

National 5 Computing Science

Course code: C816 75

Course assessment code: X816 75

SCQF: level 5 (24 SCQF credit points)

Valid from: session 2023–24

The course specification provides detailed information about the course and course

assessment to ensure consistent and transparent assessment year on year. It describes

the structure of the course and the course assessment in terms of the skills, knowledge

and understanding that are assessed.

This document is for teachers and lecturers and contains all the mandatory information you

need to deliver the course.

This edition: May 2023 (version 3.0)

© Scottish Qualifications Authority 2017, 2018, 2021, 2023

Contents

Course overview 1

Course rationale 2

Purpose and aims 2

Who is this course for? 2

Course content 3

Skills, knowledge and understanding 3

Skills for learning, skills for life and skills for work 11

Course assessment 12

Course assessment structure: question paper 12

Course assessment structure: assignment 15

Grading 17

Equality and inclusion 18

Further information 19

Appendix: course support notes 20

Introduction 20

Developing skills, knowledge and understanding 20

Approaches to learning and teaching 20

Preparing for course assessment 27

Developing skills for learning, skills for life and skills for work 32

Resources to support the National 5 Computing Science course 33

Appendix 1: design techniques (SDD) 42

Appendix 2: user-interface design (SDD) 50

Appendix 3: standard algorithms (SDD) 51

Appendix 4: efficient use of coding constructs (SDD) 53

Appendix 5: design: entity-relationship diagrams (DDD) 57

Appendix 6: design — data dictionary (DDD) 58

Appendix 7: design of solution to database queries (DDD) 59

Appendix 8: testing and evaluation (DDD) 61

Appendix 9: website structure (WDD) 62

Appendix 10: interface design (WDD) 63

Appendix 11: low-fidelity prototyping (WDD) 66

Appendix 12: SQL (DDD) 70

Appendix 13: analysis (WDD) 75

Appendix 14: analysis (DDD) 77

Version 3.0 1

Course overview

The course consists of 24 SCQF credit points which includes time for preparation for course

assessment. The notional length of time for a candidate to complete the course is 160 hours.

The course assessment has two components.

Component Marks Duration

Question paper 80 1 hour and 30 minutes

Assignment 40 See course assessment section

Recommended entry Progression

Entry to this course is at the discretion of

the centre.

Candidates should have achieved the fourth

curriculum level or the National 4

Computing Science course or equivalent

qualifications and/or experience prior to

starting this course.

 other qualifications in computing science

or related areas

 further study, employment and/or

training

Conditions of award

The grade awarded is based on the total marks achieved across all course assessment

components.

Achievement of this course gives automatic certification of the following Core Skill:

 Information and Communication Technology at SCQF level 5

Version 3.0 2

Course rationale
National Courses reflect Curriculum for Excellence values, purposes and principles. They

offer flexibility, provide more time for learning, more focus on skills and applying learning,

and scope for personalisation and choice.

Every course provides opportunities for candidates to develop breadth, challenge and

application. The focus and balance of assessment is tailored to each subject area.

The National 5 Computing Science course encourages candidates to become successful,

responsible and creative in using technologies, and to develop a range of qualities including

flexibility, perseverance, confidence, and enterprise.

At this level, the course covers a common core of concepts which underpin the study of

computing science and explores the role and impact of contemporary computing

technologies. It also includes a range of transferable skills, which opens up a wide range of

career and study opportunities.

Purpose and aims
The course helps candidates to understand computational processes and thinking. It covers

a number of unifying themes that are used to explore a variety of specialist areas, through

practical and investigative tasks.

The course highlights how computing professionals are problem-solvers and designers, and

the far-reaching impact of information technology on our environment and society.

It enables candidates to:

 apply computational-thinking skills across a range of contemporary contexts

 apply knowledge and understanding of key concepts and processes in computing

science

 apply skills and knowledge in analysis, design, implementation, testing and evaluation to

a range of digital solutions

 communicate computing concepts and explain computational behaviour clearly and

concisely using appropriate terminology

 develop an understanding of the role and impact of computing science in changing and

influencing our environment and society

Who is this course for?
This course is designed for learners who are considering further study or a career in

computing science and related disciplines. It provides opportunities to enhance skills in

planning and organising, working independently and in teams, critical thinking and decision

making, research, communication, and self- and peer-evaluation, in a range of contexts.

Version 3.0 3

Course content

The course has four areas of study:

Software design and development

Candidates develop knowledge, understanding and practical problem-solving skills in

software design and development, through a range of practical and investigative tasks using

appropriate software development environments. This develops their programming and

computational-thinking skills by implementing practical solutions and explaining how these

programs work. Tasks involve some complex features (in both familiar and new contexts),

that require some interpretation by candidates. They are expected to analyse problems, and

design, implement, test and evaluate their solutions.

Computer systems

Candidates develop an understanding of how data and instructions are stored in binary form

and basic computer architecture. They gain an awareness of the environmental impact of the

energy use of computing systems and security precautions that can be taken to protect

computer systems.

Database design and development

Candidates develop knowledge, understanding and practical problem-solving skills in

database design and development, through a range of practical and investigative tasks. This

allows candidates to apply computational-thinking skills to analyse, design, implement, test,

and evaluate practical solutions, using a range of development tools such as SQL. Tasks

involve some complex features (in both familiar and new contexts), that require some

interpretation by candidates.

Web design and development

Candidates develop knowledge, understanding and practical problem-solving skills in web

design and development, through a range of practical and investigative tasks. This allows

candidates to apply computational-thinking skills to analyse, design, implement, test and

evaluate practical solutions to web-based problems, using a range of development tools such

as HTML, CSS and Javascript. Tasks involve some complex features (in both familiar and

new contexts), that require some interpretation by candidates.

Skills, knowledge and understanding

Skills, knowledge and understanding for the course

The following provides a broad overview of the subject skills, knowledge and understanding

developed in the course:

 applying aspects of computational thinking across a range of contexts

 analysing problems within computing science across a range of contemporary contexts

Version 3.0 4

 designing, implementing, testing and evaluating digital solutions (including computer

programs) to problems across a range of contemporary contexts

 developing skills in computer programming and the ability to communicate how a

program works, by being able to read and interpret code

 communicating understanding of key concepts related to computing science, clearly and

concisely, using appropriate terminology

 understanding of legal implications and environmental impact of contemporary

technologies

 applying computing science concepts and techniques to create solutions across a range

of contexts

Skills, knowledge and understanding for the course assessment

The following provides details of skills, knowledge and understanding sampled in the course

assessment:

Software design and development

Development

methodologies

Describe and implement the phases of an iterative development

process: analysis, design, implementation, testing, documentation,

and evaluation, within general programming problem-solving.

Analysis Identify the purpose and functional requirements of a problem that

relates to the design and implementation at this level, in terms of:

 inputs

 processes

 outputs

Design Identify the data types and structures required for a problem that

relates to the implementation at this level, as listed below.

Describe, identify, and be able to read and understand:

 structure diagrams

 flowcharts

 pseudocode

Exemplify and implement one of the above design techniques to

design efficient solutions to a problem.

Describe, exemplify, and implement user-interface design, in terms

of input and output, using a wireframe.

Implementation

(data types and

structures)

Describe, exemplify, and implement appropriately the following data
types and structures:

 character

 string

Version 3.0 5

Software design and development

 numeric (integer and real)

 Boolean

 1-D arrays

Implementation

(computational

constructs)

Describe, exemplify, and implement the appropriate constructs in a
high-level (textual) language:

 expressions to assign values

 expressions to return values using arithmetic operations

(addition, subtraction, multiplication, division, and

exponentiation)

 expressions to concatenate strings

 selection constructs using simple conditional statements with <,

>, ≤, ≥, =, ≠ operators

 selection constructs using complex conditional statements

 logical operators (AND, OR, NOT)

 iteration and repetition using fixed and conditional loops

 predefined functions (with parameters):

— random

— round

— length

Read and explain code that makes use of the above constructs.

Implementation

(algorithm

specification)

Describe, exemplify, and implement standard algorithms:

 input validation

 running total within loop

 traversing a 1-D array

Testing Describe, identify, exemplify, and implement normal, extreme, and
exceptional test data for a specific problem, using a test table.

Describe and identify syntax, execution, and logic errors.

Evaluation Describe, identify, and exemplify the evaluation of a solution in
terms of:

 fitness for purpose

 efficient use of coding constructs

 robustness

 readability:

— internal commentary

— meaningful identifiers

— indentation

— white space

Version 3.0 6

Computer systems

Data representation Describe and exemplify the use of binary to represent positive
integers.

Describe floating point representation of positive real numbers using
the terms mantissa and exponent.

Convert from binary to denary and vice-versa.

Describe extended ASCII code (8-bit) used to represent characters.

Describe the vector graphics method of graphic representation for
common objects:

 rectangle

 ellipse

 line

 polygon

with attributes:

 co-ordinates

 fill colour

 line colour

Describe the bit-mapped method of graphics representation.

Computer structure Describe the purpose of the basic computer architecture
components and how they are linked together:

 processor (registers, ALU, control unit)

 memory locations with unique addresses

 buses (data and address)

Explain the need for interpreters and compilers to translate high-

level program code to binary (machine code instructions).

Environmental

impact

Describe the energy use of computer systems, the implications on

the environment and how these could be reduced through:

 settings on monitors

 power down settings

 leaving computers on standby

Security

precautions

Describe the role of firewalls.

Describe the use made of encryption in electronic communications.

Version 3.0 7

Database design and development

Analysis Identify the end-user and functional requirements of a database

problem that relates to the implementation at this level.

Design Describe and identify the implications for individuals and businesses

of the UK General Data Protection Regulation (UK GDPR) that data

must be:

 processed lawfully, fairly and in a transparent manner in relation

to individuals

 used for the declared purpose only

 limited to the data needed for the declared purpose

 accurate

 not kept for longer than necessary

 held securely

Describe and exemplify entity-relationship diagrams with two
entities indicating:

 entity name

 attributes

 relationship (one-to-many)

Describe and exemplify a data dictionary:

 entity name

 attribute name

 primary and foreign key

 attribute type:

— text

— number

— date

— time

— Boolean

 attribute size

 validation:

— presence check

— restricted choice

— field length

— range

Exemplify a design of a solution to the query:

 multiple tables

Version 3.0 8

Database design and development

 fields

 search criteria

 sort order

Implementation Implement relational databases with two linked tables, to match the
design with referential integrity.

Describe, exemplify and implement SQL operations for pre-

populated relational databases, with a maximum of two linked

tables:

 select:

— from

— where:

o AND, OR, <, >, =

o order by with a maximum of two fields

 insert

 update

 delete

 equi-join between tables

Read and explain code that makes use of the above SQL.

Testing Describe and exemplify testing:

 SQL operations work correctly at this level

Evaluation Evaluate solution in terms of:

 fitness for purpose

 accuracy of output

Version 3.0 9

Web design and development

Analysis Identify the end-user and functional requirements of a website

problem that relates to the design and implementation at this level.

Design Describe and exemplify the website structure with a home page, a
maximum of four linked multimedia pages, and any necessary
external links.

Describe, exemplify and implement, taking into account end-user
requirements, effective user-interface design (visual layout and
readability) using wire-framing:

 navigational links

 consistency across multiple pages

 relative vertical positioning of the media displayed

 file formats of the media (text, graphics, video, and audio)

Describe and identify the implications for individuals and businesses
of the Copyright, Designs and Patents Act 1988 relating to:

 web content (text, graphics, video, and audio)

Compare a range of standard file formats:

 audio standard file formats WAV and MP3 in terms of

compression, quality, and file size

 bit-mapped graphic standard file formats JPEG, GIF, and PNG

in terms of compression, animation, transparency, and colour

depth

Describe the factors affecting file size and quality, relating to
resolution, colour depth, and sampling rate.

Describe the need for compression.

Describe, exemplify and implement prototyping (low-fidelity) from

wireframe design at this level.

Implementation

(CSS)

Describe, exemplify and implement internal and external Cascading
Style Sheets (CSS):

 selectors, classes and IDs

 properties

— text:

o font (family, size)

o color

o alignment

— background colour

Read and explain code that makes use of the above CSS.

Version 3.0 10

Web design and development

Implementation

(HTML)

Describe, exemplify and implement HTML code:

 HTML

 head

 title

 body

 heading

 paragraph

 DIV

 link

 anchor

 IMG

 audio

 video

 lists — ol, ul and li

Describe and implement hyperlinks (internal and external), relative

and absolute addressing.

Read and explain code that makes use of the above HTML.

Implementation

(JavaScript)

Describe and identify JavaScript coding related to mouse events:

 onmouseover

 onmouseout

Testing Describe and exemplify testing:

 matches user-interface design

 links and navigation work correctly

 media (such as text, graphics, and video) display correctly

 consistency

Evaluation Evaluate solution in terms of:

 fitness for purpose

Skills, knowledge and understanding included in the course are appropriate to the SCQF

level of the course. The SCQF level descriptors give further information on characteristics

and expected performance at each SCQF level (www.scqf.org.uk).

http://www.scqf.org.uk/

Version 3.0 11

Skills for learning, skills for life and skills for work
This course helps candidates to develop broad, generic skills. These skills are based on

SQA’s Skills Framework: Skills for Learning, Skills for Life and Skills for Work and draw from

the following main skills areas:

2 Numeracy

2.1 Number processes
2.3 Information handling

4 Employability, enterprise and citizenship

4.2 Information and communication technology (ICT)

5 Thinking skills

5.3 Applying
5.4 Analysing and evaluating

These skills must be built into the course where there are appropriate opportunities and the

level should be appropriate to the level of the course.

Further information on building in skills for learning, skills for life and skills for work is given in

the course support notes.

http://www.sqa.org.uk/sqa/63101.html

Version 3.0 12

Course assessment

Course assessment is based on the information provided in this document.

The course assessment meets the key purposes and aims of the course by addressing:

 breadth — drawing on knowledge and skills from across the course

 challenge — requiring greater depth or extension of knowledge and/or skills

 application — requiring application of knowledge and/or skills in practical or theoretical

contexts as appropriate

This enables candidates to apply:

 breadth of knowledge from across the course and depth of understanding, to answer

appropriately challenging questions in computing science contexts

 knowledge and skills developed through the course, to solve appropriately challenging
computing science problems in both practical and theoretical contexts

Course assessment structure: question paper

Question paper 80 marks

The question paper gives candidates an opportunity to demonstrate the following skills,

knowledge and understanding:

 applying aspects of computational thinking, across a range of contexts

 analysing problems within computing science, across a range of contemporary contexts

 designing, implementing, testing and evaluating digital solutions (including computer

programs) to problems, across a range of contemporary contexts

 communicating how a program works

 communicating key concepts related to computing science clearly and concisely, using

appropriate terminology

 understanding the legal implications and environmental impact of contemporary

technologies

 applying computing science concepts and techniques to create solutions, across a range

of contexts

The question paper has 80 marks, which is 67% of the overall marks for the course

assessment (120 marks).

Version 3.0 13

The question paper has three sections. Section 1 is mandatory, and candidates have the

option to complete either section 2 or section 3.

 Section 1: Software design and development, and Computer systems — 55 marks

 Section 2: Database design and development — 25 marks

 Section 3: Web design and development — 25 marks

Each section begins with a number of short, stand-alone questions. These are predominantly

‘C’ mark questions, presented in a clear and concise way, in a simple and/or familiar context.

This is followed by more challenging, context-based questions with multiple parts. These

require a range of responses including restricted and extended response, designing solutions

and writing code, and feature both ‘C’ mark and ‘A’ mark questions. Some questions are

designed to be more challenging and will require candidates to integrate skills, knowledge

and understanding, provide detailed descriptions or explanations, and/or analyse, compare,

and evaluate.

The questions will:

 assess application of understanding, with very few questions requiring direct recall of

knowledge

 sample across the course in a balanced way

 consist of questions set in meaningful contexts, that require candidates to provide some

descriptions and explanations

Note: see the 'Preparing for course assessment' section on p27 in the ‘Course support notes’

for the full range of marks against each area of content and skills.

SQA’s standardised reference language

Questions assessing understanding and application of programming skills are expressed

using SQA’s standardised reference language. Further information can be found in the

document ‘Reference language for Computing Science question papers’ which can be

downloaded from the National 5 Computing Science subject page on SQA’s website.

Where candidates are required to answer by writing code, answers may be expressed using

any programming language. Candidates are not expected to write code in SQA’s

standardised reference language. Marks are awarded for demonstrating understanding, not

for the correct use of syntax.

Setting, conducting and marking the question paper

The question paper is set and marked by SQA.

It is conducted in centres under conditions specified for external examinations by SQA.

Candidates complete the paper in 1 hour and 30 minutes.

Version 3.0 14

Specimen question papers for National 5 courses are published on SQA’s website. These

illustrate the standard, structure and requirements of the question papers candidates sit. The

specimen papers also include marking instructions.

Version 3.0 15

Course assessment structure: assignment

Assignment 40 marks

The assignment gives candidates an opportunity to demonstrate the following skills,

knowledge and understanding:

 applying aspects of computational thinking across a range of contexts

 analysing problems within computing science across a range of contemporary contexts

 designing, implementing, testing and evaluating digital solutions (including computer

programs) to problems across a range of contemporary contexts

 demonstrating skills in computer programming

 applying computing science concepts and techniques to create solutions across a range

of contexts

The assignment has 40 marks, which is 33% of the overall marks for the course assessment

(120 marks).

The assignment has three tasks. Task 1 is mandatory, and candidates have the option to

complete either task 2 or task 3.

 Task 1: Software design and development — 25 marks

 Task 2: Database design and development — 15 marks

 Task 3: Web design and development — 15 marks

A proportion of marks are available for the more challenging aspects of each task, where

candidates are required to demonstrate problem-solving skills.

Note: see the 'Preparing for course assessment' section on p27 in the ‘Course support notes’

for the full range of marks against each area of content and skills.

Setting, conducting and marking the assignment

The assignment is:

 set by SQA, on an annual basis

 conducted under a high degree of supervision and control

Evidence is submitted to SQA for external marking and all marking is quality assured by

SQA.

Specimen assessment tasks for National 5 courses are published on SQA’s website. These

illustrate the standard, structure and requirements of the assessment tasks candidates

complete. The specimen assessment tasks also include marking instructions.

Version 3.0 16

Assessment conditions

Time

The assignment must be carried out within 6 hours, starting at an appropriate point in the

course and once all content has been delivered. It is not anticipated that this is a continuous

6-hour session but conducted over several shorter sessions.

Supervision, control and authentication

The assignment is conducted under open-book conditions, but supervised to ensure that the

work presented is the candidate’s own work.

At the end of each session, and upon completion of the assignment, the teacher must ensure

that candidate evidence is stored securely.

Resources

Each candidate must have access to a computer system with a high-level (textual)

programming language and software that can create, edit and run SQL, HTML and CSS.

The assignment is conducted under open-book conditions, which means candidates are

permitted to access resources such as programming manuals, class notes, textbooks and

programs they have written throughout the course.

Reasonable assistance

The assignment consists of three independent tasks. They are designed in a way that does

not require teachers to provide support to candidates, other than to ensure that they have

access to the necessary resources within the centre.

Once the assignment has been completed, it must not be returned to the candidate for

further work to improve their mark.

Evidence to be gathered

All candidate evidence (whether created manually or electronically) must be submitted to

SQA in a paper-based format. This includes hard copies of program listings, screenshots or

similar, as appropriate.

Volume

There is no word count.

Version 3.0 17

Grading
A candidate’s overall grade is determined by their performance across the course

assessment. The course assessment is graded A–D on the basis of the total mark for all

course assessment components.

Grade description for C

For the award of grade C, candidates will typically have demonstrated successful

performance in relation to the skills, knowledge and understanding for the course.

Grade description for A

For the award of grade A, candidates will typically have demonstrated a consistently high

level of performance in relation to the skills, knowledge and understanding for the course.

Version 3.0 18

Equality and inclusion

This course is designed to be as fair and as accessible as possible with no unnecessary

barriers to learning or assessment.

For guidance on assessment arrangements for disabled candidates and/or those with

additional support needs, please follow the link to the assessment arrangements web page:

www.sqa.org.uk/assessmentarrangements.

http://www.sqa.org.uk/assessmentarrangements

Version 3.0 19

Further information

The following reference documents provide useful information and background.

 National 5 Computing Science subject page

 Assessment arrangements web page

 Building the Curriculum 3–5

 Design Principles for National Courses

 SCQF Framework and SCQF level descriptors

 SCQF Handbook

 SQA Skills Framework: Skills for Learning, Skills for Life and Skills for Work

 Educational Research Reports

 SQA e-assessment web page

http://www.sqa.org.uk/sqa/56923.html
http://www.sqa.org.uk/assessmentarrangements
https://education.gov.scot/education-scotland/scottish-education-system/policy-for-scottish-education/policy-drivers/cfe-building-from-the-statement-appendix-incl-btc1-5/building-the-curriculum/
http://www.sqa.org.uk/sqa/68409.html
http://scqf.org.uk/the-framework/scqf-levels/
http://scqf.org.uk/media/1125/scqf_handbook_web_final_2015.pdf
http://scqf.org.uk/media/1125/scqf_handbook_web_final_2015.pdf
http://www.sqa.org.uk/sqa/63101.html
http://www.sqa.org.uk/sqa/35847.958.html
http://www.sqa.org.uk/sqa/68750.html

Version 3.0 20

Appendix: course support notes

Introduction
These support notes are not mandatory. They provide advice and guidance to teachers and

lecturers on approaches to delivering the course. They should be read in conjunction with

this course specification and the specimen question paper and/or coursework.

Developing skills, knowledge and understanding
This section provides further advice and guidance about skills, knowledge and understanding

that could be included in the course. Teachers and lecturers should refer to this course

specification for the skills, knowledge and understanding for the course assessment. Course

planners have considerable flexibility to select coherent contexts which will stimulate and

challenge their candidates, offering both breadth and depth.

The ‘approaches to learning and teaching’ section provides suggested experiences and

activities that teachers and lecturers can build into their delivery, to develop the skills,

knowledge and understanding of the course.

Approaches to learning and teaching
Computing Science, like all National Courses, has been developed to reflect Curriculum for

Excellence values, purposes and principles.

The approach to learning and teaching developed by individual centres should reflect these

principles. Candidates should be encouraged to participate fully in active learning and

practical activities by working together, talking, listening, reading or reflecting on a topic,

while the teacher or lecturer acts as a facilitator.

An appropriate balance of teaching methodologies should be used in the delivery of the

course and a variety of active learning approaches is encouraged, including the following:

Activity-based learning

Whole-class, direct teaching opportunities should be balanced by activity-based learning

using practical tasks. An investigative approach is encouraged, with candidates actively

involved in developing their skills, knowledge and understanding by investigating a range of

real-life and relevant problems and solutions related to areas of study. Learning should be

supported by appropriate practical activities, so that skills are developed at the same time as

knowledge and understanding.

Group work

Practical activities and investigations lend themselves to group work, and this should be

encouraged. Candidates engaged in collaborative group-work strategies can benefit from

each other’s knowledge, resources and skills, by questioning, investigating, evaluating and

Version 3.0 21

presenting ideas to each another. ‘Working as a team’ is not specifically identified as one of

the skills for learning, skills for life and skills for work for this course and is not assessed. It is,

however, a fundamental aspect of working in the IT and related industries, and so should be

encouraged and developed by teachers and lecturers.

Problem-based learning

Problem-based learning (PBL) is another strategy which supports candidates’ progress

through this course. This method can be best used at the end of a topic, where additional

challenge is required to ensure candidates are secure in their knowledge and understanding,

and to develop their ability to apply knowledge and skills in less-familiar contexts. Learning

through PBL develops candidates’ problem-solving, decision making, investigative skills,

creative thinking, team working and evaluative skills.

Computational thinking

Computational thinking is recognised as important for all candidates — whether they intend

to continue with computing science or not. It includes a set of problem-solving-skills and

techniques used by software developers to write programs.

There are various ways of defining computational thinking. One useful structure is to group

these problem-solving skills and techniques under five broad headings:

 Abstraction: seeing a problem and its solution at many levels of detail and generalising

the information that is necessary. Abstraction allows an idea or a process to be

represented in general terms (eg variables), so it can be used to solve other problems

that are similar in nature.

 Algorithms: the ability to develop a step-by-step strategy for solving a problem.

Algorithm design is often based on the decomposition of a problem and the identification

of patterns that help to solve the problem. In computing science as well as in

mathematics, algorithms are often written abstractly, utilising variables in place of specific

numbers.

 Decomposition: breaking down a task so that a process can be clearly explained to

another person — or to a computer. Decomposing a problem frequently leads to pattern

recognition and generalisation/abstraction, and thus the ability to design an algorithm.

 Pattern recognition: the ability to notice similarities or common differences that will help

make predictions or lead to shortcuts. Pattern recognition is frequently the basis for

solving problems and designing algorithms.

 Generalisation: realising that a solution to one problem can be used to solve a whole

range of related problems.

Underpinning all of these concepts is the idea that computers are deterministic: they do

exactly what you tell them to do and so can be understood.

While computational thinking can be a component of many subjects, computing science is

particularly well placed to deliver it. Teachers and lecturers are encouraged to emphasise,

exemplify and make these aspects of computational thinking explicit (at an appropriate level),

Version 3.0 22

wherever there are opportunities to do so throughout the teaching and learning of this

course.

Using online and outside resources

Stimulating candidates’ interest and curiosity should be a prime objective, throughout the

teaching of this course. Engaging with outside agencies or industry professionals can greatly

enhance the learning process. Online resources, can provide a valuable addition to teaching

and learning activities, encouraging research, collation and storage of information, and

evaluation of these materials. Using interactive multimedia learning resources, online

quizzes, and web-based software can also be used to support teacher-led approaches.

Assessment activities, used to support learning, can be usefully blended with learning

activities throughout the course, for example:

 sharing learning intentions/success criteria

 using assessment information to set learning targets and next steps

 adapting teaching and learning activities based on assessment information

 providing confidence-boosting feedback on candidates’ progress

Where appropriate, self- and peer-assessment techniques should be encouraged.

Meeting the needs of all candidates

Within any National 5 class, each candidate will have individual strengths and areas for

improvement.

For example, there could be candidates capable of achieving a higher level in some aspects

of the course. Where possible, they should be given the opportunity to do so.

There could also be candidates who are struggling to achieve National 5 level in some

aspects of their course, and who would be better suited to a lower level in these areas.

However, where National 5 candidates have studied National 4 in a previous year, it is

important to provide them with new and different contexts for learning to keep them

motivated.

Learning about Scotland and Scottish culture can enrich candidates’ learning experiences

and help them to develop the skills for learning, skills for life and skills for work. This should

also help prepare them for taking their place in a diverse, inclusive and participative Scotland

and beyond. Where there are opportunities to contextualise approaches to learning and

teaching to Scottish contexts, teachers and lecturers should consider doing this.

Advice on distribution of time

The notional length of time for candidates to complete the course is 160 hours. They may be

expected to contribute some of their own time in addition to the programmed learning time.

Version 3.0 23

The decision on how to distribute time is at the discretion of teachers and lecturers,

depending on candidates’ prior learning. Time should be allocated for the course assignment

(6 hours) and preparation for the question paper.

Suggested learning activities

The sequence of delivery of the four areas of study is at the discretion of teachers and

lecturers.

Software design and development

 Analysis: candidates working in groups could be given a number of problems to analyse

and decide the inputs, processes and outputs that are required.

 Design: teachers and lecturers could get candidates to solve a complex problem using

their chosen design technique. They could then discuss the differences between them

and whether some are more efficient solutions than others. Teachers and lecturers could

present candidates with a variety of completed program designs, and then discuss the

inputs/outputs and processes within each design. Candidates could be asked to find

errors in completed designs and suggest solutions.

 Implementation: teachers and lecturers could combine the development of knowledge

and understanding of how programs work, as candidates’ progress through the practical

tasks involved in developing their own programs.

For example, when candidates are selecting and using appropriate constructs and

variables when developing their programs, they will need to understand the purpose and

function of these constructs and the purpose of variable types. As candidates develop

their programming skills by selecting and using appropriate constructs and assigning

values to variables, they will also develop a clear understanding of how these constructs

and variables work, and what they can be used for. This will enable them to read,

interpret and explain the code in their programs.

Candidates could develop an understanding of the key concepts involved in software

development before creating their own programs. They could be given a variety of

programs and work in groups to find out the following:

— What is the purpose of the programming constructs?

— How do they work?

— What is the purpose of a range of variable types?

Once candidates gain a sound understanding of the purpose of a range of programming

constructs, how they function and the purpose of variable types within a program, they

should be well placed to develop their own programs in a high-level (textual) language.

Candidates could work in groups writing code from designs given to them in a number of

different design techniques.

Candidates could be supplied with a completed design and associated program. They

could then be asked to discuss any differences between the design and the

implementation.

Version 3.0 24

 Testing: teachers and lecturers could give candidates a variety of programs and ask

them to create test tables, and get them to test them to check whether they work. It would

be useful to give candidates a number of programs that had logic and syntax errors, to

show the benefits of testing.

 Evaluation: teachers and lecturers could give groups of candidates some completed

programs and ask them to evaluate these in terms of efficient use of coding constructs,

fitness for purpose and readability.

Computer systems

 Data representation: teachers and lecturers could describe how computers store

integers, real numbers, text, vector graphics, and bit-mapped graphics. Candidates could

undertake different exercises showing the data representation of a variety of numbers,

text and graphics.

 Computer structure: candidates could research the basic components of a computer

system and create a visual representation. Teachers and lecturers could discuss the

need for compilers and interpreters, and explain how they are used when they are writing

code.

 Environmental impact: candidates working in groups could investigate the settings in a

control panel and decide whether they are appropriate or whether they could be altered

to save more energy.

 Security precautions: teachers and lecturers could discuss the importance of the

Enigma machine in WWII and how encrypted messages were required for security. They

could explain that this works with electronic communications in today’s society.

Candidates could be asked to research firewalls and present their findings to the class.

Database design and development

 Analysis: candidates could be split into groups, with some being database developers

and others being clients. The developers would interview the clients and create the

end-user and functional requirements for the database problem.

 Design: teachers and lecturers could show candidates how to use simple relational

databases before they start to teach them the fundamentals of design. Teachers and

lecturers could demonstrate to candidates a completed database with sample data

showing how the tables are connected using entity-relationship diagrams. A data

dictionary could then be explained, including primary and foreign keys, attribute types

and size, and the different types of validation. Candidates could be given different types

of exercises to create a data dictionary from given data. Teachers and lecturers could

discuss the General Data Protection Regulation in relation to a database that they were

designing.

 Implementation: teachers and lecturers could show candidates how to use simple SQL

operations to create simple searches and sorts on one field. Candidates could then

undertake a number of exercises to solve problems relating to searching and sorting

relational databases using SQL.

 Testing and evaluation: teachers and lecturers could give candidates some SQL code
and candidates could test them, and evaluate their fitness for purpose and accuracy of
output. Teachers and lecturers could supply candidates with an incorrect SQL operation,
along with correct expected output, and ask candidates to identify how to correct the SQL
statement in order to produce the expected output.

Version 3.0 25

Web design and development

 Analysis: candidates could be split into groups, with some being web developers and

others being clients. The developers would interview the clients and create the end-user

and functional requirements for the problem.

 Design: teachers and lecturers could get candidates to use wire-framing design

techniques to design website structures and pages relating to simple web pages that they

have shown them. The class could have a discussion about the implications of the

Copyright, Design and Patents Act of the website they are designing. When the website

designs are completed, groups of candidates could create low-fidelity prototypes.

Teachers and lecturers could discuss audio and graphic file types and discuss when

each would be the most appropriate to use in different situations. Using appropriate

graphics-editing software, candidates could export a bit-mapped graphic using a variety

of setting to research factors affecting file size and quality.

 Implementation: candidates could be given HTML and CSS code with the web pages

and asked to explain which parts of the code relate to the web page. Teachers and

lecturers could give candidates some low-fidelity prototyping and ask them to implement

using HTML and CSS. Teachers and lecturers could provide completed HTML and CSS

files and use them to demonstrate the effect of editing the CSS code.

 Testing and evaluation: teachers and lecturers could give groups of candidates a

number of different websites to look at. They could then create test tables that would

check that the websites were working correctly and are fit for purpose.

Resources

Suggested resources are summarised below:

 internet-enabled computers and a digital projector

 access to a high-level (textual) programming language

 access to a database that supports execution of SQL statements

 web development tools (script enabled browsers)

Centres may find that existing hardware and software within the computing science

classroom provides all that is required to deliver the course.

Some suggested specific online resources:

[date accessed September 2017]

 Software design and development

www.java.com

www.python.org

www.codeacademy.com

www.programiz.com/python-programming

www.livecode.com

www.draw.io

http://www.java.com/
http://www.python.org/
http://www.codeacademy.com/
http://www.programiz.com/python-programming
http://www.livecode.com/
http://www.draw.io/

Version 3.0 26

 Computer systems

www.bbc.co.uk/education/subjects

 Database design and development

www.w3schools.com

www.codeacademy.com

www.tutorialspoint.com/sql

www.sqlcourse.com

Apex.oracle.com/en

 Web design and development

www.w3schools.com

www.codeacademy.com

html.net/tutorials

www.khanacademy.org

pencil.evolus.vn

balsamiq.com

resources.infosecinstitute.com/prototyping

Goggles.mozilla.org

Educade.org/teaching_tools/hackasaurus

Some suggested software development environments

There are no restrictions on the choice of software development environment a centre can

use; the decision should be based on the suitability of the chosen environment to support the

delivery of the mandatory content of the course.

Below is a list of possible examples of software development environments that might be

suitable:

 Python

 Live Code

 Visual Basic

 True Basic

 Java

 Xojo (formally real basic)

For additional support, please refer to the ‘Resources to support the National 5 Computing

Science course’ section at the end of this document.

http://www.bbc.co.uk/education/subjects
http://www.w3schools.com/
http://www.codeacademy.com/
http://www.tutorialspoint.com/sql
http://www.sqlcourse.com/
file:///C:/Users/cab44581/Downloads/Apex.oracle.com/en
http://www.w3schools.com/
http://www.codeacademy.com/
http://html.net/tutorials/
http://html.net/tutorials/
https://www.khanacademy.org/
http://pencil.evolus.vn/
https://balsamiq.com/
http://resources.infosecinstitute.com/prototyping/
file:///C:/Users/cab44581/Downloads/Goggles.mozilla.org
file:///C:/Users/cab44581/Downloads/Educade.org/teaching_tools/hackasaurus

Version 3.0 27

Preparing for course assessment
The course assessment focuses on breadth, challenge and application. Candidates should

apply the skills, knowledge and understanding they have gained during the course.

In preparation, candidates should be given opportunities to practise activities similar to those

expected in the course assessment. For example, teachers and lecturers could develop

questions and tasks similar to those exemplified in the specimen question paper and

specimen coursework assessment task.

To assist, we have produced the information below on the following pages:

 course assessment overview

 question paper brief

 assignment brief

Version 3.0 28

Course assessment overview

Marks: 120

The course assessment has two components:

 question paper — 80 marks

 assignment — 40 marks

Proportion of ‘A’ and ‘C’ type marks:

 approximately 30% of marks ‘A’ type

 approximately 50% of marks ‘C’ type

The course assessment (question paper and assignment) is designed using the following

ranges of marks against each area of content and skills.

 % of course

assessment

Number

of marks
Overall Assignment

Question

paper

Analysis 5 6 3-11 3-6 0-5

Design 30 36 28-44 4-8 20-40

Implementation 40 48 40-56 22-24 16-34

Testing 10 12 8-16 3-6 5-10

Evaluation 5 6 3-11 3-6 0-5

Systems 10 12 10-14 n/a 10-14

Note: The skills, knowledge and understanding across the DDD and WDD areas of study are

not directly comparable. For example, there is more assessable content for design in DDD

than WDD, but more for implementation in WDD than DDD.

As a result, the mark breakdown across analysis, design, implementation, testing and

evaluation will not be identical across the options, however, there will be a balance of ‘A’ type

and ‘C’ type marks across the options in both the question paper and the assignment to

ensure a comparable level of demand.

Version 3.0 29

Question paper brief

Marks: 80

Duration: 1 hour and 30 minutes

The question paper has three sections. Section 1 is mandatory, and candidates have the

option to complete either section 2 or section 3

 Section 1: Software design and development, and Computer systems — 55 marks

 Section 2: Database design and development — 25 marks

 Section 3: Web design and development — 25 marks

Each section begins with a number of short, stand-alone questions. These are predominantly

‘C’ mark questions, presented in a clear and concise way, in a simple and/or familiar context.

This is followed by more challenging, context-based questions with multiple parts. These

require a range of responses including restricted and extended response, designing solutions

and writing code, and feature both ‘C’ mark and ‘A’ mark questions.

Proportion of ‘A’ and ‘C’ type questions:

 approximately 30% of marks ‘A’ type (primarily in the context-based questions)

 approximately 50% of marks ‘C’ type

The question paper (QP) is designed using the following ranges of marks, against each area

of content and skills.

Content Range of marks

SDD 41-45

CS 10-14

WDD 25

DDD 25

Version 3.0 30

Skills Range of marks

Analysis 0-5

Design 20-40

Implementation 16-34

Testing 5-10

Evaluation 0-5

Systems 10-14

Note: the marks for skills in the above table are based on the question paper (80 marks).

Either combination of SDD/CS and DDD or SDD/CS and WDD falls within these ranges.

The marks for each skill is not identical across the options, for example Implementation for

the DDD option may have 28 marks, while the WDD option may have 32 marks.

However, there will be a balance of ‘A’ type and ‘C’ type marks across both options to ensure

there is a comparable level of demand.

Version 3.0 31

Assignment brief

Marks: 40

Duration: 6 hours

The assignment has three tasks. Task 1 is mandatory, and candidates have the option to

complete either task 2 or task 3.

 Task 1: Software design and development — 25 marks

 Task 2: Database design and development — 15 marks

 Task 3: Web design and development — 15 marks

Proportion of ‘A’ and ‘C’ type marks:

 approximately 30% of marks ‘A’ type

 approximately 50% of marks ‘C’ type

Analysis Design Implementation Testing Evaluation Total

SDD 0-5 0-5 15 0-5 0-5 25

DDD 0-5 0-5 7-9 0-5 0-5 15

WDD 0-5 0-5 7-9 0-5 0-5 15

Total 3-6 4-8 22-24 3-6 3-6 40

Note: the marks for skills in the above table are based on the assignment (40 marks). Either

combination of SDD and DDD task or SDD and WDD falls within these ranges.

The marks for each skill is not identical across the options, however, there will be a balance

of ‘A’ type and ‘C’ type marks across both options to ensure there is a comparable level of

demand.

Version 3.0 32

Developing skills for learning, skills for life and skills
for work
Course planners should identify opportunities throughout the course for candidates to

develop skills for learning, skills for life and skills for work.

Candidates should be aware of the skills they are developing and teachers and lecturers can

provide advice on opportunities to practise and improve them.

SQA does not formally assess skills for learning, skills for life and skills for work.

There may also be opportunities to develop additional skills depending on approaches being

used to deliver the course in each centre. This is for individual teachers and lecturers to

manage.

Some examples of potential opportunities to practise or improve these skills are provided in

the following table:

Skill How to develop

2 Numeracy

2.1 Number processing Candidates could be given opportunities to develop their

number processing skills, by practicing problem-solving

in numeric-based contexts, eg creating programs that

calculate hotel bills or wages.

2.3 Information handling Information-handling skills could be developed by setting

problem-solving contexts where candidates are required

to interpret data in different structures, eg flat-files or

linked tables in databases, visual layout and navigation

for web pages, including appropriate file formats.

4 Employability, enterprise and citizenship

4.2 Information and

communication technology

Throughout the course, candidates should be

continuously interacting with the technology around

them. This should give plenty of opportunities to extend

their ICT skills.

5 Thinking skills

5.3 Applying Candidates should be given plenty opportunity to

analyse a wide range of problems, apply the knowledge

and skills they have acquired in developing information

systems, and then test and review their solutions.

5.4 Analysing and evaluating Candidates should develop skills in analysing and

evaluating through the process of creating software

solutions to problems.

Version 3.0 33

Resources to support the National 5 Computing Science course
The following table and appendices have been provided as an additional support. Please note that some of these resources are available on

external websites that require you to log in or create a user account.

All teaching materials and videos are available on ‘Glow’, in the folder called ‘Revised National 5 Computing Science’ within Computing Science

Documents. This folder can be accessed from the following link:

glowscotland.sharepoint.com/sites/PLC/technologies/SitePages/Computing%20Science.aspx

[date accessed September 2017]

Software design and development

Skills, knowledge and understanding Exemplification/learning and

teaching activities and resources

Design Describe, identify, and be able to read and understand:

 structure diagrams

 flowcharts

 pseudocode

See appendix 1 — design techniques

www.draw.io

Exemplify and implement one of the above design techniques to design

efficient solutions to a problem.

Teaching design techniques workshop

Describe, exemplify, and implement user-interface design, in terms of

input and output, using a wireframe.

See appendix 2 — user-interface

design

https://glowscotland.sharepoint.com/sites/PLC/technologies/SitePages/Computing%20Science.aspx?RootFolder=%2Fsites%2FPLC%2Ftechnologies%2FComputing%20Science%20Documents%2FRevised%20National%205%20Computing%20Science&FolderCTID=0x012000213545AEF39A73418F1D515DF78F2434&View=%7BAE2F858E%2D3273%2D4436%2DA255%2DB3C8AE6270CD%7D
http://www.draw.io/

Version 3.0 34

Implementation

(algorithm

specification)

Describe, exemplify, and implement standard algorithms:

 input validation

 running total within loop

 traversing a 1D array

See appendix 3 — standard algorithms

Evaluation Describe, identify, and exemplify the evaluation of a solution in terms of:

 fitness for purpose

 efficient use of coding constructs

 robustness

 readability:

— internal commentary

— meaningful identifiers

— indentation

— white space

See appendix 4 — efficient use of

coding constructs

Version 3.0 35

Computer systems

Skills, knowledge and understanding Exemplification/learning and teaching

activities and resources

Data representation Describe and exemplify the use of binary to represent positive

integers.

Describe floating point representation of positive real numbers,

using the terms mantissa and exponent.

Convert from binary to denary and vice-versa.

Describe extended ASCII code (8-bit) used to represent characters.

Describe the vector graphics method of graphic representation for

common objects:

 rectangle

 ellipse

 line

 polygon

with attributes:

 co-ordinates

 fill colour

 line colour

Describe the bit-mapped method of graphics representation.

Lenzie Academy materials

Version 3.0 36

Computer structure Describe the purpose of the basic computer architecture

components and how they are linked together:

 processor (registers, ALU, control unit)

 memory locations with unique addresses

 buses (data and address)

Explain the need for interpreters and compilers to translate

high-level program code to binary (machine code instructions).

Lenzie Academy materials

Environmental impact Describe the energy use of computer systems, the implications on

the environment and how these could be reduced through:

 settings on monitors

 power down settings

 leaving computers on standby

Lenzie Academy materials

Security precautions Describe the role of firewalls.

Describe the use made of encryption in electronic communications.

Lenzie Academy materials

Version 3.0 37

Database design and development

Skills, knowledge and understanding Exemplification/learning and teaching

activities and resources

Analysis Identify the end-user and functional requirements of a database

problem that relates to the implementation at this level.

See appendix 14 — database analysis

Clydeview Academy materials

Design Describe and identify the implications for individuals and businesses

of the UK General Data Protection Regulation (UK GDPR) that data

must be:

 processed lawfully, fairly and in a transparent manner in relation

to individuals

 used for the declared purpose only

 limited to the data needed for the declared purpose

 accurate

 not kept for longer than necessary

 held securely

Robert Gordon’s College materials

Describe and exemplify entity-relationship diagrams with two entities

indicating:

 entity name

 attributes

 relationship (one-to-many)

See appendix 5 — entity-relationship

diagrams

DDD delivery video, showing example of

teaching databases

Clydeview Academy materials

Robert Gordon’s College materials

Version 3.0 38

Describe and exemplify a data dictionary:

 entity name

 attribute name

 primary and foreign key

 attribute type:

— text

— number

— date

— time

— Boolean

 attribute size

 validation:

— presence check

— restricted choice

— field length

— range

See appendix 6 — data dictionary

Clydeview Academy materials

Robert Gordon’s College materials

Exemplify a design of a solution to the query:

 multiple tables

 fields

 search criteria

 sort order

See appendix 7 — design of solution to

database queries

Clydeview Academy materials

Version 3.0 39

Implementation Describe, exemplify and implement SQL operations for

pre-populated relational databases, with a maximum of two linked

tables:

 select:

— from

— where:

o AND, OR, <, >, =

o order by with a maximum of two fields

 insert

 update

 delete

 equi-join between tables

Read and explain code that makes use of the above SQL.

www.w3schools.com

www.sqlcourse.com

www.codeacademy.com

www.tutorialspoint.com/sql

Clydeview Academy materials

Robert Gordon’s College materials

SQL queries workshop

See appendix 12 — SQL

Testing Describe and exemplify testing:

 SQL operations work correctly at this level

See appendix 8 — testing and evaluation

Clydeview Academy materials

Robert Gordon’s College materials

Evaluation Evaluate solution in terms of:

 fitness for purpose

 accuracy of output

Clydeview Academy materials

http://www.w3schools.com/
http://www.sqlcourse.com/
http://www.codeacademy.com/
http://www.tutorialspoint.com/sql

Version 3.0 40

Web design and development

Skills, knowledge and understanding Exemplification/learning and teaching

activities and resources

Analysis Identify the end-user and functional requirements of a website

problem that relates to the design and implementation at this level.

See appendix 13 — web analysis

Design Describe and exemplify the website structure with a home page, a

maximum of four linked multimedia pages, and any necessary

external links.

See appendix 9 — website structure

Clydeview Academy materials

Describe, exemplify and implement, taking into account

end-user requirements, effective user-interface design (visual layout

and readability) using wire-framing:

 navigational links

 consistency across multiple pages

 relative vertical positioning of the media displayed

 file formats of the media (text, graphics, video, and audio)

See appendix 10 — interface design

Describe, exemplify and implement prototyping

(low-fidelity) from wireframe design at this level.

pencil.evolus.vn

balsamiq.com

resources.infosecinstitute.com/prototyping

See appendix 11 — low-fidelity prototyping

Clydeview Academy materials

http://pencil.evolus.vn/
https://balsamiq.com/
http://resources.infosecinstitute.com/prototyping/

Version 3.0 41

Implementation (CSS) Describe, exemplify and implement internal and external

Cascading Style Sheets (CSS):

 selectors, classes and IDs

 properties

— text:

o font (family, size)

o color

o alignment

— background colour

Read and explain code that makes use of the above CSS.

www.w3schools.com

www.codeacademy.com

html.net/tutorials

www.khanacademy.org

Clydeview Academy materials

Dalziel High School HTML teaching videos

Teaching web design and implementation
workshop

Implementation

(HTML)

Describe, exemplify and implement HTML code:

 HTML

 head

 title

 body

 heading

 paragraph

 DIV

 link

 anchor

 IMG

 audio

 video

 lists — ol, ul and li

Read and explain code that makes use of the above HTML.

www.w3schools.com

www.codeacademy.com

html.net/tutorials

www.khanacademy.org

Clydeview Academy materials

Dalziel High School CSS teaching videos

Teaching web design and implementation
workshop

http://www.w3schools.com/
http://www.codeacademy.com/
http://html.net/tutorials/
https://www.khanacademy.org/
http://www.w3schools.com/
http://www.codeacademy.com/
http://html.net/tutorials/
http://html.net/tutorials/
https://www.khanacademy.org/

Version 3.0 42

Appendix 1: design techniques (SDD)

Structure diagrams

A structure diagram is a method of graphically representing the steps required to solve a

problem. Structure diagrams must be read from the top down from left to right.

There are four types of notations used to represent the workings of the program:

Process Notes a process such as a calculation.

Loop Problem may repeat a mixed number of times or
repeat if conditions are met.

Selection Problem may branch depending on the conditions
met.

Predefined process Shows use of a predefined function or a
procedure.

Structure diagram: example 1

This diagram calculates the average of five numbers.

Version 3.0 43

Structure diagram: example 2

This diagram decides the cost of the postage of a parcel.

Version 3.0 44

Flowcharts

A flowchart uses a variety of standard symbols with text to represent the order of events

required to solve a problem. The symbols in a flowchart can be equated to programming

constructs such as assignment, selection and repetition.

Flowchart symbols

Flow line Shows the direction or flow between symbols.

Terminal Represents the “start” and “end” of a problem.

Initialisation Used to show declaration of variables/arrays or
assignment of an initial value.

Input/output Shows data input or output.

Decision Problem may branch or repeat if conditions are
met.

Process Notes a process such as a calculation.

Predefined process Shows use of a predefined function often with
parameters.

On-page connector May be used to split a flowchart to keep it on a
single page.

Version 3.0 45

Flowchart: example 1

This flowchart inputs, adds and displays a value.

Version 3.0 46

Flowchart: example 2

This flowchart checks to see if five different people are old enough to rent a van.

Version 3.0 47

Flowchart: example 3
This flowchart keeps a running total of scores, until there are no more scores.

Version 3.0 48

Pseudocode

Pseudocode is a natural language-based design methodology used to define an algorithm

and refinement. It is a kind of structured English for describing algorithms and is intended for

human reading. It typically omits details such as variable declarations and system-specific

code. Pseudocode can look like code in an implemented problem but it doesn’t have the

same strict syntax.

The design should begin by defining the main steps or algorithm. Where a step of the

algorithm requires refinement, a numbering system may be used to denote which line of the

algorithm is being refined.

Identified selection and repetition in the problem, may be highlighted with indentation.

Pseudocode: example 1

This algorithm calculates the volume of a swimming pool.

Algorithm

1 Ask user to enter dimensions of a swimming pool in metres

2 Calculate volume of pool

3 Display message stating the volume of the pool

Refinement

1.1 Ask user to enter length of pool

1.2 Ask user to enter width of pool

1.3 Ask user to enter depth of pool

2.1 Volume is calculated as length * width * depth

3.1 Display “The volume of the pool is”, volume

Version 3.0 49

Pseudocode: example 2

This algorithm adds up the length of the tracks on a CD.

Algorithm

1 Initialise total length

2 Get valid number of tracks from user

3 Start fixed loop for each track

4 Get title and track length from user

5 Add track length to total

6 End fixed loop

7 Display track titles and track lengths

8 Display total length

Refinement

2.1 Start conditional loop

2.2 Get number of tracks from user

2.3 If number of tracks is not valid display error message

2.4 Repeat until the number of tracks entered is between 1 and 20

inclusive

4.1 Get track title and store in names array

4.2 Get track length and store in length array

5.1 Add track length to total length

7.1 Start fixed loop for length of names array

7.2 Display “The name of track”, counter, “is”, track name

7.3 Display “The length of track”, counter, “is”, track length

7.4 End fixed loop

8.1 Display “The total length of the tracks is”, total length

Version 3.0 50

Appendix 2: user-interface design (SDD)
The user interface is the part of a computer program that is visible to the user. It can be as

simple as a command line or as sophisticated as a virtual reality simulator. The point of

designing a user interface for software is to show what input and output is required, so that

the programmer can implement it in their chosen code.

The type of user interface can depend on what the programming language is capable of

achieving. The examples below would probably be sketched by the designer, rather than

typed.

User-interface design: example 1

This is a user-interface design for a program that calculates a user’s weekly pay, using a text

based language such as True Basic.

Prompt (computer) Response (user)

Enter how many hours you worked this week ___

Enter how many hours you worked on Saturday ___

Enter how many hours you worked on Sunday ___

Your pay this week is __________

User-interface design: example 2

This is a user-interface design for a program that calculates a user’s weekly pay using an

event-driven language such as Visual Basic.

Enter how many hours you worked this week

Enter how many hours you worked on Saturday

Enter how many hours you worked on Sunday

Your pay this week is

Click here

to run

Version 3.0 51

Appendix 3: standard algorithms (SDD)
There are three standard algorithms in the National 5 course specification. These are:

 input validation — checking that input is acceptable

 running total within a loop — adding up a list of values

 traversing a 1D array — accessing each element of an array from first to last

Each of these algorithms are exemplified below using SQA’s ‘Reference Language for
Computing Science question papers’.

Input validation: example 1 (while loop)
This program is used to obtain a value between 10 and 20 inclusive.

RECEIVE number FROM KEYBOARD

WHILE number < 10 OR number > 20 DO

SEND “Error, please enter again” TO DISPLAY

RECEIVE number FROM KEYBOARD

END WHILE

Input validation: example 2 (until loop)
This program is used to obtain a value between 10 and 20 inclusive.

REPEAT

RECEIVE number FROM KEYBOARD

IF number < 10 OR number > 20 THEN

 SEND “Error, please enter again” TO DISPLAY

END IF

LOOP UNTIL number >= 10 AND number <= 20

Running total within a loop: example 1 (fixed loop)
This program is used to calculate the sum of a known number of values entered by the user
one at a time.

DECLARE total INITIALLY 0

FOR loop FROM 1 TO 10 DO

RECEIVE number FROM KEYBOARD

SET total TO total + number

END FOR

Version 3.0 52

Running total within a loop: example 2 (conditional loop)
This program is used to calculate the sum of an unknown number of values entered by the
user one at a time.

DECLARE total INITIALLY 0

REPEAT

RECEIVE number FROM KEYBOARD

SET total TO total + number

SEND “Do you wish to enter another value” TO DISPLAY

RECEIVE choice FROM KEYBOARD

LOOP UNTIL choice = ”no”

Traversing a 1D array: example 1 (fixed loop)
This program is using a loop to access each element of an array, for the purposes of
processing the data in the array.

DECLARE allScores INITIALLY [12,34,23,54,32,67,26,23]

FOR counter FROM 0 TO 7 DO

 IF allScores[counter] >= 50 THEN

 SEND “Great Score” & allScores[counter] TO DISPLAY

END IF

END FOR

Traversing a 1D array: example 2 (fixed ‘for each’ loop with running total included)
This program is using a loop to access each element of an array, for the purposes of
processing the data in the array.

DECLARE allScores INITIALLY [12,34,23,54,32,67,26,23]

DECLARE total INITIALLY 0

DECLARE counter INITIALLY 0

FOR EACH FROM allScores DO

 SET total TO total + allScores[counter]

SET counter TO counter + 1

END FOR

Version 3.0 53

Appendix 4: efficient use of coding constructs (SDD)
A computer program can be written in many ways to solve a problem. Although each solution
can achieve the same result by using the constructs available in a programming language,
the programmer should be trying to achieve the most efficient solution.

Repetition
The use of repetition can greatly reduce the number of lines of code that have to be typed.

This program finds the average of 10 numbers.

DECLARE total INITIALLY 0

RECEIVE number FROM KEYBOARD

SET total TO total + number

RECEIVE number FROM KEYBOARD

SET total TO total + number

RECEIVE number FROM KEYBOARD

SET total TO total + number

RECEIVE number FROM KEYBOARD

SET total TO total + number

RECEIVE number FROM KEYBOARD

SET total TO total + number

RECEIVE number FROM KEYBOARD

SET total TO total + number

RECEIVE number FROM KEYBOARD

SET total TO total + number

RECEIVE number FROM KEYBOARD

SET total TO total + number

RECEIVE number FROM KEYBOARD

SET total TO total + number

RECEIVE number FROM KEYBOARD

SET total TO total + number

SET average TO total / 10

This program does exactly the same but uses more efficient constructs.

DECLARE total INITIALLY 0

REPEAT 10 TIMES

 RECEIVE number FROM KEYBOARD

 SET total TO total + number

END REPEAT

SET average = total / 10

Version 3.0 54

1D arrays
1D arrays allows the same variable name to be used to store a list of similar variables
values. This means that repetition can be used to easily store values that may be required
later.

This program finds the average of 10 numbers and stores each of the numbers that were
input.

DECLARE total INITIALLY 0

RECEIVE number1 FROM KEYBOARD

RECEIVE number2 FROM KEYBOARD

RECEIVE number3 FROM KEYBOARD

RECEIVE number4 FROM KEYBOARD

RECEIVE number5 FROM KEYBOARD

RECEIVE number6 FROM KEYBOARD

RECEIVE number7 FROM KEYBOARD

RECEIVE number8 FROM KEYBOARD

RECEIVE number9 FROM KEYBOARD

RECEIVE number10 FROM KEYBOARD

SET total TO number1 + number2 + number3 + number4 + number5 +

number 6 + number7 + number8 +number9 + number10

SET average TO total / 10

SEND average TO display

<display the ten values>

This program does exactly the same, but uses more efficient constructs and data structures.

DECLARE number INITIALLY []

FOR counter FROM 1 TO 10 DO

 RECEIVE number[counter)]

 SET total TO total + number[counter]

END FOR

SET average TO total/10

SEND average TO display

Version 3.0 55

Selection
Choosing from a number of possible alternatives when using selection can make code more
efficient, however, it is not always obvious which is more efficient.

These two programs decide the grade that a candidate is given, depending on the mark they
received in the exam.

Example 1 Example 2

This uses four IF constructs, one after

another, with the use of complex

conditional statements.

 This uses nested IF constructs with simple

conditional statements. Other programming

languages may use a CASE, ELIF or

ELSEIF statement.

IF mark < 50 THEN

 SET grade TO D

END IF

IF mark>=50 AND mark<=59 THEN

 SET grade TO C

END IF

IF mark>=60 AND mark<=69 THEN

 SET grade TO B

END IF

IF mark>=70 THEN

 SET grade TO A

END IF

IF mark>=70 THEN

SET grade=A

ELSE

 IF mark>=60 THEN

 SET grade=B

 ELSE

 IF mark>=50 THEN

 SET grade=C

 ELSE

 SET grade=D

 END IF

 END IF

END IF

This program always carries out four

comparisons, regardless of the values

stored in mark.

 This program carries out either one, two or

three comparisons, depending on the

values stored in the mark.

Version 3.0 56

Logical operators
Logical operators can be useful when creating complex conditions, rather than using multiple
simple conditions.

This program uses two simple conditional statements.

IF X > 4 THEN

 IF Y < 6 THEN

 SET quadrant TO 2

 END IF

END IF

This program uses one complex conditional statement.

IF X > 4 AND Y < 6 THEN

 SET quadrant TO 2

END IF

Version 3.0 57

Appendix 5: design: entity-relationship diagrams
(DDD)
An entity-relationship diagram is a graphical representation of the entities in a system. It is
used to illustrate the relationship that exists between two or more entities.

Although several different representations can be used, the entity-relationship diagrams
shown in the following examples use crow’s feet notation to indicate the many sides of the
relationship.

A relational database is used by a travel agency to store details of Scottish holiday resorts
and hotels in each resort. The resort and hotel details have been arranged in two entities.

Entity: Resort Entity: Hotel

resortID

town

resortType

trainStation

 hotelRef

hotelName

phoneNumber

resortID*

starRating

seasonStartDate

swimmingPool

mealPlan

checkInTime

Example 1: entities and attributes
This diagram illustrates the entities together with their attributes

Example 2: entities
This diagram shows only the entities.

Resort

resortID

town

resortType
trainStation

Hotel

seasonStartDate

mealPlan

hotelRef

hotelName
phoneNumber

resortID*

starRating

swimmingPool
checkInTime

is location for

Resort Hotel is location for

Note: primary

keys are

underlined.

Foreign keys

are marked

with an

asterisk.

Version 3.0 58

Appendix 6: design — data dictionary (DDD)
A data dictionary is used to indicate the properties of each attribute needed to define the
entities.

Example
A relational database is used by a travel agency to store details of Scottish holiday resorts
and hotels. The resort and hotel details are arranged in two separate entities.

This shows sample data for each table of the database:

Resort table

Resort ID Town Resort Type Train Station

168 Ayr coastal true

347 Portree island false

Hotel table

Hotel

Ref

Hotel

Name

Phone

Number

Resort

ID

Star

Rating

Season

Start Date

Swimming

Pool

Meal

Plan

Check-

In Time

AY72 Cliff Top 01292123456 168 3 29/04/2017 false HB 14:30

PR04 Bay View 01478456789 347 5 01/05/2017 true BB 16:00

AY19 Glee 01292987654 168 2 false FB 15:00

This shows the completed data dictionary:

Entity: Resort

Attribute Name Key Type Size Required Validation

resortID PK Number yes

town Text 20 yes

resortType Text 20 yes Restricted choice: coastal, city, island

trainStation Boolean yes

Entity: Hotel

Attribute Name Key Type Size Required Validation

hotelRef PK Text 4 yes length=4

hotelName Text 20 yes

phoneNumber Text 11 yes length=11

resortID FK Number yes Existing resortID from Resort table

starRating Number yes Range: >=1 and <=5

seasonStartDate Date no

swimmingPool Boolean yes

mealPlan Text 17 yes Restricted choice: RO, BB, HB, FB

checkInTime Time yes Range: >=14:00 and <=16:00

Version 3.0 59

Appendix 7: design of solution to database queries
(DDD)
A relational database is used by a travel agency to store details of Scottish holiday resorts

and hotels in each resort. The resort and hotel details are arranged in two separate tables

called Resort and Hotel. The structure of the tables is shown below:

Planning the design of a query before creating the SQL code is good practice. This gives
candidates time to think carefully about the fields that are required, which in turns, helps
them to identify the table or tables that will be needed. It also allows candidates to consider
the purpose of the query (search and/or sort), together with any required search criteria
and/or sort order. Planning ahead helps to reduce the errors that candidates may otherwise
encounter when working with the SQL code.

A simple table template, such as the one shown below, can be used by candidates to
indicate the planned design of a SQL query.

Example 1
Design a query to list the town name and train station details of all resorts that have a train
station.

Field(s) town, trainStation

Table(s) Resort

Search criteria trainStation = true

Sort order

Version 3.0 60

Example 2
Design a query to list the hotel name and phone number, together with the star rating and
swimming pool details for all hotels with a swimming pool that have a rating of at least 4
stars.

Field(s) hotelName, phoneNumber, starRating, swimmingPool

Table(s) Hotel

Search criteria swimmingPool = true AND starRating >= 4

Sort order

Example 3
Design a query to list the hotel name and phone number, together with the town and train
station details of any hotel in Ayr.

Field(s) hotelName, phoneNumber, town, trainStation

Table(s) Hotel, Resort

Search criteria town = "Ayr"

Sort order

Example 4
Design a query to list the town name, resort type and star rating of all hotels that have a 5
star rating. These details should be listed in alphabetical order of town.

Field(s) town, resortType, starRating

Table(s) Resort, Hotel

Search criteria starRating = 5

Sort order town ASC

Example 5
Design a query to list the hotel name and its star rating, together with the town, resort type
and check-in time, of all hotels that allow check in before 15:00. These details should be
displayed so that the hotel with the highest rating is listed first; hotels with the same star
rating should be listed in alphabetical order of town name.

Field(s) hotelName, starRating, town, resortType, checkInTime

Table(s) Hotel, Resort

Search criteria checkInTime < 15:00

Sort order starRating DESC, town ASC

Version 3.0 61

Appendix 8: testing and evaluation (DDD)
Consider the Customer table shown below.

Query testing
A query is required to display the full name and town of all customers who live in Gourock.
The details should be listed in alphabetical order of customer surname.

This table shows the output predicted from the query.

Expected output Forename Surname Town

Details of customer listed first Ryan Collins Gourock

Details of customer listed last Rowan Hastings Gourock

Query evaluation
This answer table is the output from the query used to perform the task.

Actual output
Comparing the answer table with the predicted output, it is possible to evaluate the query.

The query is fit for purpose because it displays details of the three customers who live in
Gourock and has arranged the details in ascending order of surname. However, the query
output is not accurate because the answer table only shows details of surname and town; the
forenames of the customers are missing from the answer table.

Version 3.0 62

Appendix 9: website structure (WDD)
The design of a website should indicate the type of navigational structure that will be used
— usually linear or hierarchical. The design should also show the direction of each of the
links.

Example
A new website for ScotsWaterSport is being developed. The website will consist of five web
pages and each of these web pages will have a main heading centred at the top of the page.
Further requirements for the web pages are as follows.

The home page will provide:

 a short introduction to the range of water sports available in Scotland

 internal hyperlinks to specialist pages about four different water sports (Kayaking,
Surfing, Rafting, and Sailing)

 one external link to the water sports page of the VisitScotland website

Each of the specialist sports pages will provide:

 a photo of the sport

 a paragraph of information about the sport

 a bulleted list of suggested locations and ideas to try out the sport

 a hyperlink back to the home page

The new website for ScotsWaterSport will have a hierarchical structure.

This diagram shows the navigational structure of the ScotsWaterSport website. The arrows on the
diagram indicate the direction of the hyperlinks provided on each page.

VisitScotland website

(external link)

Home

Page

Kayaking

Page

Surfing

Page

Rafting

Page

Sailing

Page

Version 3.0 63

Appendix 10: interface design (WDD)
The user-interface planning can be illustrated using wireframes. A separate wireframe is needed
for each page on a website. Each wireframe indicates the intended layout of the page and shows
the position of:

 all text elements on the page

 any media elements (images, audio clips and video clips)

 elements that allow the user to interact with the page

 intended position and type of all hyperlinks on the page

For the National 5 course, content should be stacked vertically on the page. It is not
expected that media will be positioned side by side

Example
A new website for ScotsWaterSport is being developed. The website will consist of five web
pages and each of these web pages will have a main heading centred at the top of the page.
Further requirements for the web pages are provided below.

The home page will provide:

 a short introduction to the range of water sports available in Scotland

 internal hyperlinks to specialist pages about four different water sports (Kayaking,
Surfing, Rafting and Sailing)

 one external link to the water sports page of the Visit Scotland website

Each of the specialist sports pages will provide:

 a paragraph of information about the sport

 a photo of the sport

 a bulleted list of suggested locations to try out the sport

 a hyperlink back to the home page

Version 3.0 64

These wireframes show the planned layout of each page on the ScotsWaterSports website.

Version 3.0 65

Version 3.0 66

Appendix 11: low-fidelity prototyping (WDD)
A prototype is used to show the intended user interface for any software product. Once
developed, a prototype forms a critical component of usability testing, along with personas
(or detailed descriptions of typical end users) and test cases. Prototyping can be low-fidelity
or high-fidelity, with developers sometimes using both.

Low-fidelity prototypes are paper-based. They can be created quickly and give potential end
users of the finished product an indication of how the product will look and feel as they
interact with it.

Although not in the National 5 course, for clarification purposes, High-fidelity prototypes are
electronic. They are often created using RAD tools, meaning that generating a working
interface doesn’t take long as, at this stage, only the interface is built. The detail of any
processes needed is ignored and there is no functionality behind any of the screen widgets
(other than to move screen or display messages such as ‘new content is displayed here’). A
high-fidelity prototype lets potential end users ‘play’ with the interface as it will be in the
finished product. As a result, it gives a much more realistic idea of how the finished product
will look and feel as it is being used, than would be possible with a low-fidelity, paper-based
prototype.

During usability testing, a selection of end users (or testers who adopt the personas) are
asked to complete the task described in each of the test cases using the prototype.
Developers will be on hand to ‘change screen’ (show a new page of the interface) or ‘update
the content of the screen’ (for example, replace page content, show the results of a
calculation or perform an interactivity) as the user interacts with the widgets used on the
prototype. By listening to user feedback and observing any difficulties users have as they
perform the specified tasks, the developers can make changes and improvements to the
user interface at an early stage in the development of the software product.

Prototypes should be based on the layout indicated in the wireframes. However, unlike
wireframes which are created to ensure consistency and share details with members of the
development team, the intended audience of prototypes is end users of the finished product.
For this reason, a prototype should show more details for the content and the screen widgets
that will be used to perform tasks.

Creating low-fidelity prototypes
Low-fidelity prototypes can be created in a number of ways. For example:

 A simple hand-drawn sketch of the proposed interface is one of the easiest and cheapest
ways of creating a paper-based prototype. Coloured pencils, felt pens and markers can
be used to add colour; quick hand drawings of images and widget icons will give end
users a good idea of what is intended. Any size of paper can be used but flip-chart paper
can be easier for candidates to handle and facilitates collaborative group work.

 ‘Pencil’ software by ‘Evolus’ provides free prototyping tools. A number of in-built
templates are provided and additional Android and iOS templates are available for
download. ‘Pencil’ templates can be used to create realistic-looking interfaces that can be
exported as PNG files and printed to generate prototypes for usability testing. See
http://pencil.evolus.vn/

 Graphics packages such as ‘Paint’ can be used to create the intended layout using tools
provided in the toolbox. See https://www.getpaint.net/

http://pencil.evolus.vn/
https://www.getpaint.net/

Version 3.0 67

Example
A new website for ScotsWaterSport is being developed. The wireframes for each of the
pages have been created and prototyping of the Home Page and Kayaking Page of the
ScotsWaterSports website can now take place.

Version 1

These prototypes were created with marker pens and flip-chart paper.

Version 3.0 68

Version 3.0 69

Version 2

These prototypes were created using ‘Pencil’ templates.

Copyright acknowledgements: Lee Morris/shutterstock.com

Version 3.0 70

Appendix 12: SQL (DDD)
SQL stands for ‘Structured Query Language’. SQL is a special purpose programming

language for storing, manipulating and retrieving data in relational databases. Although most

database systems use SQL, there can be a number of differences between different dialects

or versions. However, the standard SQL commands such as SELECT, INSERT, UPDATE

and DELETE are common to them all.

We will use the following relational database to exemplify the SQL commands:

The Scottish Handball League use a relational database to store details of teams and players

in two separate tables called Team and Player. The structure of these tables is shown

below:

A sample record stored in each table is shown below:

Player table

playerID 810JE

firstname Jack

surname Edwards

dateOfBirth 03/05/1994

position Left back

goalsScored 37

teamName Clyde Flyers

Team table

teamName Clyde Flyers

town Greenock

leagueDivision 1

district West

trainingVenue Burnside Sports Centre

contactPerson Chris Black

emailPerson clydeflyers@handball.mail.uk

Version 3.0 71

Searching

The SELECT statement is used to decide which fields should be displayed. The statement is

followed by the fields, separated by commas.

The FROM clause states the names of the database table(s) that are needed in the query.

The WHERE clause states the criteria that must be met. This clause is followed by the field

name, an operator (<, >, =) and the information inside inverted commas if it is text.

SELECT fieldName1, fieldName2, fieldName3, etc
FROM tableName
WHERE fieldName = data;

Example 1 To search the database to display the town, contact person, e-mail address

and district for all teams in the west district, you would write the following SQL.

SELECT town, contactPerson, emailAddress, district

FROM Team

WHERE district = "West";

Logical operators (AND, OR) can be used to create complex criteria.

Example 2 To search the database to display the surname, position, and division of all

players who either play in the right wing or centre position, you would write the following

SQL.

SELECT surname, position, division

FROM Player

WHERE position = "right wing"

OR position = "centre";

EQUI-JOIN between tables

If a search involves displaying data found in two linked tables the SQL clause must state the

link. An EQUI-JOIN is added to the WHERE statement stating that the primary and foreign

key values in both tables must match.

SELECT fieldName1, fieldName2, fieldName3
FROM tableName1, tableName2
WHERE tableName1.fieldNamePK = tableName2.fieldNameFK
AND fieldName = data;

Example 3 To search the database to display the full name and town of any players who

play for a handball team based in Paisley, you would write the following SQL.

SELECT firstname, surname, town

FROM Team, Player

WHERE Team.teamName = Player.teamName

AND town = "Paisley";

Version 3.0 72

Example 4 To search the database to display the full name, number of goals scored and

the team name of any players who have scored at least 20 goals for Lothian Flames, you

would write the following SQL.

As the teamName field appears in both tables, you have to specify which table you want to

use, eg Team.teamName

SELECT firstname, surname, goalsScored, Team.teamName

FROM Team, Player

WHERE Team.teamName = Player.teamName

AND goalsScored >= 20

AND Team.teamName = "Lothian Flames";

The following SQL would give the same solution for the query, but this time displaying the

Player.teamName field.

SELECT firstname, surname, goalsScored, Player.teamName

FROM Team, Player

WHERE Team.teamName = Player.teamName

AND goalsScored >= 20

AND Team.teamName = "Lothian Flames";

Sorting

The ORDER BY clause decides how the output of the search should be sorted. ORDER BY

is followed by the name of the field and then whether it is ascending (ASC) or descending

(DESC) order.

SELECT fieldName1, fieldName2, fieldName3

FROM tableName

WHERE fieldName = data

ORDER BY fieldName ascending or descending;

Example 5 To search the database to display the full name, team name and goals scored

for any player who has scored fewer than 30 goals this season, so that the player with the

most goals is listed first, you would write the following SQL.

SELECT firstname, surname, Player.teamName, goalsScored

FROM Player

WHERE goalScored < 30

ORDER BY goalScored DESC;

Example 6 To search the database to display the full name, position, and team name of

all goalkeepers who play in the league (listing in alphabetical order of surname; players with

the same surname should be listed in alphabetical order of first name), you would write the

following SQL.

SELECT firstname, surname, position, Player.teamName

FROM Player

WHERE position = "goalkeeper"

ORDER BY surname ASC, firstname ASC;

Version 3.0 73

Adding records

The INSERT INTO statement is used to add records to a table. The statement is followed by

the table name and then the VALUES statement, followed by the data in brackets separated

by commas.

INSERT INTO tableName (fieldName1, fieldName2)
VALUES (value1, value2);

You must ensure that the order of the values is the same as the order of the fields.

Example 7 Details of the newest team to join the league are shown below.

Team name Dundee Dynamos

Town Dundee

Contact person Paul McLaughlin

E-mail address dynamos@dundeehandball.gmail.com

Division Second

District North

Training venue DISC

When adding a complete record to a database, you could write the following SQL statement

using only the values. There must be values for every field and they must be in the same

order as the field names in the table.

INSERT INTO Team

VALUES ("Dundee Dynamos", "Dundee", "Paul McLaughlin",

"dynamos@dundeehandball.gamil.com", "Second", "North", "DISC");

When adding only partial record data to a table, both the field names and their associated

values must be identified in the SQL statement.

Example 8 A new player has joined the team. The available details about the player are

shown below.

Player ID 419AC

First name Anatol

Surname Czaja

Team name Harris Hurricanes

To add these details to the database you would write the following SQL.

INSERT INTO Player (playerID, firstname, surname, teamName)

VALUES ("419AC", "Anatol", "Czaja", "Harris Hurricanes");

Version 3.0 74

Editing records

The UPDATE statement is used to alter records in a table. The statement is followed by the

name of the table, a SET clause and the WHERE clause which states what criteria must be

met.

UPDATE tableName
SET fieldName to updated value
WHERE criteria to be met;

Example 9 The player whose ID is 726HB has transferred to a new team and now plays

for the Dundee Demons.

To update the correct record of the database you would write the following SQL.

UPDATE Player

SET Player.teamName = "Dundee Demons"

WHERE playerID = "726HB";

Example 10 The contact details for the Airdrie Lions have changed. The team’s contact

person is now Lynne Jack and the team e-mail address is now airdrie@lionshandball.com.

To update the correct record of the database, you would write the following SQL.

UPDATE Team

SET contactPerson = "Lynne Jack", emailAddress =

"airdrie@lionshandball.com"

WHERE Team.teamName = "Airdrie Lions";

Deleting records

The DELETE FROM statement is used to delete records in a table. The statement is

followed by the name of the table and the WHERE clause which states what criteria must be

met.

DELETE FROM tableName
WHERE criteria to be met;

Example 11 The Borders Bandits have been knocked out of the league.

To remove the correct record from the database, you would write the following SQL.

DELETE FROM Team

WHERE Team.teamName = "Borders Bandits";

Example 12 Jack Roberts no longer plays in the handball league.

To remove the correct record from the database, you would write the following SQL.

DELETE FROM Player

WHERE firstname = "Jack"

AND surname = "Roberts";

mailto:airdrie@lionshandball.com

Version 3.0 75

Appendix 13: analysis (WDD)
During the analysis stage of website development, the following requirements should be

identified:

1 End-user requirements:

 The end users are the people who are going to be using the website.

 Their requirements are the tasks they expect to be able to do using the website.

2 Functional requirements:

 Processes and activities that the system has to perform.

 Information that the system has to contain to be able to carry out its functions.

These requirements will help:

 clarify the design of each webpage

 identify the features to be implemented on the website

 evaluate whether the system is fit for purpose after development is complete

Example

A rock band has three members. The band wants to develop a website for its fans. The site

will provide details about the band, including biographies, music tracks, video clips and

concert details.

The band asked some of its fans what they would like to see on the new website. Here are a

few of the comments they made.

 I would like to watch videos
of the band playing

I want to listen to
any new tracks
the band has
written

I want to find the
details I need
quickly, without
too many clicks

I want to know where the
band is playing and I want
to know how to book
tickets

I want to know
facts about the
band members
and see photos of
them

I would like to
listen to some of
the band’s older
material

I would prefer to buy
concert tickets from a
separate secure site,
rather than from the
band’s own site

Version 3.0 76

End-user requirements

 Users should be able to:

 navigate the site easily

 view biographies and photos of band members

 view all upcoming concerts and link to an external booking site

 view video clips of the band

 listen to the band’s audio tracks

Functional requirements

 The Home page should provide internal links to the four topic pages (biographies, music,

videos and concerts).

 Individual profile pages should include biography information, with photos of the band

member and should have a link back to the Biographies page.

 The Music page should list the band’s albums and allow individual audio tracks to be

played.

 The Videos page should list video clips and allow these to be played.

 The Concerts page should list all the upcoming concerts, with links to the external booking

site.

 All pages (except the Home page) should link back to the Home page.

Version 3.0 77

Appendix 14: analysis (DDD)
During the analysis stage of database development, the following requirements should be

identified:

1 End-user requirements:

 The end users are the people who are going to be using the database.

 Their requirements are the tasks they expect to be able to do using the database.

2 Functional requirements:

 Processes and activities that the system has to perform.

 Information that the system has to contain to be able to carry out its functions.

These requirements will help:

 clarify the design of the database

 identify the features to be implemented on the database

 evaluate whether the system is fit for purpose after development is complete

Example

A used-car dealership has six showrooms in different locations across Scotland. It wants to
create a relational database to store details of cars owned by the company and details of
each of their showrooms. The database will allow sales staff to view details of specific cars
and to see which showroom the cars are located in.

The developers have asked some of the sales staff what they would like to see in the
database. Here are a few of the comments they made.

I need to know whether the
car is diesel, petrol or electric.

I need to know
the colour of a
particular car.

If I have a customer who
wants a car in another
showroom, I need to know
the address and phone
number of the other
showrooms.

I need to know details of all
the cars we have of a
particular make and model.

I need to display car details in
order of mileage (lowest first). If
the mileage of the cars are the
same, customers always want to
know which car is the cheapest.

I need to display
car details in
order of price
(cheapest first).

I need to be able to find
out all the cars we have in
a particular price range.

Version 3.0 78

End-user requirements

 Sales staff should be able to display details of cars, by performing a number of different

searches using:

 car make and model

 car colour

 range of car prices

 type of fuel used

 Search results should display:

 car make

 car model

 car price

 car fuel

 car mileage

 branch address

 branch telephone number

 Users should be able to sort the search results in ascending order of mileage and

ascending order of price.

Functional requirements

 The relational database will have two tables; one for car details and one for branch details:

 Each table will require a suitable primary key field.

 A foreign key will be used to link the two tables.

 Additional fields will be needed for:

 car make

 car model

 car colour

 car fuel — diesel, petrol or electric

 car price

 car mileage

 branch address

 branch telephone number

 Simple and complex queries will be used to search the database.

 A complex sort will be used to order the query results.

Version 3.0 79

Administrative information

Published: May 2023 (version 3.0)

History of changes to course specification

Version Description of change Date

1.1 Included information on the Core Skill ‘Information and

communication technology at SCQF level 5’ in the course

overview section.

May 2017

2.0 Course support notes added as appendix. September

2017

2.1 Changed ‘developing skills in computer programming’ to

‘demonstrating skills in computer programming’ in the ‘Course

assessment structure: assignment’ section.

Amended the ‘Skills, knowledge and understanding’,

‘Developing skills, knowledge and understanding’, and

‘Resources to support the National 5 Computing Science course’

sections to reflect the requirements of the new General Data

Protection Regulation (GDPR).

May 2018

2.2 Amended the ‘Skills, knowledge and understanding for the

course assessment’ and ‘Resources to support the National 5

Computing Science course’ sections from EU GDPR to UK

GDPR.

August

2021

3.0 Amendments to the ‘Course assessment overview’ section,

‘Course Assessment’ section and ‘Course support notes’ to

reflect the option of assessing DDD or WDD. This covers

changes to the total marks and durations, and information on the

structure of both the question paper and the assignment.

May 2023

This course specification may be reproduced in whole or in part for educational purposes

provided that no profit is derived from reproduction and that, if reproduced in part, the source

is acknowledged. Additional copies of this course specification can be downloaded from

SQA’s website at www.sqa.org.uk.

Note: You are advised to check SQA’s website to ensure you are using the most up-to-date

version of the course specification.

© Scottish Qualifications Authority 2017, 2018, 2021, 2023

http://www.sqa.org.uk/

	National 5 Computing Science Course Specification
	Course overview
	Course rationale
	Purpose and aims
	Who is this course for?
	Course content
	Skills, knowledge and understanding
	Skills for learning, skills for life and skills for work
	Course assessment
	Course assessment structure: question paper
	Course assessment structure: assignment
	Grading
	Equality and inclusion
	Further information
	Appendix: course support notes
	Introduction
	Developing skills, knowledge and understanding
	Approaches to learning and teaching
	Preparing for course assessment
	Developing skills for learning, skills for life and skills for work
	Resources to support the National 5 Computing Science course
	Appendix 1: design techniques (SDD)
	Appendix 2: user-interface design (SDD)
	Appendix 3: standard algorithms (SDD)
	Appendix 4: efficient use of coding constructs (SDD)
	Appendix 5: design: entity-relationship diagrams (DDD)
	Appendix 6: design — data dictionary (DDD)
	
	Appendix 7: design of solution to database queries (DDD)
	
	Appendix 8: testing and evaluation (DDD)
	Appendix 9: website structure (WDD)
	Appendix 10: interface design (WDD)
	Appendix 11: low-fidelity prototyping (WDD)
	Appendix 12: SQL (DDD)
	Appendix 13: analysis (WDD)
	Appendix 14: analysis (DDD)
	Administrative information

