

2022 Statistics

Advanced Higher - Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2022

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from <u>permissions@sqa.org.uk</u>.

General marking principles for Advanced Higher Statistics

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.

For each question, the marking instructions are generally in two sections:

- generic scheme this indicates why each mark is awarded
- illustrative scheme this covers methods which are commonly seen throughout the marking

In general, you should use the illustrative scheme. Only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.

- (a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
- (b) If you are uncertain how to assess a specific candidate response because it is not covered by the general marking principles or the detailed marking instructions, you must seek guidance from your team leader.
- (c) One mark is available for each •. There are no half marks.
- (d) If a candidate's response contains an error, all working subsequent to this error must still be marked. Only award marks if the level of difficulty in their working is similar to the level of difficulty in the illustrative scheme.
- (e) Only award full marks where the solution contains appropriate working. A correct answer with no working receives no mark, unless specifically mentioned in the marking instructions.
- (f) Candidates may use any mathematically correct method to answer questions, except in cases where a particular method is specified or excluded.
- (g) If an error is trivial, casual or insignificant, for example $6 \times 6 = 12$, candidates lose the opportunity to gain a mark, except for instances such as the second example in point (h) below.
- (h) If a candidate makes a transcription error (question paper to script or within script), they lose the opportunity to gain the next process mark, for example

The following example is an exception to the above

(i) Horizontal/vertical marking

If a question results in two pairs of solutions, apply the following technique, but only if indicated in the detailed marking instructions for the question.

Example:

Horizontal: ${}^{5}x = 2$ and x = -4 ${}^{6}y = 5$ y = -7Horizontal: ${}^{5}x = 2$ and x = -4 ${}^{6}y = 5$ and y = -7 ${}^{6}x = -4$ and y = 5 ${}^{6}x = -4$ and y = -7

You must choose whichever method benefits the candidate, **not** a combination of both.

(j) In final answers, candidates should simplify numerical values as far as possible unless specifically mentioned in the detailed marking instruction. For example

 $\frac{15}{12}$ must be simplified to $\frac{5}{4}$ or $1\frac{1}{4}$ $\frac{43}{1}$ must be simplified to 43 $\frac{15}{0\cdot 3}$ must be simplified to 50 $\frac{\frac{4}{5}}{3}$ must be simplified to $\frac{4}{15}$ $\sqrt{64}$ must be simplified to 8*

*The square root of perfect squares up to and including 100 must be known.

- (k) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
- (I) Do not penalise candidates for any of the following, unless specifically mentioned in the detailed marking instructions:
 - working subsequent to a correct answer
 - correct working in the wrong part of a question
 - legitimate variations in numerical answers/algebraic expressions, for example angles in degrees rounded to nearest degree
 - omission of units
 - bad form (bad form only becomes bad form if subsequent working is correct), for example

 $(x^{3}+2x^{2}+3x+2)(2x+1)$ written as $(x^{3}+2x^{2}+3x+2) \times 2x+1$ $= 2x^{4}+5x^{3}+8x^{2}+7x+2$

gains full credit

- repeated error within a question, but not between questions or papers
- (m) In any 'Show that...' question, where candidates have to arrive at a required result, the last mark is not awarded as a follow-through from a previous error, unless specified in the detailed marking instructions.
- (n) You must check all working carefully, even where a fundamental misunderstanding is apparent early in a candidate's response. You may still be able to award marks later in the question so you must refer continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that you can award all the available marks to a candidate.

- (o) You should mark legible scored-out working that has not been replaced. However, if the scored-out working has been replaced, you must only mark the replacement working.
- (p) If candidates make multiple attempts using the same strategy and do not identify their final answer, mark all attempts and award the lowest mark. If candidates try different valid strategies, apply the above rule to attempts within each strategy and then award the highest mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Marking instructions for each question

1. • ¹ appropriate hyp	oothesis	• ¹ H ₀ : preva associ	alence of ir	fection is i		
		 ¹ H₀: prevalence of infection is not associated with the sex of the fish H₁: there is an association between prevalence of infection and sex 			6	
• ² calculate E _i		• ² Expected	d frequenci Male	es are Female		
		Yes	104.03	100.97		
		No	370.97	360.03		
• ³ calculate test s	tatistic	• ³ $X^2 = 19$.6			
● ⁴ correct critical	value	• $\chi^2_{1,0.990}$	= 6.635			
\bullet^5 deal with H_0		• ⁵ 19.6 > 6 the 1% le	.635 so we evel of sign	reject H ₀ (ificance)	(at	
• ⁶ appropriate cor	nclusion	• ⁶ and cond (strong) associati the prev sex	clude that t evidence o on betwee alence of ir	here is f an n nfection an	d	

1. For \bullet^1 , at least one of the hypotheses must include the context of problem, i.e. the prevalence of

- infection and the sex of the fish.
- 2. For \bullet^2 , also accept values rounded to at least 3 significant figures.
- 3. Alternatively, •⁴ p-value = 0.000009 and •⁵ · 0.000009 < 0.01 so we reject H₀'.
- 4. For •⁶, do not accept conclusions that are too definite. Phrasing must include 'evidence to conclude...', or 'evidence to suggest...', or similar.

Commonly Observed Responses:

Question		on	Generic scheme	Illustrative scheme	Max mark	
2.	(a)		• ¹ state distribution	• ¹ X~Po(2.3)	1	
Note	es:	1				
Com	monly	v Obse	erved Responses:			
	(b)		• ² calculate probability	• ² $P(X = 0) = 0.1003$	1	
Note	s:					
1. Fo	or \bullet^2 , a	also a	ccept values equivalent to rounding to	3 significant figures. i.e. 0.1, 0.10, 0.10	00	
Com	monly	v Obse	erved Responses:			
	(c)		• ³ correct strategy	• ³ $P(X = 2)P(Y = 2)$	2	
			• ⁴ calculate probability	• $0.2652 \times 0.2640 = 0.0700$		
Note	es:					
1. Fo	or \bullet^4 , a	also ao	ccept values equivalent to rounding to	3 significant figures. i.e. 0.07, 0.070		
Com	monly	0bse	erved Responses:			
1. If	value	s for I	P(X = 2) and $P(Y = 2)$ calculated separation of $P(X = 2)$ calculated separation of $P(X = 2)$ and $P(X = 2)$ calculated separation of $P(X = 2)$ and $P(X = 2)$ calculated separation of $P(X = 2)$ calculate	tely, but then nothing done with them,	then	
2. If	Po(4)	used	and $P(X + Y = 4)$ calculated, then no m	narks awarded.		
3. If	candi	dates	calculate $P(X = 2) + P(Y = 2) = 0.5292$, then only gain $ullet^4$.		
	(d)		• ⁵ correct distribution	• ⁵ $X + Y \sim \text{Po}(4)$	3	
			a ⁶ correct strategy	$\int P(X+Y>5)$		
			• conect strategy	$\Big = 1 - P\Big(X + Y \le 5\Big)$		
			• ⁷ calculate probability	• ⁷ 0.2149		
Note	Notes:					
Com	monly	obse	erved Responses:			
1. If	candi	dates	use a normal approximation distributio	on, then no marks awarded.		
2. P	2. $P(X+Y>5)=1-P(X+Y\leq 4)=1-0.6288=0.3712$, gains marks \bullet^5 and \bullet^7 only.					

Q	uestic	n	Generic scheme Illustrative scheme Ma ma	ax ark		
3.			•1 calculate probabilities •1 t 0 2 4 6 8 $P(T = t)$ 0.1 0.2 0.4 0.2 0.1 4 4	4		
			• ² calculate $E(T)$ • ² $E(T) = 4$			
			• ³ correct strategy • ³ $V(T) = E(T^2) - E^2(T)$			
			• ⁴ calculate V(T) • ⁴ V(T) = 4.8			
Note	s:					
Com	monly	Obse	erved Responses:			
1. lf	table	used	is:			
	t	0	2 4 6 8			
P (<i>T</i>	= <i>t</i>)	0.4	0.2 0.4 0 0			
which gives $E(T) = 2$ and $V(T) = 3.2$ then award \bullet^2 , \bullet^3 and \bullet^4						
2. If table used is:						
	t	0	2 4 6 8			
P (<i>T</i>	= <i>t</i>)	0.2	0.2 0.2 0.2 0.2			

which gives E(T) = 4 and V(T) = 8 then award \bullet^2 , \bullet^3 and \bullet^4

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark
4.	(a)		• ¹ state distribution	•1 $X \sim B(104, 0.44)$	3
			• ² use distribution	• ² $P(X = 52)$	
			• ³ calculate probability	• ³ 0.0367	
Note	s:				
1. Fo	or ● ³ , a	accept	t answer rounded to 3 decimal places		
Com	monly	0bse	erved Responses:		
1. If pr	a Nori obabi	mal a _l lity =	oproximation to a Binomial distribution 0.0369, and marks \bullet^1 , \bullet^2 and \bullet^3 can be	is used, with continuity correction, the awarded.	en
2. If ar	a Pois nd • ³ r	son a emain	pproximation to a Binomial distribution available.	is used, then do not award • ¹ , but mar	ks ● ²
	(b)		• ⁴ state approximate distribution	• ⁴ $X \approx N(45.76, 25.6256)$	4
			$ullet^5$ use continuity correction	• ⁵ $P(39.5 < X < 50.5)$	
			• ⁶ calculate z values	• ⁶ $P(-1.24 < Z < 0.94)$	
			• ⁷ calculate probability	• ⁷ 0.7189	
Note	s:				
1. Fo	or ●⁴, c se an a	omissi appro>	on of double-tilde notation is not penal kimation.	ised, as the question instructed candid	ates to
Com	monly	0bse	erved Responses:		
1. lf	1. If no continuity correction applied, then $P(-1.137 < Z < 0.837) = 0.6709$. Award $\bullet^4 \bullet^6 \bullet^7$ only.				
2. If exact Binomial calculation performed, then probability = 0.7179. Award \bullet^7 only.					
3. lf	3. If Poisson approximation used, then probability = 0.5841. Award \bullet^7 only.				

Question		on	Generic scheme	Illustrative scheme	Max mark
5.	(a)		• ¹ state reason	• ¹ we have paired data	1
	(b)		• ² show strategy	• ² $t_{n-1} = \frac{\overline{x}_d}{\frac{s_d}{\sqrt{n}}}$	8
			• ³ state hypotheses	• ³ $H_0: \mu_d = 0$ $H_1: \mu_d \neq 0$	
			• ⁴ calculate \overline{x}_d and s_d	•4 $\overline{x}_d = 2.44 \ s_d = 2.92$	
			● ⁵ calculate <i>t</i>	• ⁵ $t = \frac{2.44}{2.92/\sqrt{9}} = 2.507$	
			• ⁶ state critical value	• ⁶ $t_{8,0.975} = 2.306$	
			$ullet^7$ deal with H_0	 ⁷ 2.507 > 2.306 so we reject H₀ at the 5% level of significance 	
			• ⁸ write conclusion	• ⁸ and conclude that there is evidence that the mean of differences in performance between French and German is non-zero.	
			• ⁹ appropriate assumption	• ⁹ the differences are normally distributed	

Question		on	Generic scheme	Illustrative scheme	Max mark	
5.	(b)	(con	tinued)			
Not	es:					
1.	For ● ¹ ,	do not	accept any references to independence	or normality.		
2.	For \bullet^3 ,	hypotl	neses must clearly reference 'differences	of means'.		
3.	For ● ³ ,	also a	ccept $H_0: \mu_F = \mu_G \;\; H_1: \mu_F eq \mu_G$ (as μ_F	$\mu_F = \mu_G \Leftrightarrow \mu_F - \mu_G = 0 \Leftrightarrow \mu_{F-G} = 0$).		
4.	• Alternatively, $\bullet^6 p$ -value = 0.0363 and $\bullet^7 0.0363 < 0.05$ so we reject H ₀ at the 5% level of significance					
5.	• To gain • ⁷ , there must be clear communication somewhere in the solution of the level of significance chosen, as it was not given in the question.					
6.	For $\bullet^7 a$	and • ⁸ ,	also accept other levels of significance,	only if the logic is consistent.		
7.	For ● ⁸ ,	respor	nse must reference the 'mean of differen	ces'.		
8.	For \bullet^8 ,	do not	accept conclusions that are too definite	. Phrasing must include 'evidence to		
9.	For \bullet^9 ,	respor	nse must reference 'differences'.			

Question		on	Generic scheme	Illustrative scheme	Max mark
5.	(b)	(con	tinued)		
Com	monly	0bse	erved Responses:		
Cano	didate	A - p <i>N</i>	erformed two sample <i>t</i> -test for a different \bullet^2 not available.	ence in population means (non-paired c	lata)
		Ν	ark • ⁴ requires $\overline{x}_F = 65.78 \ s_F = 15.81$	$\bar{x}_G = 63.33 \ s_F = 16.73$	
		Ν	ark \bullet^5 requires $t = 0.318$		
		Ν	ark \bullet^6 requires $t_{16,0.975} = 2.120$		
		Ν	arks \bullet^7 , \bullet^8 , \bullet^9 available only if consisten	t with previous workings	
Cano	didate	В-р М	erformed two sample <i>z</i> -test for a different arks \bullet^2 and \bullet^5 not available.	ence in population means (non-paired o	data)
		Ν	ark • ⁴ requires $\overline{x}_F = 65.78 \ s_F = 15.81$	$\bar{x}_G = 63.33 \ s_F = 16.73$	
		Μ	ark • ⁶ requires $z_{0.975} = 1.96$		
		Ν	arks \bullet^7 , \bullet^8 , \bullet^9 available only if consisten	t with previous workings	
Cano	didate	C - p <i>M</i>	erformed one-sample <i>z</i> -test on mean diarks \bullet^2 and \bullet^5 not available.	fferences (paired data)	
		Ν	hark \bullet^4 requires $\overline{x}_d = 2.44 \ s_d = 2.92$		
		Ν	ark • ⁶ requires $z_{0.975} = 1.96$		
		Ν	arks \bullet^7 , \bullet^8 , \bullet^9 available only if consisten	t with previous workings	
Cano	didate	D - p	erformed Mann-Whitney test (non-paire	d data)	
		N M	arks \bullet^2 and \bullet^3 not available.		
		Ň	hark \bullet^{6} requires critical value of 62 (for !	5%)	
		M 'r	arks \bullet^7 , \bullet^8 , \bullet^9 available only if consistemedians' rather than 'means'	nt with previous workings, and must n	nention
Cano	didate	E - p <i>N</i>	erformed Wilcoxon Signed-Rank Test (pa ark •² not available.	aired data)	
		N M	ark \bullet^{\dagger} requires rank sum, $W = 4$	difference	
		N	$ark \bullet^{6}$ requires critical value of 3 (for 5)	% with n=8)	
		M 'r	arks \bullet^7 , \bullet^8 , \bullet^9 available only if consistenedians' rather than 'means'	nt with previous workings, and must n	nention

Q	Question		Generic scheme	Illustrative scheme	Max mark			
6.	(a)		• ¹ appropriate description	• ¹ there is a distinct U-shaped pattern to the residuals	2			
			• ² appropriate description	• ² non-constant variance				
Note	s:							
1. Fc	or \bullet^1 , a	also ao	ccept 'non-random scatter'.					
Com	monly	Obse	erved Responses:					
1. Do	o not a	accept	t 'mean of residuals being zero'.					
	(b)		 ³ calculate <i>b</i>-value ⁴ calculate mean values and <i>a</i> value 	• ³ $\begin{cases} b = \frac{S_{xw}}{S_{xx}} \\ = \frac{-715.456}{51170} \\ = -0.01398 \end{cases}$ • ⁴ $\begin{cases} \overline{w} = \frac{101.2529}{85} = 1.1912 \\ \overline{x} = \frac{3740}{85} = 44 \\ a = \overline{w} - b\overline{x} \\ = 1.1912 - 44(-0.01398) \\ = 1.806 \end{cases}$	4			
			• ⁵ appropriate regression line	• $w = 1.81 - 0.014x$				
			• ⁶ predicted percentage	• $y = 10^{1.81 - 0.014 \times 87} = 3.9\%$				
Note	s:		1					
1. Fc	or \bullet^3 , v	alue	must be stated to at least 2 significant	figures.				
2. Fo	or \bullet^5 , a	also ad	ccept $\log y = 1.81 - 0.014x$ and $\log_{10} y = 1.81 - 0.014x$	=1.81–0.014 <i>x</i> .				
Com	Commonly Observed Responses:							

Question		on	Generic scheme	Illustrative scheme	Max mark	
7.	(a)		• ¹ correct method	• $E\left(\frac{X}{n}\right) = \frac{1}{n}E(X) = \frac{1}{n}np = p$	2	
			• ² correct method	• ² $\begin{cases} V\left(\frac{X}{n}\right) = \frac{1}{n^2} V(X) \\ = \frac{1}{n^2} npq \\ = \frac{pq}{n} \end{cases}$		
Note	s:					
1. Fc	or eith	er ma	ark, do not accept any methods that 'w	ork backwards from the answer'.		
2. Fo	or ●¹, t	he m	inimum response must contain $E\left(\frac{X}{n}\right)$ =	$=\frac{1}{n}np$.		
3. Fo	or ●², t	he m	inimum response must contain $V\left(\frac{X}{n}\right)$ =	$=\frac{1}{n^2} npq$.		
Com	monly	Obse	erved Responses:			
1. Fc	or ●², V	$\left(\frac{X}{n}\right)$	$=\frac{1}{n} V(X) = \frac{1}{n^2} npq$ gains no marks.			
	(b)		• ³ correct verification	• 3 <i>np</i> =14 and <i>nq</i> =36, both > 5	4	
			• ⁴ appropriate strategy	• ⁴ $\hat{p} \pm z \sqrt{\frac{\hat{p}\hat{q}}{n}}$		
			• ⁵ substitute	• ⁵ 0.28±2.58 $\sqrt{\frac{0.28\times0.72}{50}}$		
			• ⁶ calculate interval	• ⁶ (0.116, 0.444)		
Note	s:					
1. Fo 2. Fo	 For •³, both np and nq must be evaluated and compared to 5. For •⁶, omission of brackets not penalised (considered to be 'bad form'). 					
Com	monly	0bse	erved Responses:			
1. lf	1. If a z-interval is correctly calculated to be (12.84, 15.15) then do not award \bullet^4 .					

Question		on	Generic scheme	Illustrative scheme	Max mark		
8.	(a)		• ¹ correct strat8egy	• $\frac{1}{5} \times \dots$	2		
			• ² calculate probability	$\bullet^2 \frac{1}{5} \cdot \frac{5}{8} = \frac{1}{8}$			
Note	es:						
	(b)	(i)	• ³ calculate probability	$\bullet^3 \frac{2}{5}$	1		
		(ii)	• ⁴ correct strategy	• ⁴ $P(L)=P(1 \cap S)+P(4 \cap S)$	3		
			• ⁵ substitute probabilities	• ⁵ $\frac{1}{5} \cdot \frac{2}{5} + \frac{1}{5} \cdot \frac{3}{8}$			
			• ⁶ calculate probability	• ⁶ $\frac{31}{200}$			
		(iii)	• ⁷ correct strategy	• ⁷ $P(1 L) = \frac{P(L 1)P(1)}{P(L)}$	3		
			• ⁸ substitute probabilities	• ⁸ $\frac{\frac{2}{5} \cdot \frac{1}{5}}{\frac{31}{200}}$			
			• ⁹ calculate probability	• $9 \frac{16}{31}$			
Note	Notes:						
2. M	 Other methods are acceptable in (ii) and (iii) eg tree diagrams. Mark •⁴ can be awarded by implication from mark •⁵. Mark •⁷ can be awarded by implication from mark •⁸ 						
Com	monly	v Obse	erved Responses:	·			

Question		on	Generic scheme	Illustrative scheme	Max mark
9.	(a)		• ¹ appropriate description	• ¹ the distribution of the sample mean is approximately normal	2
			• ² appropriate description	• ² irrespective of the distribution of the population.	
Note	s:				
1. Fc	or ● ¹ , r	nust r	eference 'distribution' and 'sample me	ean' and 'approximately normal'.	
2. Fo	or ● ¹ , a	also ao	ccept $\overline{X} \approx N()$.		
Com	monly	v Obse	erved Responses:		
	(b)		• ³ correct test statistic	• ³ $z = \frac{52.6 - 50}{\sqrt{\frac{103.25}{45}}} = 1.71646$	5
			• ⁴ correct critical value	• ⁴ 5% cv is 1.64	
			\bullet^5 deal with H_0	 ⁵ 1.72 > 1.64 so we reject H₀ at the (5% level of significance) 	
			• ⁶ appropriate conclusion	 ⁶ conclude that there is evidence the mean width of the battens is more than 50mm 	
			• ⁷ appropriate assumption	 ⁷ population variance is well approximated by the sample variance 	

Notes:

1. Alternatively for $\bullet^4 p$ -value = 0.043 and $\bullet^5 0.043 < 0.05$ so we reject H₀.

- For •⁶, do not accept conclusions that are too definite. Phrasing must include 'evidence to conclude...', or 'evidence to suggest...', or similar.
 For •⁷, also accept 'population variance is the same as the sample variance'.

Commonly Observed Responses:

Question			Generic scheme	Illustrative scheme	Max mark		
10.	(a)		• ¹ correct hypothesis	• $H_0: \rho = 0 \ H_1: \rho \neq 0$	7		
			• ² correct value of r	• ² $r = \frac{46.29}{\sqrt{278.61 \times 10.95}} = 0.838$			
			• ³ calculate test statistic	• ³ $t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}} = 3.071$			
			• ⁴ correct cv	• ⁴ $t_{4, 0.975} = 2.776$			
			$\bullet^{\scriptscriptstyle 5}$ deal with H_0	• ⁵ 3.071>2.776 so we reject H _{0 (} at the 5% level of significance)			
			• ⁶ appropriate conclusion	• ⁶ conclude that the evidence suggests a (positive) linear association between the exposure index and the number of related deaths per 10 000 of the population			
			• ⁷ appropriate assumption	• ⁷ assuming the pairs of observations are independent			
 Notes: 1. For •¹, also accept hypothesis phrased in terms of correlation, in the context. 2. For •¹, do not accept 'H₀: are linearly associated'. 3. Alternatively, •⁴ p-value = 0.0372. 4. For •⁶, do not accept conclusions that are too definite. Phrasing must include 'evidence to conclude', or 'evidence to suggest', or similar. 5. For •⁷, also accept that variables are distributed with an (approximately) bivariate normal distribution. 6. For •⁷, also accept 'all towns are independent'. 							
Com	Commonly Observed Responses:						
Candidate A - performed hypothesis test on β Mark \bullet^1 not available. Mark \bullet^2 requires $b = 0.1661$ and $s = 0.9026$ Mark \bullet^6 requires reference to the slope parameter							
	(b)		• ⁸ appropriate suggestion	• ⁸ correlation is not causation	1		
Notes:							
1. For •° accept other explanations such as deaths may be from other causes.							
Commonly Observed Responses:							

Question			Generic scheme	Illustrative scheme	Max mark
11.	(a)	(i)	• ¹ correct drawing, with appropriate key	• ¹ Adults Juveniles 3 0 7 9 5 3 1 1 1 3 7 9 9 7 3 2 2 8 9 5 5 3 0 4 1 Key $13 = 1 3$ seconds	2
			• ² write comment	 ² it appears that juveniles react quicker to loud music 	
		(ii)	 ³ appropriate hypothesis ⁴ correct critical value ⁵ deal with H₀ ⁶ write conclusion 	 ³ H₀: η_a = η_j H₁: η_a ≠ η_j ⁴ 5% cv is 78 ⁵ 89 > 78 so we cannot reject H₀ at the 5% level of significance ⁶ and conclude that there is no evidence of a difference in median reaction times (between adult and juvenile foxes) 	4

Notes:

- 1. For •¹, do not penalise use of commas between digits (considered to be 'bad form').
- **2.** For \bullet^1 , do not penalise lack of units in the key (considered to be 'bad form').
- **3.** For \bullet^1 , leaves must be in descending order, away from the stem.
- **4.** For •¹, also accept 'double stemmed' diagram, exemplified below:

Adults		Juveniles	
3	0		
	0	79	
3	1	1 1 3	
5	1	79	
32	2		
97	2	89	
	3		
55	3		
0	4	1	
	4		

- **5.** Mark \bullet^2 is only available for a contextual comment based on the stem-and-leaf diagram.
- **6.** Mark •⁴ is not available if performed (an invalid) normal approximation to Mann-Whitney.
- 7. For \bullet^4 , also accept 10% critical value is 82, or 2% critical value is 74.
- 7. To gain ●⁵, there must be clear communication somewhere in the solution of the level of significance chosen, as it was not given in the question.
- 8. For •⁶, do not accept conclusions that are too definite. Phrasing must include 'evidence to conclude...', or 'evidence to suggest...', or similar.
- 9. For •6, response must reference '...different in median....'

Commonly Observed Responses:

Question			Generic scheme	Illustrative scheme	Max mark
	(b)		• ⁷ find difference of random variables	• ⁷ $D=A-J$	5
			• ⁸ correct μ and σ^2	• ⁸ $E(D) = 0.5$, $V(D) = 0.8$	
			• ⁹ correct strategy	• $P(D > 0)$	
			• ¹⁰ continue strategy	• ¹⁰ P $\left(Z > \frac{0 - 0.5}{\sqrt{0.8}}\right) = P(Z > -0.56)$	
			• ¹¹ calculate probability	• ¹¹ 0.7123	

Notes:

- **1.** For \bullet^7 , also accept calculating D = J A (which then impacts on direction of inequality in marks \bullet^9 and \bullet^{10}).
- 2. Mark •¹¹ can only be awarded (as a follow through) for the calculation of a probability from a normal distribution that does not have a variance to be either 0.3 or 0.5.

Commonly Observed Responses:

1. If V(D)=0.2, then z-value = ± 1.118 . Do not award mark \bullet^8 and other marks remain available as follow through.

[END OF MARKING INSTRUCTIONS]