Fill in these boxes and read what is printed below.

Full name of centre: ____________________________

Town: ____________________________

Forename(s): ____________________________

Surname: ____________________________

Number of seat: ____________________________

Date of birth: ____________________________

Day: ________ Month: ________ Year: ________

Scottish candidate number: ____________________________

Total marks — 110

SECTION 1 — 25 marks
Attempt ALL questions.

SECTION 2 — 85 marks
Attempt ALL questions.

You may use a calculator.
Show all workings.

Write your answers clearly in the spaces provided in this booklet. Additional space for answers is provided at the end of this booklet. If you use this space you must clearly identify the question number you are attempting.

Use blue or black ink.

Before leaving the examination room you must give this booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

© SQA
SECTION 1 — 25 marks
Attempt ALL questions

1. Convert the following 8-bit two’s complement number into denary.

 1001 1010

2. A string variable called month has been assigned the value ‘April’ and another string variable called year has been assigned the value ‘2019’ as shown below.

 Line 1 DECLARE month INITIALLY "April"
 Line 2 DECLARE year INITIALLY "2019"
 Line 3

 The variable shortDate is to be assigned the value ‘Apr19’ using substring operations.

 Using a programming language of your choice write line 3.

3. An instruction to be executed is in memory address 3412.
 Complete the missing steps of the fetch-execute cycle shown below.

 Step 1 The processor sets up the address bus with the address 3412.
 Step 2
 Step 3
 Step 4 The instruction in the instruction register is then interpreted by the decoder and carried out.
4. The decimal number 6.125 converted to binary is 110.001.
Convert 110.001 to floating-point representation. There are 16 bits for the mantissa (including the sign bit) and 8 bits for the exponent.

Space for working

5. Describe the role of the client when developing software using agile methodologies.

__

__

__

__

__

__

__

[Turn over
6. A database table is shown below.

<table>
<thead>
<tr>
<th>dishName</th>
<th>course</th>
<th>price</th>
<th>portions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicken wings</td>
<td>Starter</td>
<td>8.99</td>
<td>2</td>
</tr>
<tr>
<td>Baked haddock</td>
<td>Main</td>
<td>15.99</td>
<td>1</td>
</tr>
<tr>
<td>Soup of the day</td>
<td>Starter</td>
<td>2.50</td>
<td>1</td>
</tr>
<tr>
<td>Paté</td>
<td>Starter</td>
<td>2.99</td>
<td>2</td>
</tr>
<tr>
<td>Brownies to share</td>
<td>Dessert</td>
<td>8.99</td>
<td>2</td>
</tr>
<tr>
<td>Panacotta</td>
<td>Dessert</td>
<td>6.00</td>
<td>1</td>
</tr>
<tr>
<td>Mushroom risotto</td>
<td>Main</td>
<td>9.99</td>
<td>1</td>
</tr>
<tr>
<td>Chicken curry</td>
<td>Main</td>
<td>12.99</td>
<td>1</td>
</tr>
<tr>
<td>Mixed platter</td>
<td>Starter</td>
<td>14.99</td>
<td>4</td>
</tr>
</tbody>
</table>

Complete the table below showing the expected output from the following SQL statement.

```
SELECT course, MIN(price) AS 'least expensive item'
FROM Dishes
WHERE portions >=2
GROUP BY course;
```

<table>
<thead>
<tr>
<th>course</th>
<th>least expensive item</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. A compound key is an example of a primary key.

Describe what is meant by a compound key in a relational database.
8. A cinema is adding an online booking system to their website. The wireframe design below has been created for the new home page.

(a) State two reasons why this is not an effective user-interface design.

(b) A low-fidelity prototype has been created for the home page. Describe how this is used when performing usability testing.
9. HTML 5 elements have been used to define different parts of a web page shown below.

State which elements have been used for the parts labelled A and B.

A ____________________________

B ____________________________
10. A shop has a unique product code for each item it sells, for example X756. The linear search algorithm shown below is used to find the position of a product code in an array.

```
FUNCTION linearSearch (ARRAY OF STRING list)
    RETURNS INTEGER
    DECLARE position INITIALLY 0
    DECLARE target INITIALLY ""
    SEND "Enter target value" TO DISPLAY
    RECEIVE target FROM KEYBOARD
    FOR index FROM 0 TO length(list)-1 DO
        IF target=list[index] THEN
            SET position TO index
        END IF
    END FOR
    RETURN position
END FUNCTION
```

The array of unique product codes is shown below.

```
C232 T546 X756 W482 B629 ........
```

(a) State the value that will be returned by the function if target is X756. 1

(b) This linear search algorithm is inefficient. Describe how the algorithm could be made more efficient. 2

(c) The product code ‘F333’ is entered. It is not in the array.

(i) State the value returned by the function. 1

(ii) State the type of error. Explain your answer. 2

Error ____________________________
Explanation ____________________________
11. A car manufacturer includes an event data recorder in their cars. This device begins recording when the car's sensors detect a sudden change in speed. The data captured can be analysed when required. A sample of data is shown below.

<table>
<thead>
<tr>
<th>Event data</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>speed (mph)</td>
<td>58.2</td>
</tr>
<tr>
<td>accelerator (%)</td>
<td>42</td>
</tr>
<tr>
<td>brake (%)</td>
<td>0</td>
</tr>
<tr>
<td>seatbelt on</td>
<td>True</td>
</tr>
</tbody>
</table>

When triggered by a sensor this data is sampled 10 times per second for 20 seconds.

Software is to be developed that can analyse the data captured from a car's event data recorder.

(a) During the analysis stage boundaries are identified.

State two boundaries for this task.

(b) (i) Using a programming language of your choice, define a suitable record data structure for the data above.
11. (b) (continued)

(ii) Using a programming language of your choice, define the variable which can store the details of the 200 readings. Your answer should use the record data structure created in part (i).

(c) Using a recognised design technique, design an algorithm to find the maximum speed.
12. ScotDance is a dance school which provides classes for children. A website is being created to display information about the dance school and to allow people to contact them, book classes or hire the studio.

The home page is shown below.

(a) The main element of the home page is to have the same CSS styles applied to it as the header element with the exception of the CSS rule to set the height. The height rule should only be applied to the header element.

The CSS rule applied to the header element at present is shown below.

```css
header {
  background-color:white;
  margin-top:20px;
  margin-bottom:20px;
  height:90px;
}
```

Write the new CSS rules required to style both the header and main elements in the most efficient way. Your answer should include the use of grouping selectors.
12. (continued)

(b) The Studio Hire web page should include a form for online booking. When using the form, customers will need to submit the following information.

- Name
- Mobile number
- Date required
- Session (morning, afternoon or evening)
- Additional information (max 400 characters)

Using this information, draw a wireframe design for the form on the Studio Hire web page.
12. (continued)

A form on the Contact Us web page is created using the HTML code shown below.

```html
<form>
Name:
<input type="text" name="name" size="40" required><br><br>

Email Address:
<input type="text" name="email" size="45" maxlength="5" required><br><br>

Age of Child:
<input type="radio" name="age" value="<=5"> 5 and under
<input type="radio" name="age" value="6-10"> 6 - 10
<input type="radio" name="age" value="11-14"> 11 - 14
<input type="radio" name="age" value="15+"> 15+
<br><br>

Class Interested In:
<select name="choiceOfClass">
<option value="ballet">Ballet</option>
<option value="modern">Modern</option>
<option value="tap">Tap</option>
</select><br><br>

Further comments:<br>
<textarea name="comment" rows="5" cols="62" maxlength="500">
</textarea><br><br>

How many days per week do you want your child to train?
<input type="number" name="days"><br><br>
</form>
```

(c) State the type of validation used when inputting the ‘Name’.

1
12. (continued)

(d) It is important that the website is fully tested and evaluated. Testing should include checking that all input validation works correctly. When testing the form, two errors are found.

(i) When entering the number of days per week for training, a user can enter any number.

Re-write the code so that the number of days entered is restricted to between 1 and 7 inclusive.

(ii) There is also an error on the email field.

State the change required to the HTML code to ensure that most email addresses can be entered on the form.

(e) A dropdown list is used to enter the choice of class.

Describe two reasons for using a dropdown list rather than radio buttons on a form.

(f) Compatibility testing should also be carried out on the website.

State one problem that may be identified when testing compatibility.
13. A charity called Animal Help has a website that allows people to raise funds through sponsorship.

Details entered are stored in a relational database.

Fundraisers can see their total donations from all of their sponsors and Animal Help can view the funds being raised on their behalf.

(a) State two functional requirements of the relational database.

(b) The database has the following tables.

<table>
<thead>
<tr>
<th>Fundraiser</th>
<th>Donation</th>
<th>Sponsor</th>
</tr>
</thead>
<tbody>
<tr>
<td>fundraiserID</td>
<td>donationID</td>
<td>sponsorID</td>
</tr>
<tr>
<td>name</td>
<td>fundraiserID*</td>
<td>name</td>
</tr>
<tr>
<td>email</td>
<td>sponsorID*</td>
<td>email</td>
</tr>
<tr>
<td></td>
<td>date</td>
<td></td>
</tr>
<tr>
<td></td>
<td>amount</td>
<td></td>
</tr>
</tbody>
</table>

Draw an entity-relationship diagram to show the relationships that exist in this database.

Your answer should show the entity names and cardinality. Attributes are not required on the diagram.
A sample of the data in each of the three tables is shown below.

<table>
<thead>
<tr>
<th>Fundraiser</th>
<th>donationID</th>
<th>fundraiserID</th>
<th>sponsorID</th>
<th>date</th>
<th>amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Frazier Allston</td>
<td>fallston@fastmail.co.uk</td>
<td>1</td>
<td>4</td>
<td>01/05/2019</td>
<td>25.00</td>
</tr>
<tr>
<td>2 Axel Ginie</td>
<td>aginie@freemail.com</td>
<td>2</td>
<td>2</td>
<td>05/05/2019</td>
<td>10.00</td>
</tr>
<tr>
<td>3 Lucilia Hurworth</td>
<td>lhurworth@cmu.edu</td>
<td>3</td>
<td>3</td>
<td>12/05/2019</td>
<td>10.00</td>
</tr>
<tr>
<td>...</td>
<td>... ...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

(c) Animal Help produces a report of the average donation made to each fundraiser.

Write the SQL statement to produce the output shown below.

<table>
<thead>
<tr>
<th>fundraiserID</th>
<th>Average donation (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.75</td>
</tr>
<tr>
<td>2</td>
<td>17.50</td>
</tr>
<tr>
<td>3</td>
<td>12.50</td>
</tr>
</tbody>
</table>
13. (continued)

(d) Animal Help provides a report of the largest single donation made to each fundraiser.

<table>
<thead>
<tr>
<th>name</th>
<th>Largest donation (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axel Ginie</td>
<td>25.00</td>
</tr>
<tr>
<td>Frazier Allston</td>
<td>25.00</td>
</tr>
<tr>
<td>Lucilia Hurworth</td>
<td>15.00</td>
</tr>
</tbody>
</table>

The following SQL statement is executed.

```
SELECT name,COUNT(amount)
FROM Fundraiser,Donation
WHERE Fundraiser.fundraiserID = Donation.fundraiserID
```

When tested, the actual output did not match the expected output.
Identify the three errors in the above SQL statement.

3

Error 1

Error 2

Error 3

(e) When people make donations their payment details must be kept secure. Describe how encryption is used to ensure the secure transmission of data.

2
14. A travel company performs a search on a particular location and exports the following data about hotels to a text file.

- Hotel name
- Star rating from 1 to 5
- The price per night for a room
- Review score from previous guests from 0 to 10

A sample of the data in the text file is shown below.

Club Praia de Oure,4,47.00,7.0
Adriano Beach Club,4,121.25,8.3
...

A program is required to make recommendations to customers. One end-user requirement is to find the cheapest five star hotel. The algorithm used is shown below.

1. Import hotel data
2. Find the position of cheapest five star hotel
3. Display cheapest five star hotel

(a) The table below has the data flow completed for steps 1 and 3 of the algorithm.

Complete the missing data flow for step 2.

<table>
<thead>
<tr>
<th>Step</th>
<th>IN/OUT</th>
<th>Data flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OUT</td>
<td>hotelname[], stars[], price[], reviews[]</td>
</tr>
<tr>
<td>2</td>
<td>IN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OUT</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>IN</td>
<td>position, hotelname[], stars[], price[], reviews[]</td>
</tr>
<tr>
<td></td>
<td>OUT</td>
<td></td>
</tr>
</tbody>
</table>
14. (continued)

(b) Step 2 finds the position of the cheapest hotel with five stars.

Using a recognised design technique, design this step.
15. Two hundred competitors entered a regional orienteering competition in either the Junior or Senior category. Each competitor received a score based on their performance. The names, categories and scores are stored in a csv file called ‘competitors.csv’. Part of the file is shown below.

Senga Jones, Senior, 67
Agnes Adam, Junior, 88
...

A program is required to read the data from the csv file and then offer a menu of different options.

(a) The data will be stored in parallel 1D arrays.

Using a programming language of your choice, declare parallel 1D arrays that can store the data for the 200 competitors.
15. (continued)

(b) Different options are selected by clicking on a button as shown below.

Orienteering qualifiers
Please select from the buttons below:

- Count the number of Junior qualifiers
- Count the number of Senior qualifiers

When the ‘Count the number of Junior qualifiers’ option is selected, the user is asked to enter the qualifying score. The program will then count how many Juniors achieved at least that score. An example output is shown below.

‘12 Juniors achieved the qualifying score of 42’

Using a programming language of your choice, write the code to ask for a qualifying score and then output the appropriate message.
Bailey’s Dog Kennels is developing a website. The website will have a multi-level structure, consisting of a home page with a horizontal navigational bar that links to four main web pages: Kennels, Grooming, Gallery and Contact Us.

The grooming web page will have links to three sub-pages showing costs, treatments and photos.

(a) Design a multi-level structure for this website.
(b) A browser displays the header element of the home page as shown below.

Bailey's Dog Kennels

Complete the CSS below to style the header.

```css
header{
    background-color: lightgrey;
    padding: 0px;
}

.imageBanner{
    margin-top: 20px;
    float: left;
    padding: 0px;
    height: 90px;
    width: 130px;
}

h1{
    margin-right: 30px;
    margin-top: 30px;
    color: white;
    display: inline;
}
```

[Turn over]
16. (continued)

(c) The navigational bar shown below makes use of the following CSS.

```
<table>
<thead>
<tr>
<th>Home</th>
<th>Kennels</th>
<th>Grooming</th>
<th>Gallery</th>
<th>Contact Us</th>
</tr>
</thead>
</table>
```

```css
nav ul{
    list-style-type:none;
    background-color:lightgrey;
}

nav ul li{
    float:left;
}

nav ul li a{
    display:block;
    color:green;
    width:100px;
    text-align: center;
    padding:14px;
}

nav li a:hover{
    background-color:black;
    color:white;
}
```

(i) Explain why descendant selectors are used here.

(ii) Describe how the navigational bar changes when the pointer is moved over one of the hyperlinks.

(iii) The hyperlinks work if the user clicks on or near the text. Identify the line of code that allows this to happen.
16. (continued)

(d) The home page for Bailey's Dog Kennels is shown below.

![Bailey's Dog Kennels Home Page](image)

Why Bailey's Dog Kennels?

At Bailey's Dog Kennels we treat your dogs as we would treat our own.
We provide a friendly yet professional boarding service.

© 2009-2019 Bailey's Dog Kennels | All Rights Reserved

When the mouse is placed over the image in the main section, the image changes.

![Bailey's Dog Kennels Home Page](image)

Why Bailey's Dog Kennels?

At Bailey's Dog Kennels we treat your dogs as we would treat our own.
We provide a friendly yet professional boarding service.

© 2009-2019 Bailey's Dog Kennels | All Rights Reserved

When the mouse is moved away from the image, the image should return to the original one, however, at present this is not happening.
16. (d) (continued)

HTML code for the home page is shown below.

```html
<!DOCTYPE html>
<html>
  <head>
    <title>Home Page</title>
    <link rel="stylesheet" type="text/css" href="../CSS/styles.css">
    <script>
      function rollover(my_image){my_image.src = '../images/Bailey2.png';}
    </script>
  </head>
  <body>
    <header>
      <h1>Bailey's Dog Kennels</h1>
      <img class="imageBanner" src="../images/BaileyLogo.png">
    </header>
    <nav>
      <ul>
        <li><a href="home.html">Home</a></li>
        <li><a href="kennels.html">Kennels</a></li>
        <li><a href="grooming.html">Grooming</a></li>
        <li><a href="gallery.html">Gallery</a></li>
        <li><a href="contactUs.html">Contact Us</a></li>
      </ul>
    </nav>
    <main>
      <h2>Why Bailey's Dog Kennels?</h2>
      <p>At Bailey's Dog Kennels we treat your dogs as we would treat our own. We provide a friendly yet professional boarding service.</p>
    </main>
    <footer>
      <h3>© 2009-2019 Bailey's Dog Kennels | All Rights Reserved</h3>
    </footer>
  </body>
</html>
```

(i) Write the new function to display the original image when the mouse is moved away from the image.

(ii) Re-write the appropriate HTML element to call the function created in part (i) when the mouse is moved away from the image.
16. (continued)

(e) Bailey’s Dog Kennels installed an intelligent heating system. Describe one environmental benefit to using a heating system which is intelligent.

__
__
__
__
17. A company offers driving lessons. They have a number of instructors and currently organise their customer bookings as shown in the three database tables below.

Instructor

<table>
<thead>
<tr>
<th>instructorID</th>
<th>forename</th>
<th>surname</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>James</td>
<td>Smith</td>
</tr>
<tr>
<td>2</td>
<td>Anna</td>
<td>Bloggs</td>
</tr>
<tr>
<td>3</td>
<td>George</td>
<td>Grant</td>
</tr>
<tr>
<td>4</td>
<td>Rachel</td>
<td>Smith</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Booking

<table>
<thead>
<tr>
<th>bookingID</th>
<th>instructorID</th>
<th>customerID</th>
<th>lessonDuration</th>
<th>date</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK0001</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>01/05/2019</td>
<td>14:00</td>
</tr>
<tr>
<td>BK0002</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>22/05/2019</td>
<td>16:00</td>
</tr>
<tr>
<td>BK0003</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>08/05/2019</td>
<td>14:30</td>
</tr>
<tr>
<td>BK0004</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>12/06/2019</td>
<td>10:00</td>
</tr>
<tr>
<td>BK0005</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>29/05/2019</td>
<td>14:00</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Customer

<table>
<thead>
<tr>
<th>customerID</th>
<th>forename</th>
<th>surname</th>
<th>address</th>
<th>telephone</th>
<th>postcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Matthew</td>
<td>Thomas</td>
<td>113 Cherry Terrace</td>
<td>07850843527</td>
<td>AB43 4SH</td>
</tr>
<tr>
<td>2</td>
<td>Simon</td>
<td>Wenger</td>
<td>91 Almo Alley</td>
<td>07892843825</td>
<td>AB33 8UP</td>
</tr>
<tr>
<td>3</td>
<td>Nicola</td>
<td>Mckay</td>
<td>9 Prairie Crescent</td>
<td>07945043032</td>
<td>AB43 9NZ</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
17. (continued)

(a) Design a query to display the customer’s forename, surname and the total amount of hours of lessons booked by each customer during May 2019.

The design has been partially completed for you.

<table>
<thead>
<tr>
<th>Field(s) and calculation(s)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Table(s)</td>
<td>Customer,Booking</td>
</tr>
<tr>
<td>Search criteria</td>
<td></td>
</tr>
<tr>
<td>Grouping</td>
<td></td>
</tr>
<tr>
<td>Sort order</td>
<td></td>
</tr>
</tbody>
</table>

(b) The company charges £35 per hour for each lesson booked.

Using the sample data provided, write the SQL statement that would produce the following output.

<table>
<thead>
<tr>
<th>Total payments (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>245</td>
</tr>
</tbody>
</table>
17. (continued)

(c) The customer Simon Wenger has moved home. His new address and postcode is 27 Drummer Street, AB33 7QR.
Write the SQL statement to make these changes.

(d) Design a query to display the forename, surname and the number of lessons booked for each instructor.
The instructor who has the most lessons booked should be displayed first.

<table>
<thead>
<tr>
<th>Field(s) and calculation(s)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Table(s)</td>
<td></td>
</tr>
<tr>
<td>Search criteria</td>
<td></td>
</tr>
<tr>
<td>Grouping</td>
<td></td>
</tr>
<tr>
<td>Sort order</td>
<td></td>
</tr>
</tbody>
</table>
18. CoasterRocks theme park is running an online competition to win a free family ticket. People visit the web page and enter their email.

Welcome to CoasterRocks

where screams do come true

One lucky person will win a free family ticket worth £200. Just enter your email address in the box provided and click Submit.

```
Email: ____________________________
Confirm email: ____________________
```

Submit

Only one entry per person is permitted. Any further entries from the same email address will be removed.

After the closing date a program will sort the emails into order so that multiple entries from the same email can be identified. It will then create a list of unique emails from which to choose the winner.

The algorithm for this program is shown below.

1. Imports the emails from the text file into the array called `emails`
2. Sorts the `emails` array into ascending order
3. Stores a list of unique emails in an array called `uniques`
4. Chooses a random winner from the `uniques` array

The table below shows the contents of the `emails` and `uniques` arrays after steps 2 and 3.

<table>
<thead>
<tr>
<th><code>emails</code> array after step 2</th>
<th><code>uniques</code> array after step 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>allan@giggle.com</td>
<td>allan@giggle.com</td>
</tr>
<tr>
<td>bert@yeeha.com</td>
<td>bert@yeeha.com</td>
</tr>
<tr>
<td>bert@yeeha.com</td>
<td>colin@iclood.com</td>
</tr>
<tr>
<td>bert@yeeha.com</td>
<td></td>
</tr>
<tr>
<td>colin@iclood.com</td>
<td></td>
</tr>
<tr>
<td>colin@iclood.com</td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----------------------------</td>
</tr>
</tbody>
</table>
Part of the program code is shown below.

Line 1 DECLARE emails AS ARRAY OF STRING INITIALLY []
Line 2 DECLARE uniques AS ARRAY OF STRING INITIALLY []
... Line 11 importEmails(emails)
Line 12 sortEmails(emails)
Line 13 removeDuplicates(emails, uniques)
Line 14 chooseWinner(uniques)
...

Line 70 PROCEDURE removeDuplicates(ARRAY OF STRING list,
ARRAY of STRING newList)
Line 71 DECLARE position INITIALLY 0
Line 72 SET newList[position] TO list[0]
Line 73 FOR index FROM 1 to length(list)-1 DO
Line 74 IF list[index] ≠ newList[position] THEN
Line 75 SET position TO position + 1
Line 76 END IF
Line 77 END FOR
Line 78 END PROCEDURE

(a) Identify from the code shown above

(i) a formal parameter __ 1

(ii) an actual parameter. __ 1

(b) (i) Explain what is meant by the scope of a variable. 1

__
__
__
__

(ii) State the scope of the variable emails. 1

__
__
__
__

[Turn over
18. (continued)

(c) The data below is used to test the program.

<table>
<thead>
<tr>
<th>emails array</th>
</tr>
</thead>
<tbody>
<tr>
<td>allan@giggle.com</td>
</tr>
<tr>
<td>bert@yeeha.com</td>
</tr>
<tr>
<td>bert@yeeha.com</td>
</tr>
<tr>
<td>bert@yeeha.com</td>
</tr>
<tr>
<td>colin@iclood.com</td>
</tr>
<tr>
<td>colin@iclood.com</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

(i) A breakpoint has been set at Line 77. The variables in the table below are inspected.

Complete the table to show the values stored.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>position</td>
<td></td>
</tr>
<tr>
<td>newList[position]</td>
<td></td>
</tr>
<tr>
<td>list[index]</td>
<td></td>
</tr>
</tbody>
</table>

(ii) Explain the operation of lines 74 to 76 during the first iteration of the loop.

(d) The theme park is aware that their website might be subjected to a DOS attack.

State the effect on customers of a DOS attack.