying relevant information to the user
— appropriate images
— contact information and location details

The ‘Profile’ page should:
— display an introductory paragraph and a fun fact about the daily animal, when an

image button is selected
— have a video showing the animals in real-time

The ‘Donate’ page should:
— contain a form that allows users to submit a donation to the zoo

The ‘Adopt’ page should:
— provide users with information on how to adopt a tiger
— allow users to submit their email address to request an information pack

The ‘Parties’ page should:
— contain information about booking a birthday party at the zoo

The ‘Excursions’ page should:
— provide information on how to book educational excursions

Version 2.0 34

Task 3: web design and development (part A)
3a The website will have a multi-level navigation structure. This will have a ‘Home’

page with a horizontal navigation bar that links three main web pages: ‘History’,
‘Animals’ and ‘Events’.

 The ‘Animals’ page will have links to three sub-pages: Profile, Donate and Adopt.

 The ‘Events’ page will have links to two sub-pages: Parties and Excursions.

Design a multi-level navigation structure for this website, clearly showing the
navigation bar and associated pages.

 (3 marks)

♦ Check your design carefully. You cannot return to part A after you hand it in.
♦ When you are ready, hand part A to your teacher or lecturer and collect part B.

Candidate number____________________

Version 2.0 35

Task 3: web design and development (part B)
Below is the navigation structure for the Springfield Zoo website.

Level 1

Level 2

Below is a wireframe design for the home page of the website.

Version 2.0 36

Your teacher or lecturer will provide you with the incomplete website for Springfield Zoo.

Open the ‘Home’ page in a browser. Examine the home page and each of the other pages
on the website.

3b Locate the ‘Navigation Bar’ section in the ‘styles.css’ file.

Edit the CSS and HTML files to match the wireframe. Implement the navigation bar as
shown below to appear on the ‘Home’, ‘History’, ‘Animal’ and ‘Events’ pages of the
website.

Background colour: Crimson / #DC143C
Text colour: White / #FFFFFF
Hover background colour: White / #FFFFFF
Hover text colour: Crimson / #DC143C

 (3 marks)

Print evidence of:

♦ the edited ‘styles.css’ file showing the CSS for navigation bar
♦ the edited ‘home.html’ file

Version 2.0 37

3c The wireframe design for the ‘Animals’ page is shown below.

 Open the ‘Animals’ page in a browser.

The long list of animals has not been divided into two sections displayed side-by-side,
as shown in the wireframe above.

Edit the ‘animals.html’ file and ‘styles.css’ file in a suitable editor to implement the
wireframe.

 (2 marks)

Print evidence of:

♦ the edited ‘styles.css’ file and ‘animals.html’ file
♦ the ‘Animals’ page as viewed in a browser

Version 2.0 38

3d Open the ‘profile.html’ in a browser.

When the page first loads, it will display an image of an animal with introductory
text. There will also be three ‘Fun fact’ buttons and three sections, each with the
text for a fun fact.

Edit the code to:

♦ hide all of the sections of text below the buttons when the page first loads
♦ show the first fun fact section when the ‘Fun fact 1’ button is selected
♦ show the second fun fact section when the ‘Fun fact 2’ button is selected
♦ show the third fun fact section when the ‘Fun fact 3’ button is selected
♦ ensure that only one of the fun fact sections is visible at any time

 (3 marks)

Print evidence of:

♦ your edited code
♦ the ‘Profile’ page as viewed in a browser when:

— first loaded
— the ‘Fun fact 1’ button is selected
— the ‘Fun fact 2’ button is selected
— the ‘Fun fact 3’ button is selected

Version 2.0 39

3e The ‘Donate’ page contains a form that users can fill in if they want to donate money
to the zoo.

Open the ‘donate.html’ page in a suitable editor and examine the form code
carefully.

During usability testing, validation issues were identified with the donation amount
element.

 Describe the issues with the donation amount element.
(2 marks)

3f Evaluate the fitness for purpose of the ‘Profile’ page.

(2 marks)

Candidate number____________________

Version 2.0 40

Copyright acknowledgements

Electronic files:

♦ Yumeee/Shutterstock.com
♦ Natallia85/Shutterstock.com
♦ Ruth Black/Shutterstock.com
♦ veronchick_84/Shutterstock.com
♦ Trong Nguyen/Shutterstock.com
♦ Erwin Niemand/Shutterstock.com
♦ Ricardo Reitmeyer/Shutterstock.com
♦ Pressmaster/Shutterstock.com
♦ Rosie Parsons/Shutterstock.com
♦ Kotomiti Okuma/Shutterstock.com
♦ Alan Jeffery/Shutterstock.com

Version 2.0 41

Administrative information

Published: September 2024 (version 2.0)

History of changes

Version Description of change Date

2.0 Changes to prepare for scanning candidate evidence for marking:

♦ Instructions for teachers and lecturers (Evidence) updated.
♦ Instructions for candidates (Advice on gathering evidence)

updated.
♦ Requirement for ‘candidate name’ on evidence removed

throughout.

Format changes to improve accessibility of data dictionaries,
specific marking instructions, and evidence checklist tables.

September
2024

Security and confidentiality
This document can be used by SQA approved centres for the assessment of National
Courses and not for any other purpose.

This document may only be downloaded from SQA’s designated secure website by
authorised personnel.

© Scottish Qualifications Authority 2023, 2024

	Introduction
	Instructions for teachers and lecturers
	Time
	Resources
	Reasonable assistance
	Evidence
	Alteration or adaptation
	Submission
	Specific instructions for teachers and lecturers: specimen assignment
	Specific instructions for database setup
	MyTreat database

	Marking instructions
	General marking principles
	Specific marking instructions
	Task 1 — software design and development
	Task 2 — database design and development
	Task — web design and development

	Instructions for candidates
	Advice on how to plan your time
	Advice on gathering evidence
	Advice on assistance
	Computing Science assessment task: evidence checklist
	Task 1 — software design and development
	Task 2 — database design and development
	Task 3 — web design and development

	Task 1: software design and development
	Problem description
	Purpose
	Assumptions

	Task 1: software design and development (part A)
	Task 1: software design and development (part B)
	Task 2: database design and development (part A)
	Entity-occurrence diagram

	Task 2: database design and development (part B)
	Task 3: web design and development
	End-user requirements
	Functional requirements

	Task 3: web design and development (part A)
	Task 3: web design and development (part B)
	Copyright acknowledgements
	Electronic files:

	Administrative information
	History of changes
	Security and confidentiality

