

National Qualifications 2023

2023 Mathematics

Paper 1 - (Non-calculator)

National 5

Finalised Marking Instructions

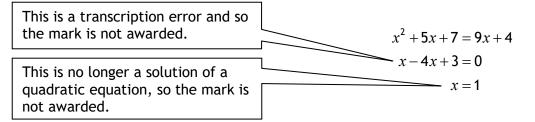
© Scottish Qualifications Authority 2023

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

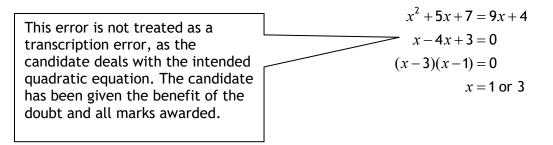
The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

General marking principles for National 5 Mathematics

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.


For each question, the marking instructions are generally in two sections:

generic scheme — this indicates why each mark is awarded illustrative scheme — this covers methods which are commonly seen throughout the marking


In general, you should use the illustrative scheme. Only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.

- (a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
- (b) If you are uncertain how to assess a specific candidate response because it is not covered by the general marking principles or the detailed marking instructions, you must seek guidance from your team leader.
- (c) One mark is available for each •. There are no half marks.
- (d) If a candidate's response contains an error, all working subsequent to this error must still be marked. Only award marks if the level of difficulty in their working is similar to the level of difficulty in the illustrative scheme.
- (e) Only award full marks where the solution contains appropriate working. A correct answer with no working receives no mark, unless specifically mentioned in the marking instructions.
- (f) Candidates may use any mathematically correct method to answer questions, except in cases where a particular method is specified or excluded.
- (g) If an error is trivial, casual or insignificant, for example $6 \times 6 = 12$, candidates lose the opportunity to gain a mark, except for instances such as the second example in point (h) below.

(h) If a candidate makes a transcription error (question paper to script or within script), they lose the opportunity to gain the next process mark, for example

The following example is an exception to the above

(i) Horizontal/vertical marking

If a question results in two pairs of solutions, apply the following technique, but only if indicated in the detailed marking instructions for the question.

Example:

You must choose whichever method benefits the candidate, **not** a combination of both.

(j) In final answers, candidates should simplify numerical values as far as possible unless specifically mentioned in the detailed marking instruction. For example

$\frac{15}{12}$ must be simplified to $\frac{5}{4}$ or $1\frac{1}{4}$	$\frac{43}{1}$ must be simplified to 43
$\frac{15}{0\cdot 3}$ must be simplified to 50	$\frac{\frac{4}{5}}{3}$ must be simplified to $\frac{4}{15}$
$\sqrt{64}$ must be simplified to 8*	

*The square root of perfect squares up to and including 144 must be known.

- (k) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
- (I) Do not penalise candidates for any of the following, unless specifically mentioned in the detailed marking instructions:
 - working subsequent to a correct answer
 - correct working in the wrong part of a question
 - legitimate variations in numerical answers/algebraic expressions, for example angles in degrees rounded to nearest degree
 - omission of units
 - bad form (bad form only becomes bad form if subsequent working is correct), for example

 $(x^{3}+2x^{2}+3x+2)(2x+1)$ written as

 $(x^3 + 2x^2 + 3x + 2) \times 2x + 1$

 $= 2x^4 + 5x^3 + 8x^2 + 7x + 2$

gains full credit

- repeated error within a question, but not between questions or papers
- (m) In any 'Show that...' question, where candidates have to arrive at a required result, the last mark is not awarded as a follow-through from a previous error, unless specified in the detailed marking instructions.
- (n) You must check all working carefully, even where a fundamental misunderstanding is apparent early in a candidate's response. You may still be able to award marks later in the question so you must refer continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that you can award all the available marks to a candidate.
- (o) You should mark legible scored-out working that has not been replaced. However, if the scored-out working has been replaced, you must only mark the replacement working.
- (p) If candidates make multiple attempts using the same strategy and do not identify their final answer, mark all attempts and award the lowest mark. If candidates try different valid strategies, apply the above rule to attempts within each strategy and then award the highest mark.

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

For example:

In this case, award 3 marks.

Marking Instructions for each question

Question	Generic scheme	Illustrative scheme	Max mark		
1.	 ¹ convert to improper fraction and multiply by the reciprocal 	$\bullet^1 \frac{13}{6} \times \frac{9}{8}$	2		
	• ² consistent answer	• ² $\frac{39}{16}$ or $2\frac{7}{16}$			
Notes:					
1. Correct answe	er without working	award 0/2			
2. Final answer	must be in simplest form, eg $\frac{13}{6} \times \frac{9}{8} = \frac{1}{2}$	17 48 award 1/2 √√	´ 2		
3. \bullet^2 is only avai	lable where simplifying is required.				
	se incorrect conversion of $\frac{39}{16}$ to a mixe	ed number.			
Commonly Obse	erved Responses:				
1. $\frac{13}{6} \times \frac{8}{9} = \frac{52}{27}$		award 1/2 ×√	1		
2. $\frac{6}{13} \times \frac{8}{9} = \frac{16}{39}$		award 1/2 ×√	1		
3. (a) $\frac{13}{6} \times \frac{9}{8} \rightarrow \frac{13}{8}$	$\frac{6}{13} \times \frac{9}{8} = \frac{27}{52}$	award 1/2 √×			
(b) $\frac{6}{13} \times \frac{9}{8} = \frac{2}{52}$	7 2	award 1/2 ×√	1		
$4. \ 2\frac{1}{6} \times \frac{9}{8} \rightarrow 2\frac{1}{2}$	$\times \frac{3}{8} \rightarrow 2\frac{3}{16}$	award 0/2			
2.	•1 start expansion	• x^2 + 7x + 7x + 49 or $6x^2$ - 60	3		
	• ² complete expansion	$e^{2} x^{2} + 7x + 7x + 49 + 6x^{2} - 60$			
	• ³ collect like terms (see Note 2)	$\bullet^3 7x^2 + 14x - 11$			
Notes:					
1. Correct answe	er without working	award 3/3			
2. For the award of \bullet^3 , the evidence at \bullet^2 must include an x^2 term. At least one negative term must be collected with another term.					
3. For subsequer	nt incorrect working, the final mark is r	not available.			
Commonly Obse	erved Responses:				
1. x^2 + 49 + 6 x^2 -	$-60 = 7x^2 - 11$	award 2/3 √×	√1		

Qu	uestio	n	Generic scheme	Illustrative scheme	Max mark
3.			• ¹ correct scaling	• ¹ eg $\frac{10x+15y=40}{10x+4y=-4}$	3
				OR $4x + 6y = 16$ 15x + 6y = -6	
			• ² value for one variable	• ² $x = -2$ or $y = 4$	
			• ³ value for other variable	• ³ $y = 4$ or $x = -2$	
Note	s:				
1. Co	rrect	answe	ers without working	award 0/3	
2. An	swers	obtai	ined by repeated substitution	award 0/3	
3. Fo	llowin	g an e	earlier error, accept rounded answers g	given to at least 1 decimal place.	
Com	monly	Obse	erved Responses:		
4.	(a)	(i)	• ¹ state value of a	• ¹ -3	1
		(ii)	• ² state value of b	• ² 2	1
fc	/here or a fii	nal ar	alues of a and b are not stated explicit iswer of $y = (x - 3)^2 + 2$	award 1/1 for (i) and 1/1 for (ii)	
			er of $a = 2, b = -3$	award 0/1 mark for (i) and 1/1 for (ii) ×√1
	-		erved Responses: $-2 \rightarrow a = 3, b = 2$	award 0/1 mark for (i) and 1/1 for (ii) ×√1
2. y	=(x+	3) ² +	$2 \rightarrow a = -3, b = 2$	award 1/1 mark for (i) and 1/1 for (ii)
	(b)		• ³ find value of c	• ³ 11	1
Note					
			be consistent with answers to (a).		
	-	•) or $y = 11$. erved Responses:		
	nomy	0030			

Q	uestio	n	Generic scheme	Illustrative scheme	Max mark
5.			• ¹ calculate discriminant	• ¹ 52	2
			• ² state nature of roots	• ² 2 real (and) distinct roots	
Note	s:				
1. Co	orrect	answe	er without working	award 0/2	
2. Fo	2. For $36 - (-16) > 0$ or $36 + 16 > 0 \rightarrow 2$ real (and) distinct roots award 2/2				
3. Fo	or the	awaro	d of \bullet^2 accept "2 real unequal roots".		
4. Do	o not a	accept	t "2 real roots" or "2 distinct roots" or	"real and distinct roots".	
(a	 5. Expected answers for the award of ●², when (a) b² - 4ac < 0 : "no real roots". (b) b² - 4ac = 0 : "1 repeated real root" or "2 equal real roots". 				
	6. Accept $\sqrt{52}$ as evidence for \bullet^1 in a quadratic formula or alone. Commonly Observed Responses:				
com	monty	0036			

Q	uestion	Generic scheme	Illustrative scheme	Max mark			
6.		• ¹ correct substitution into cosine rule	• 1 $6^{2} + 5^{2} - 2 \times 6 \times 5 \times \frac{1}{5}$	3			
		•² calculate AB²	• ² 49				
		• ³ calculate AB	• 3 7				
Note 1. C		er without working	award 0/3				
2. (a	a) $6^2 + 5^2 -$	$2 \times 6 \times 5 \times \frac{1}{5} = 61 - 60 \times \frac{1}{5} = 49 \rightarrow$	• 7				
	where cos is scored out in each line of working award 3/3						
(t	(b) For $6^2 + 5^2 - 2 \times 6 \times 5 \times \cos \frac{1}{5} = 49 \rightarrow 7$ award 2/3 × $\checkmark \checkmark$						
3. Fo	or the award	l of •1 accept eg $\frac{1}{5} = \frac{6^2 + 5^2 - AB^2}{2 \times 6 \times 5}$					
		ilable where AB ² has been obtained frong the square root of a perfect square (
C	OR						
(b) expressin	g a surd in its simplest form.					
5. W	here sine ru	le or area of triangle formula is used	award 0/3				
Com	monly Obse	erved Responses:					
1. 6	$^{2}+5^{2}+2\times6$	$\times 5 \times \frac{1}{5} \to \sqrt{73}$	award 1/3 ×√	í1×			
2. (a	a) $\sqrt{6^2+5^2} =$	= √61	award 0/3				
(b	b) $\sqrt{6^2-5^2} =$	= \sqrt{11}	award 0/3				

Q	Juesti	on	Generic scheme	Illustrative scheme	Max mark
7.	(a)		Method 1		3
			• ¹ calculate gradient	• ¹ 1500	
			 ² substitute gradient and a point into y - b = m(x - a) 	• ² eg y – 20000 = 1500 (x – 5)	
			• ³ determine the equation of the line in terms of <i>P</i> and <i>T</i> in simplest form	• ³ $P = 1500T + 12500$	
			Method 2		
			• ¹ calculate gradient	• ¹ 1500	
			• ² substitute gradient and a point into $y = mx + c$	• ² eg 20000 = 1500 × 5 + c	
			• ³ determine the equation of the line in terms of <i>P</i> and <i>T</i> in simplest form	• ³ $P = 1500T + 12500$	
Note	es:				
			er without working	award 0/3	
2. A	ccept	20	$\frac{0}{2}$ or equivalent for the award of \bullet^1 .		
	¹ is no radien		able for using points other than (5, 20	000), (15, 35 000) and (25, 50 000) to f	ind the
	or an i ccurs,		ect simplification of a gradient, a mark	is not awarded at the point where the	error
			$5000 \rightarrow y - 20000 = 15000(x-5) \rightarrow P =$	= 15000 <i>T</i> − 55000 award 2/3 ×√	´1√1
			$y - 20000 = 15000(x - 5) \rightarrow P = 150002$		√1
			$y - 20000 = \frac{30000}{20}(x-5) \rightarrow P = 15000$		x
Com	monly	y Obse	erved Responses:		
	-		e shown		
1.	$P = \frac{15}{2}$	$\frac{00}{1}T +$	12500	award 2/3 √√	x
2. l	Jsing ((1,2) a	nd (5,5): eg gradient = $\frac{3}{4} \rightarrow 2 = \frac{3}{4} \times 1 +$	$c \rightarrow P = \frac{3}{4}T + \frac{5}{4}$ award 2/3 × \checkmark	′1√1

2. Using (1,2) and (5,5): eg gradient = $\frac{5}{4} \rightarrow 2 = \frac{5}{4} \times 1 + c \rightarrow P = \frac{5}{4}T + \frac{5}{4}$ award 2/3 × $\sqrt{1}\sqrt{1}$ 3. Using (5,20) and (25, 50): eg gradient = $\frac{3}{2} \rightarrow 20 = \frac{3}{2} \times 5 + c \rightarrow P = \frac{3}{2}T + \frac{25}{2}$ award 2/3 × $\sqrt{1}\sqrt{1}$

Q	uestio	n	Generic scheme	Illustrative scheme	Max mark	
7.	(b)		• ⁴ calculate salary	• ⁴ (£)24,500	1	
Note	s:					
1. Co	onsiste	ent an	swer without working (but see note 2)	award 1/1		
(a	a) nega	ative	prrect answer in (a) is followed through d in fraction form eg $P = \frac{3}{4}T + \frac{5}{4} \rightarrow \frac{29}{4}$		is:	
	(c) given to one decimal place or more than two decimal places $P = 1.5T + 12.5 \rightarrow 24.5$					
Com	monly	Obse	erved Responses:			
1. P	1. $P = \frac{3}{4}T + \frac{5}{4}$ in (a) leading to (£) 7.25 award 1/1					
2. P	2. $P = \frac{3}{2}T + \frac{25}{2}$ in (a) leading to (£) 24.50 award 1/1					
8.			 ¹ express as equivalent fraction with rational denominator ² express in simplest form 	• $^{1}\frac{12\sqrt{15}}{15}$ • $^{2}\frac{4\sqrt{15}}{5}$	2	
Note 1. Co		answe	er without working	award 0/2		
2. Ac	cept	0.8√1	5.			
	3. For subsequent incorrect working, \bullet^2 is not available eg $\frac{12\sqrt{15}}{15} = \frac{4\sqrt{15}}{5} = 4\sqrt{3}$ award $1/2 \sqrt{x}$					
Com	Commonly Observed Responses:					
1. (a	1. (a) $\frac{12}{3\sqrt{5}} = \frac{4}{\sqrt{5}} = \frac{4\sqrt{5}}{5}$ award $1/2 \cdot 2 \times \cdot 1/1$					
(t	o) <u>12</u> 3√5	= = - 0	4 /5	award 0/2		

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark
9.	(a)		• ¹ calculate median	• ¹ 39.5	3
			• ² find quartiles	• ² 35 and 42	
			• ³ calculate IQR	• ³ 7	
Note	s:	1			
			edian without working award • ¹ . R without working, do not award • ² or	• ³ .	
2. Ad	cept	quarti	iles indicated in the list or on a diagran	n for • ² .	
(a) orde	ered li	QR is found from an st with one missing term or one extra r I list [median = 38.5, IQR = 41 - 38 =3]	umber award 2/3 × award 1/3 ×	
4. ● ²	and •	³ are	not available for finding the range ie 5	5 - 31 = 24.	
			lidate has calculated SIQR= 3.5, • ³ can a ted "IQR = 7" eg	only be awarded where the candidate	has
•	(a) median = 39.5, quartiles = 35 and 42, IQR = 7, SIQR = 3.5award $3/3$ (b) median = 39.5, quartiles = 35 and $42 \rightarrow (IQR =) 3.5$ award $2/3 \sqrt{3}$				/ x
	6. Where a candidate has calculated the IQR but stated SIQR = 7, \bullet^3 is available eg median = 39.5, quartiles = 35 and 42, SIQR = 7 award 3/3				
			erved Responses:		

C	Question		uestion Generic scheme		Generic scheme	Illustrative scheme	Max mark
9.	(b)		• ⁴ valid comment comparing medians	 ⁴ eg on average the ages of the newspaper readers are higher 	2		
			• ⁵ valid comment comparing IQRs	 ⁵ eg ages of the newspaper readers are more varied 			
Note	es:						
es fc lf	g lf in or the in par	part (newsp rt (a)	t be consistent with answers to part (a) (a) the calculated median is 41 then aw paper and the magazine' or equivalent. the calculated IQR is 9 then award • ⁵ fo nd the magazine' or equivalent.	ard $ullet^4$ for 'on average the ages are the			
re (a	eaders a) Acc e	ept eg	ust involve reference to ages and inclue g On average the newspaper readers' a c cept eg On average the ages are highe	ges are higher and less consistent.	e		
(a	a) Acce • Oi • Do r • Th • Th	ept eg n aver not ac ne me ne age	d of • ⁴ rage the magazine readers are younger. c cept eg r dian age of the magazine readers is les es of the newspaper readers are more (f rage the newspaper readers' results/sc	s this implies that all ages are more)			
(a	a) Acce • Th • Th • Do r • Th • Th • Of • Th • Of • Th	ept eg ne spra not ac ne IQF ne rar n ave ne IQF	d of • ⁵ ead of newspaper readers' ages is more gazine readers' ages are less varied. Scept eg R of the newspaper readers' ages is more nge of the magazine readers' ages is less rage the newspaper readers' ages are r R of the newspaper readers' ages is less wspaper readers' results/scores/data a	re. s. nore varied. consistent.			
Com			erved Responses:				
2011	monty	0030					

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark
10.			Method 1	Method 1	4
			 ¹ marshal facts and recognise right angled triangle 	•1 30 50	
			• ² consistent Pythagoras statement	\bullet^2 50 ² - 30 ²	
			• ³ calculate third side	• ³ 40	
			• ⁴ calculate width	• ⁴ 90	
			Method 2	Method 2	
			 ¹ marshal facts and recognise right angled triangle 	• ¹ 60	
			• ² consistent Pythagoras statement	\bullet^2 100 ² - 60 ²	
			• ³ calculate third side	• ³ 80	
			● ⁴ calculate width	• ⁴ 90	

C	Juestion	Generic scheme	Illustrative scheme	Max mark	
10.	(continued	ן)			
Note	s:				
1. Co	orrect answe	er without working	award 0/4		
2. In	the absenc	e of a diagram accept $50^2 - 30^2$ or 100^2	- 60^2 as evidence for the award of \bullet^1 a	and ●².	
W		ram is shown, working must be consiste gram leading to 50² – 30² or 100² – 60².	nt with the diagram; $ullet^2$ is not available	e for an	
in	the examp	lable following a Pythagoras calculation les outlined in note 5 $\rightarrow 100 - 60 = 40 \rightarrow 40 + 50 = 90$	n within a valid right-angled triangle e award 0/4	xcept	
ar (a	 5. Where a candidate demonstrates recognition of 3,4,5 Pythagorean triple, for the award of •¹, •² and •³ accept: (a) (b) 40, since 3, 4, 5 triangle or Pythagorean triple. 				
a١	/ailable eg	idate uses 60 and 50 or 50 and 50 withi with their diagram: $60^2 - 50^2 \rightarrow 10\sqrt{11}$			
		m: $60^2 - 50^2 \rightarrow 10\sqrt{11} \rightarrow 50 + 10\sqrt{11}$	award 1/4 ××		
	7. Where a candidate's Pythagoras statement leads to an invalid solution, do not award \bullet^3 but \bullet^4 is still available eg $30^2 - 50^2 \rightarrow \sqrt{\pm 1600} \rightarrow 40 \rightarrow 90 \bullet^3 \times \bullet^4 \checkmark 1$				
Com	monly Obse	erved Responses:			
1. 4	$0 \rightarrow 90$		award 0/4 ^^/	` √ 2	

Question		Generic scheme	Illustrative scheme	Max mark			
11.		• ¹ state value	• ¹ -0.5	1			
Note	Notes:						
Com	monly Ob	served Responses:					
12.		Method 1 •1 start to simplify (one correct application of law of indices)	• $\frac{5c^{-2}}{c^7}$ or $\frac{5c^{-5}}{c^4}$ or $\frac{5c^{-6}}{c^3}$	3			
		• ² complete simplification	• ² $5c^{-9}$				
		• ³ express with a positive power	$\bullet^3 \frac{5}{c^9}$				
		Method 2 •1 express with a positive power	$\bullet^1 \frac{5}{c^3 \times c^4 \times c^2}$				
		• ² start to simplify (one correct application of law of indices)	• ² $\frac{5}{c^3 \times c^6}$ or $\frac{5}{c^7 \times c^2}$ stated or implied by • ³				
		• ³ express with a positive power	$\bullet^3 \frac{5}{c^9}$				
Note	s:	•	•				
1. Co	1. Correct answer without working award 3/3						
Com	monly Ob	served Responses:					
1. $\frac{5c^{-2}}{c^7} \rightarrow 5c^{-9} \rightarrow \frac{1}{5c^9}$ award 2/3 $\checkmark \checkmark \times$							
2. (a) $\frac{5c^{-2}}{c^7} \to 5c^{-5} \to \frac{5}{c^5}$			award 2/3 √×√	1			
(b) $\frac{5c^{-2}}{c^7} \to \frac{5}{c^5}$			award 1/3 √××				
3. $\frac{5c^{-2}}{c^{12}} (\to 5c^{-14}) \to \frac{5}{c^{14}}$ award 2/3			award 2/3 ×√1	√ 1			
4. (a) $\frac{5c^{-2}}{c^{12}} \to 5c^{-10} \to \frac{5}{c^{10}}$ award 1/3 ×3			1				
(b) $\frac{5c^{-2}}{c^{12}} \to \frac{5}{c^{10}}$			award 0/3				

Question		n	Generic scheme	Illustrative scheme	Max mark		
13.	(a)		\bullet^1 state value of a	• ¹ -30 or 330	1		
Notes	Notes:						
1. For $y = \cos(x - 30) +$			(x-30)+	award 1/1			
2. For $a = 1$ in (a) and $b = -30$ in (b)			a) and $b=-$ 30 in (b)	award 0/1 in (a) and award 1/1 in (b) \checkmark 1			
Comm	Commonly Observed Responses:						
	(b)		\bullet^2 state value of b	• ² 1	1		
Notes:							
1. For $y = \cos(x \pm) + 1$			x±)+1	award 1/1			
2. For $a = 1$ in (a) and $b = -30$ in (b)			(a) and $b=-30$ in (b)	award 0/1 in (a) and award 1/1 in (b) \checkmark 1			
Commonly Observed Responses:							

Q	uestion	Generic scheme	Illustrative scheme	Max mark
14.		Method 1	Method 1	3
		• ¹ eliminate denominators	• $5(x+1)-30 > 9x$ or equivalent	
		• ² rearrange into the form $ax > b$ or $b > ax$	• ² $-4x > 25$ or $-25 > 4x$	
		• ³ solve for x	• $x < -\frac{25}{4}$ or $-\frac{25}{4} > x$	
		Method 2	Method 2	
		 ¹ collect algebraic terms and express as a fraction in simplest form 	• ¹ $\frac{5-4x}{15}$ > 2 or equivalent	
		• ² rearrange into the form $ax > b$ or $b > ax$	• ² $-4x > 25$ or $-25 > 4x$	
		• ³ solve for x	• $x < -\frac{25}{4}$ or $-\frac{25}{4} > x$	
		Method 3	Method 3	
		• ¹ express left hand side as a fraction in simplest form	• $\frac{x-5}{3} > \frac{3x}{5}$ or equivalent	
		• ² rearrange into the form $ax > b$ or $b > ax$	• ² $-4x > 25$ or $-25 > 4x$	
		• ³ solve for x	• $x < -\frac{25}{4}$ or $-\frac{25}{4} > x$	

Question	Generic scheme	Illustrative scheme	Max mark			
14. (continued)						
Notes:	Notes:					
Treat repeate	1. Correct answer without workingaward 0/3Treat repeated substitution as invalid working.					
2. For the award	$ \text{ of } \bullet^3 \text{ accept eg } x < -6\frac{1}{4}, -6.25 > x,$	$x < \frac{25}{-4}$				
3. For the award	l of \bullet^3 the answer must be a non-intege	er value.				
Do not award	• ³ for a decimal approximation of $-\frac{25}{4}$, but do not penalise incorrect conver	sion to			
	per or decimal approximation following					
(a) $5(x+1)-$	$30 > 9x \rightarrow -4x > 25 \rightarrow x < -\frac{25}{4} \rightarrow x < -$	6.3 award 3/3				
(b) $5(x+1)-$	$30 > 9x \rightarrow -4x > 25 \rightarrow x < -6.3$	award 2/3 √√	́х			
of <i>x</i> on th (i) re	of x on the LHS of the inequation by either:					
eg OR	$g \ 5(x+1) - 30 > 9x \rightarrow -4x > 25 \rightarrow x < -5$	4 award 3/3				
(ii) co	bllecting the x term(s) on the RHS of th	e inequation at \bullet^2				
eg	$g \ 5(x+1) - 30 > 9x \rightarrow -25 > 4x \rightarrow -\frac{25}{4} > 0$	> x award 3/3				
(b) Where a	(b) Where a candidate requires to do neither of the above, then $ullet^3$ does not gain a mark					
eg 5 $(x+x)$	$1) - 30 > 9x \rightarrow 4x > 25 \rightarrow x > \frac{25}{4}$	award 1/3√×	√2			
	5. For subsequent incorrect working \bullet^3 is not available					
$eg -\frac{25}{4} > x$	$\rightarrow x > -\frac{25}{4}$	award 2/3 √√	́х			
Commonly Observed Responses:						
1. $5(x+1)-2 > 9$	$\partial x \rightarrow -4x > -3 \rightarrow x < \frac{3}{4}$	award 2/3 ×√	′1√1			
2. (a) $5(x+1)-3$	$30 = 9x \rightarrow -4x = 25 \rightarrow x = -\frac{25}{4} \rightarrow x < -\frac{25}{4}$	25 4 award 3/3				
(b) $5(x+1)-3$	$30 = 9x \rightarrow -4x = 25 \rightarrow x = -\frac{25}{4}$	award 2/3 √√	´x			

[END OF MARKING INSTRUCTIONS]