2023 Mathematics

Higher - Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2023
These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

General marking principles for Higher Mathematics

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.

For each question, the marking instructions are generally in two sections:

- generic scheme - this indicates why each mark is awarded
- illustrative scheme - this covers methods which are commonly seen throughout the marking

In general, you should use the illustrative scheme. Only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.
(a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
(b) If you are uncertain how to assess a specific candidate response because it is not covered by the general marking principles or the detailed marking instructions, you must seek guidance from your team leader.
(c) One mark is available for each • There are no half marks.
(d) If a candidate's response contains an error, all working subsequent to this error must still be marked. Only award marks if the level of difficulty in their working is similar to the level of difficulty in the illustrative scheme.
(e) Only award full marks where the solution contains appropriate working. A correct answer with no working receives no mark, unless specifically mentioned in the marking instructions.
(f) Candidates may use any mathematically correct method to answer questions, except in cases where a particular method is specified or excluded.
(g) If an error is trivial, casual or insignificant, for example $6 \times 6=12$, candidates lose the opportunity to gain a mark, except for instances such as the second example in point (h) below.
(h) If a candidate makes a transcription error (question paper to script or within script), they lose the opportunity to gain the next process mark, for example

The following example is an exception to the above

This error is not treated as a transcription error, as the candidate deals with the intended quadratic equation. The candidate has been given the benefit of the

$$
\begin{aligned}
x^{2}+5 x+7 & =9 x+4 \\
x-4 x+3 & =0 \\
(x-3)(x-1) & =0 \\
x & =1 \text { or } 3
\end{aligned}
$$ doubt and all marks awarded.

(i) Horizontal/vertical marking

If a question results in two pairs of solutions, apply the following technique, but only if indicated in the detailed marking instructions for the question.

Example:

$$
\begin{array}{lll}
& \bullet^{5} & \bullet^{6} \\
\bullet^{5} & x=2 & x=-4 \\
\bullet^{6} & y=5 & y=-7
\end{array}
$$

Horizontal: ${ }^{5} x=2$ and $x=-4 \quad$ Vertical: $\cdot{ }^{5} x=2$ and $y=5$
$\bullet^{6} y=5$ and $y=-7 \quad \bullet^{6} \quad x=-4$ and $y=-7$
You must choose whichever method benefits the candidate, not a combination of both.
(j) In final answers, candidates should simplify numerical values as far as possible unless specifically mentioned in the detailed marking instruction. For example
$\frac{15}{12}$ must be simplified to $\frac{5}{4}$. or $1 \frac{1}{4}$
$\frac{43}{1}$ must be simplified to 43
$\frac{15}{0.3}$ must be simplified to $50 \quad \frac{4 / 5}{3}$ must be simplified to $\frac{4}{15}$
$\sqrt{64}$ must be simplified to 8^{*}
*The square root of perfect squares up to and including 144 must be known.
(k) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
(l) Do not penalise candidates for any of the following, unless specifically mentioned in the detailed marking instructions:

- working subsequent to a correct answer
- correct working in the wrong part of a question
- legitimate variations in numerical answers/algebraic expressions, for example angles in degrees rounded to nearest degree
- omission of units
- bad form (bad form only becomes bad form if subsequent working is correct), for example $\left(x^{3}+2 x^{2}+3 x+2\right)(2 x+1)$ written as
$\left(x^{3}+2 x^{2}+3 x+2\right) \times 2 x+1$
$=2 x^{4}+5 x^{3}+8 x^{2}+7 x+2$ gains full credit
- repeated error within a question, but not between questions or papers
(m) In any 'Show that...' question, where candidates have to arrive at a required result, the last mark is not awarded as a follow-through from a previous error, unless specified in the detailed marking instructions.
(n) You must check all working carefully, even where a fundamental misunderstanding is apparent early in a candidate's response. You may still be able to award marks later in the question so you must refer continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that you can award all the available marks to a candidate.
(o) You should mark legible scored-out working that has not been replaced. However, if the scoredout working has been replaced, you must only mark the replacement working.
(p) If candidates make multiple attempts using the same strategy and do not identify their final answer, mark all attempts and award the lowest mark. If candidates try different valid strategies, apply the above rule to attempts within each strategy and then award the highest mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Question		Generic scheme	Illustrative scheme	Max mark
3.		\bullet^{1} start to integrate	$\bullet^{1} 7 \sin \left(4 x+\frac{\pi}{3}\right) \ldots$	2
		\bullet^{2} complete integration	$\bullet^{2} \ldots \times \frac{1}{4}+c$	
Notes:				

Notes:

1. Award \bullet^{1} for any appearance of $(+) 7 \sin \left(4 x+\frac{\pi}{3}\right)$ regardless of any constant multiplier.
2. Candidates who work in degrees from the start cannot gain \bullet^{1}, however \bullet^{2} is still available see Candidate C.
3. Where candidates use any other invalid approach, eg $7 \sin \left(4 x+\frac{\pi}{3}\right)^{2}$, $\int\left(7 \cos 4 x+\cos \frac{\pi}{3}\right) d x$ or $7 \sin 4 x+\frac{\pi}{3}$ award 0/2. However, see Candidate E.
4. Do not penalise the appearance of an integral sign and/or $d x$ throughout.

Commonly Observed Responses:

Candidate A - using addition formula

$\int\left(7 \cos 4 x \cos \frac{\pi}{3}-7 \sin 4 x \sin \frac{\pi}{3}\right) d x$
$=\frac{7}{4} \sin 4 x \cos \frac{\pi}{3}+\frac{7}{4} \cos 4 x \sin \frac{\pi}{3} \ldots$
$=\frac{7}{4} \sin 4 x\left(\frac{1}{2}\right)+\frac{7}{4} \cos 4 x\left(\frac{\sqrt{3}}{2}\right)+c$
Candidate C - working in degrees $\int 7 \cos (4 x+60) d x$ $=7 \sin (4 x+60) \times \frac{1}{4}+c \quad$

Candidate B

$\frac{7}{4} \sin \left(4 x+\frac{\pi}{3}\right)$ $=\frac{7}{4} \sin \left(4 x+\frac{\pi}{3}\right)+c$

Candidate D - integrating over two lines
$7 \sin \left(4 x+\frac{\pi}{3}\right)$ $=\frac{7}{4} \sin \left(4 x+\frac{\pi}{3}\right)+c$

$$
\bullet^{2} x
$$

Candidate E - integrating in part

$$
-\frac{7}{4} \sin \left(4 x+\frac{\pi}{3}\right)+c \quad \bullet^{1} \times \bullet^{2} \square_{1}
$$

Candidate F - insufficient evidence of integration

$$
\frac{7}{4} \cos \left(4 x+\frac{\pi}{3}\right)+c \quad \quad \bullet^{1} \times \bullet^{2} \times
$$

	uestion	Generic scheme	Illustrative scheme	Max mark
4.		- ${ }^{1}$ reflect in the y-axis -2 apply appropriate vertical scaling	- ${ }^{1}$ cubic graph with max at $(-2,0)$ and passing through $(1,0)$ \bullet^{2}	2
Notes:				
1. Where candidates do not sketch a cubic function award $0 / 2$. 2. For transformations of the form $f(-x)+k$ or $-f(x+k)$ award $0 / 2$. 3. If the transformation has not been applied to all coordinates, award $0 / 2$.				

Question	Generic scheme	Illustrative scheme			Max
4. (continued)					
Commonly Observed Responses:					
Function	Transformation of $(-1,0)$ and $(2,0)$	Transformation of $(0,-2)$	Shape	Award	
Incorrect orientation	$(-2,0)$ and (1,0)	$(0,-4)$	\bigcirc	0/2	
$-2 f(x)$	$(-1,0)$ and (2,0)	$(0,4)$	\bigcap	1/2	
$-2 f(-x)$	$(-2,0)$ and (1, 0)	$(0,4)$	\bigcirc	1/2	
$-2 f(-2 x)$	$(-1,0)$ and ($\left.\frac{1}{2}, 0\right)$	$(0,4)$	\bigcirc	0/2	
$-2 f\left(-\frac{x}{2}\right)$	$(-4,0)$ and (2,0)	$(0,4)$	\bigcirc	0/2	
$2 f(x)$	$(-1,0)$ and (2,0)	$(0,-4)$	\bigcirc	1/2	
$2 f(2 x)$	$\left(-\frac{1}{2}, 0\right)$ and $(1,0)$	$(0,-4)$	\bigcirc	1/2	
$2 f\left(\frac{x}{2}\right)$	$(-2,0)$ and (4,0)	$(0,-4)$	\bigcirc	1/2	
$2 f\left(-\frac{x}{2}\right)$	$(-4,0)$ and (2,0)	$(0,-4)$	\bigcap	1/2	
$2 f(x-1)$	$(0,0)$ and (3,0)	$(1,-4)$	\bigcirc	1/2	
$f(-x)$	$(-2,0)$ and (1,0)	$(0,-2)$	\bigcap	1/2	
$\frac{1}{2} f(-x)$	$(-2,0)$ and (1,0)	$(0,-1)$	\bigcap	1/2	
$f(2 x)$	$\left(-\frac{1}{2}, 0\right)$ and (1,0)	$(0,-2)$	\bigcirc	0/2	
$f(-2 x)$	$(-1,0)$ and ($\left.\frac{1}{2}, 0\right)$	$(0,-2)$	\bigcap	0/2	
$f\left(-\frac{x}{2}\right)$	$(-4,0)$ and (2,0)	(0,-2)	\bigcap	0/2	
$-f\left(\frac{x}{2}\right)$	$(-2,0)$ and (4,0)	$(0,2)$	\bigcap	0/2	
$-f\left(-\frac{x}{2}\right)$	$(-4,0)$ and (2,0)	$(0,2)$	ϑ	0/2	

Question		Generic scheme		Illustrative scheme	Max mark
5.		${ }^{1}$ start to ${ }^{2}{ }^{2}$ comple ${ }^{3}$ calcula	ferentiate differentiation rate of change	$\begin{aligned} & \bullet 4(3-2 x)^{3} \ldots \\ & \bullet \ldots \times(-2) \\ & \bullet^{3} 1000 \end{aligned}$	3
Notes:					
1. Correct answer with no working, award 0/3. 2. Accept $4 u^{3} \times(-2)$ where $u=3-2 x$ for \bullet^{1}. 3. Where candidates evaluate $f(4)$, award $0 / 3$, see Candidate B. 4. \bullet^{3} is only available for evaluating expressions equivalent to $k(3-2 x)^{3}$.					
Commonly Observed Responses:					
Candidate A$\begin{aligned} & f^{\prime}(x)=4(3-2 x)^{3} \times(-2) \\ & f^{\prime}(x)=8(3-2 x)^{3} \\ & f^{\prime}(4)=-1000 \end{aligned}$				Candidate B - evaluating $\mathrm{f}(\mathrm{x})$ $\begin{aligned} & f^{\prime}(x)=(3-2 x)^{4} \\ & f^{\prime}(4)=625 \end{aligned}$	
Candidate \mathbf{C} - differentiating over two lines$\begin{array}{ll} 4(3-2 x)^{3} & \bullet^{1} \checkmark \\ 4(3-2 x)^{3} \times 2 & \bullet^{2} x \\ -1000 & \bullet^{3} \end{array}$				Candidate D - differentiating $\begin{aligned} & 4(3-2 x)^{3} \\ & 4(3-2 x)^{3} \times-2 \\ & 1000 \end{aligned}$	lines
Candidate E - insufficient evidence for mark 1$\begin{array}{ll} f^{\prime}(x)=8(3-2 x)^{3} & \bullet^{1} \times \bullet^{2} \times \\ f^{\prime}(4)=-1000 & \bullet \bullet_{1} \end{array}$				$\begin{aligned} & \text { Candidate } \mathbf{F} \\ & 4(3-2 x)^{3} \\ & -500 \end{aligned}$	

Question		Generic scheme	Illustrative scheme	Max mark
6.		Method 1 -1 equate composite function to x \bullet^{2} write $f\left(f^{-1}(x)\right)$ in terms of $f^{-1}(x)$ - ${ }^{3}$ state inverse function	Method 1 - $\quad f\left(f^{-1}(x)\right)=x$ - $\quad x=\frac{2}{f^{-1}(x)}+3$ -3 $f^{-1}(x)=\frac{2}{x-3}$	3
		Method 2 - 1 write as $y=f(x)$ and start to rearrange \bullet^{2} express x in terms of y - ${ }^{3}$ state inverse function	Method 2 -1 $y=f(x) \Rightarrow x=f^{-1}(y)$ $y-3=\frac{2}{x}$ -2 $\quad x=\frac{2}{y-3}$ $\text { - } \begin{aligned} & f^{-1}(y)=\frac{2}{y-3} \\ & \Rightarrow f^{-1}(x)=\frac{2}{x-3} \end{aligned}$	

Notes:

1. In Method, 1 accept $x=\frac{2}{f^{-1}(x)}+3$ for \bullet^{1} and \bullet^{2}.
2. In Method 2 , accept ' $y-3=\frac{2}{x}$, without reference to $y=f(x) \Rightarrow x=f^{-1}(y)$ at $\bullet^{\mathbf{1}}$.
3. In Method 2, accept $f^{-1}(x)=\frac{2}{x-3}$ without reference to $f^{-1}(y)$ at \bullet^{3}.
4. In Method 2, beware of candidates with working where each line is not mathematically equivalent - see Candidates A and B for example.
5. At \bullet^{3} stage, accept f^{-1} written in terms of any dummy variable eg $f^{-1}(y)=\frac{2}{y-3}$.
6. $y=\frac{2}{x-3}$ does not gain \bullet^{3}.
7. $f^{-1}(x)=\frac{2}{x-3}$ with no working gains $3 / 3$.
8. In Method 2, where candidates make multiple algebraic errors at the \bullet^{2} stage, \bullet^{3} is still available.

Question	Generic scheme	Illustrative scheme	Max mark
6. (continued)			
Commonly Observed Responses:			
Candidate A $\begin{aligned} & f(x)=\frac{2}{x}+3 \\ & y=\frac{2}{x}+3 \\ & y-3=\frac{2}{x} \\ & x=\frac{2}{y-3} \\ & y=\frac{2}{x-3} \\ & f^{-1}(x)=\frac{2}{x-} \end{aligned}$	$\begin{aligned} & \bullet^{1} \checkmark \bullet^{2} \checkmark \\ & \bullet^{3} x \end{aligned}$	Candidate B $\begin{aligned} & f(x)=\frac{2}{x}+3 \\ & y=\frac{2}{x}+3 \\ & x=\frac{2}{y}+3 \\ & x-3=\frac{2}{y} \\ & y=\frac{2}{x-3} \\ & f^{-1}(x)=\frac{2}{x-3} \end{aligned}$	$.^{1} x$
Candidate C $f^{\prime}(x)=\ldots$	$0^{3} x$	Candidate D $\begin{gathered} x \rightarrow \frac{1}{x} \rightarrow \frac{2}{x} \rightarrow \frac{2}{x}+3=f(x) \\ \times 2 \rightarrow+3 \\ \therefore-3 \rightarrow \div 2 \\ \frac{2}{x-3} \text { (invert) } \\ f^{-1}(x)=\frac{2}{x-3} \end{gathered}$	${ }^{1} \checkmark$ $\cdot 2 \checkmark$ $\bullet^{3} \checkmark$
Candidate E $f^{-1}(x)=(x$	$\begin{aligned} & \bullet^{1} \checkmark \bullet^{2} \checkmark \\ & \bullet^{3} \checkmark \end{aligned}$	Candidate F $f^{-1}(x)=\sqrt[-1]{\frac{x-3}{2}}$	$\bullet^{1} \checkmark \bullet^{2} v$ $\cdot{ }^{3} \checkmark$
Candidate G $\begin{aligned} & y=\frac{2}{x}+3 \\ & x y=5 \\ & x=\frac{5}{y} \\ & f^{-1}(x)=\frac{5}{x} \end{aligned}$ However $f^{-1}(x)=\frac{2+}{x}$.$^{1} x$ - $\sqrt{-2}$ - \square_{1}		

1. Substituting $1-2 \sin ^{2} \mathrm{~A}$ or $1-2 \sin ^{2} \alpha$ for $\cos 2 x^{\circ}$ at the \bullet^{1} stage should be treated as bad form provided the equation is written in terms of x at \bullet^{2} stage. Otherwise, \bullet^{1} is not available.
2. Do not penalise the omission of degree signs.
3. ' $=0$ ' must appear by \bullet^{3} stage for \bullet^{2} to be awarded. However, for candidates using the quadratic formula to solve the equation, ' $=0$ ' must appear at \bullet^{2} stage for \bullet^{2} to be awarded.
4. Candidates may express the equation obtained at \bullet^{2} in the form $6 S^{2}+S-1=0$, $6 x^{2}+x-1=0$ or using any other dummy variable at the \bullet^{3} stage. In these cases, award \bullet^{3} for $(3 S-1)(2 S+1)$ or $(3 x-1)(2 x+1)$.
However, \bullet^{4} is only available if $\sin x^{\circ}$ appears explicitly at this stage - see Candidate A.
5. The equation $1-6 \sin ^{2} x^{\circ}-\sin x^{\circ}=0$ does not gain \bullet^{2} unless \bullet^{3} has been awarded.
6. \bullet^{3} is awarded for identifying the factors of the quadratic obtained at \bullet^{2} eg " $3 \sin x^{\circ}-1=0$ and $2 \sin x^{\circ}+1=0$ ".
7. \bullet^{4} and \bullet^{5} are only available as a consequence of trying to solve a quadratic equation - see Candidate B.
8. \bullet^{3}, \bullet^{4} and \bullet^{5} are not available for any attempt to solve a quadratic equation written in the form $a x^{2}+b x=c$ - see Candidate C.
9. \bullet^{5} is only available where at least one of the equations at \bullet^{4} leads to two solutions for x.
10. Do not penalise additional (correct) solutions at ${ }^{5}$. However see Candidates E and F.
11. Accept answers which round to 19, 19.5 and 161.

Question Generic scheme	Illustrative schemeMax mark
7. (continued)	
Commonly Observed Responses:	
$\begin{aligned} & \text { Candidate A } \\ & \vdots \\ & 6 S^{2}+S-1=0 \\ & (3 S-1)(2 S+1)=0 \\ & S=\frac{1}{3}, S=-\frac{1}{2} \\ & x=19.5,160.5,210,330 \end{aligned}$	Candidate B - not solving a quadratic $\begin{aligned} & 6 \sin ^{2} x^{\circ}+\sin x^{\circ}-1=0 \\ & 7 \sin x^{\circ}-1=0 \\ & \sin x^{\circ}=\frac{1}{7} \\ & x=8.2 \end{aligned}$
Candidate C - not in standard quadratic form $\begin{array}{ll} \sin x^{\circ}+2=3-6 \sin ^{2} x^{\circ} & \bullet^{1} \checkmark \\ 6 \sin ^{2} x^{\circ}+\sin x^{\circ}=1 & \bullet^{2} \\ \sin x^{\circ}\left(6 \sin x^{\circ}+1\right)=1 & \bullet^{3} \\ \sin x^{\circ}=1 & 6 \sin x^{\circ}+5=1 \\ \quad \Rightarrow \sin x=-\frac{4}{6} & \bullet^{4} x \\ 90,221.8,318.2 & \bullet^{5} x \end{array}$	$\begin{aligned} & \text { Candidate D - reading } \cos 2 x^{\circ} \text { as } \cos ^{2} x^{\circ} \\ & \sin x^{\circ}+2=3 \cos ^{2} x^{\circ} \\ & \sin x^{\circ}+2=3\left(1-\sin ^{2} x^{\circ}\right) \\ & 3 \sin ^{2} x^{\circ}+\sin x^{\circ}-1=0 \\ & \sin x^{\circ}=\frac{-1 \pm \sqrt{13}}{6} \\ & \sin x^{\circ}=0.434 \ldots, \sin x^{\circ}=-0.767 \ldots \\ & 25.7,154.3,230.1,309.9 \end{aligned}$
However, where the final solution(s) are clearly identified by the candidate award ${ }^{5}$	Candidate \mathbf{F} \vdots $\bullet^{1} \checkmark \bullet^{2} \checkmark$ $\left(3 \sin x^{\circ}-1\right)\left(2 \sin x^{\circ}+1\right)=0$ $\bullet^{3} \checkmark$ $\sin x^{\circ}=\frac{1}{3}, \quad \sin x^{\circ}=-\frac{1}{2}$ $\bullet^{4} \checkmark$ $x=19,161,30,210,330$ $\bullet^{5} \star$

	Question	Generic scheme	Illustrative scheme	Max mark
8.		Method 1 -1 integrate using "upper - lower" -2 identify limits -3 integrate - ${ }^{4}$ substitute limits -5 calculate shaded area	Method 1 $\begin{aligned} & \text { •1 } \int\left(\left(x^{3}-2 x^{2}-4 x+1\right)-(x-5)\right) d x \\ & \bullet^{2} \int_{-2}^{1}\left(\left(x^{3}-2 x^{2}-4 x+1\right)-(x-5)\right) d x \\ & \bullet^{3} \frac{x^{4}}{4}-\frac{2 x^{3}}{3}-\frac{5 x^{2}}{2}+6 x \\ & \text { • }\left(\frac{(1)^{4}}{4}-\frac{2(1)^{3}}{3}-\frac{5(1)^{2}}{2}+6(1)\right)- \\ & \text { • }\left(\frac{(-2)^{4}}{4}-\frac{2(-2)^{3}}{3}-\frac{5(-2)^{2}}{2}+6(-2)\right) \\ & \text { or } 15 \frac{3}{4} \end{aligned}$	5
		Method 2 -1 know to integrate between appropriate limits for both integrals - ${ }^{2}$ integrate both functions - ${ }^{3}$ substitute limits into both expressions - ${ }^{4}$ evaluate both integrals -5 evidence of subtracting areas	$\begin{aligned} & \text { Method } 2 \\ & \bullet \int_{-2}^{1} \ldots d x \text { and } \int_{-2}^{1} \ldots d x \\ & \cdot \frac{x^{4}}{4}-\frac{2 x^{3}}{3}-\frac{4 x^{2}}{2}+x \text { and } \frac{x^{2}}{2}-5 x \\ & \bullet^{3}\left(\frac{(1)^{4}}{4}-\frac{2(1)^{3}}{3}-\frac{4(1)^{2}}{2}+(1)\right) \\ & -\left(\frac{(-2)^{4}}{4}-\frac{2(-2)^{3}}{3}-\frac{4(-2)^{2}}{2}+(-2)\right. \\ & \text { and } \\ & \text { • } \left.\frac{(1)^{2}}{2}-5(1)\right)-\left(\frac{(-2)^{2}}{2}-5(-2)\right) \\ & \text { • }-\frac{3}{4} \text { and }-\frac{33}{2} \\ & \hline \frac{3}{4}-\left(-\frac{33}{2}\right)=\frac{63}{4} \end{aligned}$	5

Question	Generic scheme	Illustrative scheme	Max mark

8. (continued)

Notes:

1. Correct answer with no working - award 1/5.
2. In Method 1, treat the absence of brackets at \bullet^{1} stage as bad form only if the correct integral is obtained at \bullet^{3} - see Candidates A and B.
3. Do not penalise lack of ' $d x$ ' at \bullet^{1}.
4. Limits and ' $d x$ ' must appear by the \bullet^{2} stage for \bullet^{2} to be awarded in Method 1 and by the \bullet^{1} stage for \bullet^{1} to be awarded in Method 2.
5. Where a candidate differentiates one or more terms at \bullet^{3}, then \bullet^{3}, \bullet^{4} and \bullet^{5} are unavailable.
6. Accept unsimplified expressions at \bullet^{3} e.g. $\frac{x^{4}}{4}-\frac{2 x^{3}}{3}-\frac{4 x^{2}}{2}+x-\frac{x^{2}}{2}+5 x$.
7. Do not penalise the inclusion of ' $+c$ '.
8. Do not penalise the continued appearance of the integral sign after \bullet^{2}
9. Candidates who substitute limits without integrating do not gain \bullet^{3}, \bullet^{4} or \bullet^{5}.
10. \bullet^{5} is not available where solutions include statements such as ' $-\frac{63}{4}=\frac{63}{4}$ square units' - see Candidate B.
11. Where a candidate only integrates $x^{3}-2 x^{2}-4 x+1$ or another cubic or quartic expression, only \bullet^{3} and \bullet^{4} are available (from Method 1).

Question		Generic scheme	Illustrative scheme	Max mark
9.	(a)	- ${ }^{1}$ use compound angle formula - ${ }^{2}$ compare coefficients - ${ }^{3}$ process for k - ${ }^{4}$ process for a and express in required form	- $k \sin x^{\circ} \cos a^{\circ}+k \cos x^{\circ} \sin a^{\circ}$ stated explicitly $\bullet^{2} k \cos a^{\circ}=-3, k \sin a^{\circ}=7$ stated explicitly - ${ }^{3} \sqrt{58}$ ${ }^{4} \sqrt{58} \sin (x+113.19 \ldots)^{\circ}$.	4

1. Do not penalise the omission of degree symbols in this question.
2. Accept $k\left(\sin x^{\circ} \cos a^{\circ}+\cos x^{\circ} \sin a^{\circ}\right)$ at \bullet^{1}.
3. Treat $k \sin x^{\circ} \cos a^{\circ}+\cos x^{\circ} \sin a^{\circ}$ as bad form only if the equations at the \bullet^{2} stage both contain k.
4. $\sqrt{58} \sin x^{\circ} \cos a^{\circ}+\sqrt{58} \cos x^{\circ} \sin a^{\circ}$ or $\sqrt{58}\left(\sin x^{\circ} \cos a^{\circ}+\cos x^{\circ} \sin a^{\circ}\right)$ are acceptable for \bullet^{1} and \bullet^{3}.
5. • ${ }^{2}$ is not available for $k \cos x^{\circ}=-3$ and $k \sin x^{\circ}=7$, however \bullet^{4} may still be gained - see Candidate E.
6. \bullet^{3} is only available for a single value of $k, k>0$.
7. \bullet^{4} is not available for a value of a given in radians.
8. Accept values of a which round to 113 .
9. Candidates may use any form of the wave function for \bullet^{1}, \bullet^{2} and \bullet^{3}. However, \bullet^{4} is only available if the wave is interpreted in the form $k \sin (x+a)^{\circ}$.
10. Evidence for \bullet^{4} may appear in part (b).

Question			Generic scheme	Illustrative scheme		Max mark
9.	(b)	(i)	- ${ }^{5}$ state maximum value	- ${ }^{5} 2 \sqrt{58}$		1
		(ii)	Method 1 - ${ }^{6}$ start to solve - ${ }^{7}$ state value of x Method 2 - ${ }^{6}$ start to solve \bullet^{7} state value of x	Method 1 ${ }^{6} x+113.19 \ldots=90$ leading to $x=-23.19$... ${ }^{-7} x=336.80 \ldots$ Method 2 - ${ }^{6} x+113.19 \ldots=450$ - ${ }^{7} x=336.80 \ldots$		2
Notes:						
11. \bullet^{7} is only available where an angle outwith the range $0 \leq x<360$ needs to be considered - see Candidate G. 12. \bullet^{7} is only available where \bullet^{6} has been awarded. However, see Candidate K.						
Commonly Observed Responses:						
Candidate G - not considering angle outwith $0 \leq x<360$ $\sqrt{58} \sin (x-23)^{\circ}$ from part (a) $\begin{aligned} & x-23=90 \\ & x=113 \end{aligned}$				Candidate H - simplification (i) $2 \sqrt{58}$ $\text { (ii) } \begin{aligned} & \sqrt{58} \sin (x+113)^{\circ}=\sqrt{58} \\ & x+113=90 \\ & x=-23 \\ & x=337 \end{aligned}$	$\begin{aligned} & \bullet \bullet^{5} \\ & \bullet \\ & \bullet \checkmark \\ & \bullet \checkmark \end{aligned}$	
Candidate I-follow-through marking (i) $\sqrt{58}$ (ii) $\begin{aligned} & 2 \sqrt{58} \sin (x+113)^{\circ}=\sqrt{58} \\ & x+113=30 \\ & x=-83 \\ & x=277 \end{aligned}$				Candidate J - graphical approach (i) $\sqrt{58}$ (ii) max occurs when $x+113=90$ $\begin{aligned} & x=-23 \\ & x=337 \end{aligned}$		
Candidate K - no acknowledgement of $\times 2$ (i) $\sqrt{58}$ (ii) $\begin{aligned} & \sqrt{58} \sin (x+113)^{\circ}=\sqrt{58} \\ & x+113=90 \\ & x=-23 \\ & x=337 \end{aligned}$						

Question		Generic scheme	Illustrative scheme	Max mark
11.	(a)	${ }^{1}$ state centre of C_{1} - ${ }^{2}$ state centre of C_{2} \bullet^{3} calculate distance between centres	$\begin{aligned} & \bullet^{1}(4,-2) \\ & \bullet^{2}(-1,3) \\ & \bullet^{3} \sqrt{50} \text { or } 5 \sqrt{2} \text { or } 7.07 \ldots \end{aligned}$	3
Notes:				
1. Accept $x=4, y=-2$ for \bullet^{1} and $x=-1, y=3 \bullet^{2}$. Do not accept $g=1, f=-3$ for \bullet^{\bullet}. 2. Do not penalise lack of brackets in \bullet^{1} and \bullet^{2}.				

Commonly Observed Responses:

3. Accept $\sqrt{1^{2}+3^{2}+7}=\sqrt{17}$ or $\sqrt{1^{2}+-3^{2}+7}=\sqrt{17}$ for \bullet^{5}. However, do not accept $\sqrt{(-1)^{2}+3^{2}+7}=\sqrt{17}$.
4. At ${ }^{6}$ comparison must be made using decimals. Do not accept $\sqrt{37}+\sqrt{17}>\sqrt{50}$ without any further working.
5. Evidence for \bullet^{4} and \bullet^{5} may be found in part (a).
6. For candidates who use simultaneous equations, award \bullet^{4} for substitution of $y=x+1$ into the equation of one of the circles, \bullet^{5} for rearranging in standard quadratic form and \bullet^{6} for obtaining distinct x-coordinates.
7. Do not penalise the omission of "at two distinct points" at \bullet^{6}.

Commonly Observed Responses:

	Generic scheme	Illustrative scheme	Max mark
12.	- ${ }^{1}$ integrate one term -2 complete integration - 3 substitute for x and y - ${ }^{4}$ state expression for y	$\begin{aligned} & \bullet^{1} \mathrm{eg} \frac{8 x^{4}}{4} \ldots \\ & \bullet^{2} \mathrm{eg} \ldots+3 x+c \\ & \bullet^{3} 3=\frac{8 \times(-1)^{4}}{4}+3 \times(-1)+c \\ & \bullet^{4} y=2 x^{4}+3 x+4 \end{aligned}$	4

1. For candidates who omit $+c$ only \bullet^{1} is available.
2. For candidates who differentiate either term, \bullet^{2}, \bullet^{3}, and \bullet^{4} are not available.
3. Do not penalise the appearance of an integral sign and/or $d x$ at \bullet^{2} and \bullet^{3}.

Commonly Observed Responses:

Candidate A - incomplete substitution

$y=2 x^{4}+3 x+c \quad \bullet^{1} \checkmark \bullet^{2} \checkmark$
$y=2(-1)^{4}+3(-1)+c$
$c=4$
$y=2 x^{4}+3 x+4$
$\cdot 0^{3}$
$\cdot 4$
\bullet_{1}

Candidate B - partial integration

$y=2 x^{4}+3+c$
$\bullet^{1} \checkmark \bullet^{2} x$
$3=2(-1)^{4}+3+c$
$\cdot{ }^{3}$
$c=-2$
$y=2 x^{4}+1$
$\cdot 4 \longdiv { \checkmark _ { 1 } }$

Candidate \mathbf{C} - integrating over two lines
$y=2 x^{4}+3 x$
$\bullet^{1} \downarrow \bullet^{2} x$
$y=2 x^{4}+3 x+c$
$3=2(-1)^{4}+3(-1)+c \quad \bullet^{3} \checkmark$
$y=2 x^{4}+3 x+4 \quad \bullet^{4} \checkmark$

Question			Generic scheme	Illustrative scheme	Max mark
14.	(a)	(i)	${ }^{1}{ }^{1}$ express A in terms of x and h	- ${ }^{1}(A=) 6 x^{2}+10 x h$	1
		(ii)	$\bullet{ }^{2}$ express h in terms of x - ${ }^{3}$ substitute for h and demonstrate result	- $2 h=\frac{7200-6 x^{2}}{10 x}$ -3 $V=3 x \times 2 x \times\left(\frac{7200-6 x^{2}}{10 x}\right)$ leading to $V=4320 x-\frac{18}{5} x^{3}$	2
Notes:					
1. Accept unsimplified expressions for \bullet^{1}. 2. \bullet^{2} is only available where the (simplified) expression for A contains at least 2 terms. 3. The substitution for h at \bullet^{3} must be clearly shown for \bullet^{3} to be awarded.					

Commonly Observed Responses:

4. For any approach which does not use differentiation award 0/4.
5..5 can be awarded for $\frac{54}{5} x^{2}=4320$.
6. For candidates who integrate any term at the \bullet^{4} stage, only \bullet^{5} is available on follow through for setting their 'derivative' to 0 .
7. Ignore the appearance of -20 at mark \bullet^{6}.
8. Where -20 is considered in a nature table (or second derivative), " $x=20$ " must be clearly identified as leading to the maximum area.
9. \bullet^{6} and \bullet^{7} are not available to candidates who state that the maximum exists at a negative value of x.
10. Do not penalise statements such as "max volume is 20 " or "max is 20 " at \bullet^{7}.

