

Computing Science (Advanced Higher)

Understanding Standards Events 2019 —

Workshop Tasks (7, 8 and 9)

Contents

Workshop 7 1

Workshop 8 5

Workshop 9 13

1

Workshop 7
Computing Science Advanced Higher

This workshop focussed on the sample course delivery plan on the following pages.

Discuss the following:

 Would this delivery plan work for you?

 What changes would you make?

 How do you plan to integrate course content?

AH Delivery Plan – Draft (assuming 5 hours per week) H = Possible Homework

2

Term Area Content ~hr Notes

June

(~4 weeks)

SDD/WDD

design

Pseudocode design

for server-side

processes

1 Begin with the course ethos of integration by providing worked examples of

SDD/DDD and WDD/DDD links. Use this to show similarities between the

two (link to database, execute query, format results) through design.

Keep integration implementation simple: small program, single web page,

single-table database. Web/database server setup will be introduced during

this work.

During the web example a simple media query will be added to the web

page to create a tablet or app view of the page. The use of hexadecimal as

a computing abbreviation will be discussed in the context of web colours.

Practice hex to denary conversion. (H)

SDD

implementation

Connecting a

programming

language to

database

3

DDD

implementation

Connecting web

page to a database

11

WDD

implementation

HTML – Forms

(action, method,

name, value)

2

WDD

implementation

Media queries 2

Computer

Systems

Hexadecimal 1

August –

October

(~8 weeks)

Computer

Systems

Risks of SQL code

injections

1 Provide a worked example of analysis in the context of software

development.

Deliver initial OO theory and provide worked example of a UML class

diagram. Complete design tasks for other scenarios (H).

SDD analysis Feasibility studies,

user surveys,

planning and use-

case diagram

2

SDD design UML class diagrams

and user interface

design

5

3

SDD

Implementation

OO Programming 17 Work through a variety of OO programming tasks.

Deliver theory and problem solving exercises using the three standard

algorithms. (H)

Code each algorithm using procedural and OO examples.

SDD

Implementation

Standard algorithms 5

DBDD analysis Inputs, process,

output, use-case

diagram

4 Provide a worked example of problem analysis in a database context

followed by a few similar tasks to complete. (H)

Deliver new ERD theory followed by ERD creation tasks include identifying

relationship types from EOD. (H)
DBDD design ERD, EOD, data

dictionary

3

Project
Introduction 1 Discuss project requirements, timing including deadlines, assessment

arrangements.
Analysis and Design 2

October –

December

(~8 weeks)

Project Analysis and Design 2 Complete analysis and design tasks for selected project.

DBDD

implementation

SQL CREATE with

constraints

3 Provide data dictionaries for a four-table relational database. Implement

CREATE statements in database server admin view to create the tables and

constraints.

DBDD design

&

implementation

& testing

Query design and

implementation of

SQL HAVING, sub-

queries, logical

operators

20 Provide a large, populated relational database, ERD and data dictionaries.

Design, implement and test a variety of Queries requiring AH SQL. (H)

Project Implementation 15 Begin implementation of project design.

Note evidence for ongoing testing report.

January –

April

SDD

Implementation

OO Programming 15 Complete OO programming.

4

(~10 weeks) SDD testing OO Programming 6 Discuss the range of testing that programs are subjected to. Create and

implement test plans, including personas, for a couple of completed

programs. (H)

Project Implementation 13 Complete implementation of project design.

Note evidence for ongoing testing report.

Write report on ongoing testing.

Project Testing 7 Formulate test plan. Implement test plan and gather evidence of testing.

SDD, DDD,

WDD

Evaluation

fitness for purpose,

maintainability,

robustness

3 Discuss the link between requirements identified at analysis and fitness for

purpose.

Provide a list of requirements and a working solution to a problem. Set a

task to evaluate the solution’s fitness for purpose. (H)

Discuss the maintainability of a project in terms of further changes to the

solution (perfective, corrective, adaptive). Evaluate the maintainability of the

above solution.

Project Evaluation 2 Write evaluation report for project and submit completed project.

Computer

Systems

fetch-execute cycle,

binary addition,

flags and pipe-lining

3 Delivery theory of fetch-execute cycle and the improved efficiency of pipe-

lining instructions.

Discuss the low-level machine and the primary function of adding two binary

values. Practice binary addition and the use of flags in low-level

programming. (H)

Computer

Systems

Environmental

impact

1 Deliver theory on the environmental impact of data centres.

Throughout the course exam-style questions will be set as regular homework tasks. These will cover the full curriculum but with particular focus

on problem design, reading code and writing code.

5

Workshop 8
Computing Science Advanced Higher

This workshop focussed on the object-oriented content of the course.

Discuss the following:

 extend Question 1 to include a question that requires students to make use of the find

maximum algorithm

 extend Question 2 to include a question that requires students to make use of the linear

search algorithm

6

Question 1: Vehicles

An object-oriented program makes use of a Vehicle class to store details of a

company’s vehicles. .

The Van class is a subclass of the Vehicle class with additional instance variables:

 capacity that represents the maximum load space measured in litres

 tailLift that represents whether the van has a tail lift or not

The class definition for the Vehicle class has been provided below. You should note

that each of the three instance variables are private variables.

CLASS Vehicle IS { STRING regNumber, STRING make, STRING colour }

METHODS

PROCEDURE Vehicle(STRING reg, STRING mke, STRING col)

 DECLARE THIS.regNumber INITIALLY reg

 DECLARE THIS.make INITIALLY mke

 DECLARE THIS.colour INITIALLY col

END PROCEDURE

PROCEDURE setColour(STRING col)

 SET THIS.colour TO col

END PROCEDURE

PROCEDURE purpose()

 SEND "I carry passengers" TO DISPLAY

END FUNCTION

FUNCTION getMake() RETURNS STRING

 RETURN THIS.make

END FUNCTION

END CLASS

a) i) Use the OO terms instantiation and inheritance to explain the purpose of the
statement:

DECLARE vehicle1 AS Van INITIALLY ("ABC 123D", "Ford",

"white", 50, false)

ii) The statement vehicle1.purpose() should produce the message "I carry

cargo". Explain how polymorphism would apply in this situation.

iii) Use a programming language of your choice to write the class definition for the

Van class. In addition to the its constructor and purpose() methods, this class

should provide getter methods that enable external code to access the values
stored in its two instance variables.

2

2

4

7

iv) Use appropriate object-oriented terminology to explain why the following
statement is invalid.

SET vehicle1.regNumber TO "XYZ 987W"

2

b) Draw a UML class diagram to represent the structure of the Vehicle and Van

classes. 3

c) An array of Van objects called vanDetails is used to store details of the 25 vans

in the company fleet. The following statement in the main program is used to activate

the function count().

SET numberFordVans TO count(vanDetails)

This function is used to calculate and return the number of Ford vans in the company
fleet.

Use a programming language of your choice to write the code for this count()

function. 3

Marking Instructions

a)

i) A new object called vehicle1 has been instantiated. This object belongs to the

Van class. Since Van is a subclass of the Vehicle class, vehicle1 inherits

each instance variable and method belonging to the Vehicle superclass. The

values provided in the DECLARE statement are assigned, in the sequence listed,

to the 3 instance variables inherited from the Vehicle class and the additional

two instance variables belonging to the Van class.

 Award 1 mark for explanation of instantiation that makes reference to the code

provided.

Award 1 mark for explanation of encapsulation that makes reference to the

code provided.

ii) The vehicle1 object inherits the purpose() method from the Vehicle

superclass. Since the output from this inherited method differs from the output

that is required, polymorphism must be used to redefine the purpose() method

for the Van subclass. In this way, the purpose() method for the Van subclass

overrides the inherited method thereby allowing all Van object to respond

differently.

 Award 1 mark for explanation of inherited method.

Award 1 mark for explanation of the need to use polymorphism to override the

inherited method in order to alter its behaviour.

8

 iii) CLASS Van INHERITS Vehicle WITH { REAL capacity, BOOLEAN

tailLift}
 METHODS

PROCEDURE Van(REAL cap, BOOLEAN tail)

 DECLARE THIS.capcity INITIALLY cap

 DECLARE THIS.tailLift INITIALLY tail

END PROCEDURE

OVERRIDE PROCEDURE purpose()

 SEND "I carry cargo" TO DISPLAY

END FUNCTION

FUNCTION getCapacity() RETURNS REAL

 RETURN THIS.capacity

END FUNCTION

FUNCTION getTailLift() RETURNS BOOLEAN

 RETURN THIS.tailLift

END FUNCTION

 END CLASS

Award 1 mark for code that indicates inheritance from the Vehicle class with

two additional instance variables.

Award 1 mark each for constructor and purpose() methods.

Award 1 mark for both getter methods.

iv) The instance variable regNumber is private, meaning that it is encapsulated. To

access the value stored in the variable and edit its contents, a method must be

used: the instance variable regNumber cannot be edited directly.

Award 1 mark for explanation that refers to encapsulation of the variable.

Award 1 mark for explanation that refers to the need to use a method.

b) Vehicle Van

 - regNumber: string

- make: string

- colour: string

 - capacity: real

- tailLift: Boolean

 + Vehicle()

+ setColour()

+ purpose()

+ getMake ()

 + Van()

+ purpose()

+ getCapacity()

+ getTailLift()

Award 1 mark for correct instance variables and methods of Vehicle class

Award 1 mark for correct instance variables and methods of Van class

Award 1 mark for correct indication of inheritance

9

c)

FUNCTION count (ARRAY OF Van vanDetails) RETURNS INTEGER

 SET total TO 0

 FOR index FROM 0 TO 24 DO

 IF vanDetails[index].getMake() ="Ford" THEN

 SET total TO total + 1

 END IF

 END FOR

 RETURN total

END FUNCTION

Award 1 mark for correct use of vanDetails array

Award 1 mark for correct use of getMake() method

Award 1 mark for correct processing of array total

10

Question 2: Players

A Player object is defined by the Player class shown below.

CLASS Player { STRING name, INTEGER score, STRING location }

METHODS

CONSTRUCTOR Player(STRING nme, INTEGER scr, STRING loc)

DECLARE THIS.name INITIALLY nme

DECLARE THIS.score INITIALLY scr

DECLARE THIS.location INITIALLY loc

END CONSTRUCTOR

 FUNCTION getName() RETURNS STRING

 RETURN THIS.name

 END FUNCTION

 FUNCTION getScote() RETURNS INTEGER

 RETURN THIS.score

 END FUNCTION

END CLASS

a) Describe the purpose of the constructor method shown in the class definition code

above. 2

An array of Player objects called topTen contains the names and scores of the 10

highest scoring players in an online computer game. These details are stored in

descending order of score.

b) The first three members of the array topTen are shown below.

topTen
[0] [1] [2]

Jo 964 Ayr Pete 900 York Sofia 840 Rome

 State the value returned by:

i) topTen[1].getName()

ii) topTen[2].getScore () 2

11

c) At the end of each game, a new Player object called newPlayer is created.

The method compare() receives the newPlayer object containing the player’s

details and the topTen array of Player objects. The method compares the new

player’s score with those in the topTen array and returns the position in which the

new score should be inserted in the topTen array, or the value –1 if the new

score is not high enough to be included.

The method compare() has been started below:

FUNCTION compare(Player newPlayer, ARRAY OF Player

topTen) RETURNS INTEGER

 ## lines of code missing

END FUNCTION

 Write the missing code for this compare() method. 4

d) A method calculateAverage() is used to calculate and return the average

score of the scores stored in the topTen array. This function is activated in the

main program using the statement:

SET averageScote TO calculateAverage(topTen)

Write the code for this calculateAverage() method. 3

Marking Instructions

a)

Whenever it is invoked, this constructor method is used to instantiate a new object that

that belongs to the Player class. The values provided by the user are assigned to

this new object’s three instance variables name, score and location.

Award 1 mark for explanation that refers to instantiation of an object

Award 1 mark for explanation that refers to assignment of values to instance

variables

b)

i) Pete

ii) 840

Award 1 mark each

12

c)

FUNCTION compare (Player newPlayer, ARRAY OF Player topTen)

RETURNS INTEGER

SET index TO 0

SET include TO false

SET position TO -1

REPEAT UNTIL include = true OR index = 10

 IF newPlayer.getScore() > topTen[index].getScore() THEN

 SET include TO true

 SET position TO index

 END IF

END REPEAT

SET index TO index + 1

 RETURN position

END FUNCTION

Award 1 mark for correct use of topTen array

Award 1 mark for correct use of getScore() method

Award 1 mark for traversing topTen array

Award 1 mark for correcting recording insertion position

d)

FUNCTION calculateAverage (ARRAY OF Player topTen) RETURNS

REAL

SET result TO 0.0

FOR index FROM 0 TO 9

 SET result TO result + topTen[index].getScore()

END FOR

SET result TO result/10

RETURN result

END FUNCTION

Award 1 mark for correct use of topTen array

Award 1 mark for correct use of getScore() method

Award 1 mark for correct processing of array average

13

Workshop 9
Computing Science Advanced Higher

This workshop focussed on the 2-D array content of the course.

Discuss the following:

 extend Question 3 to include a question that requires students to make use of a sort

algorithm

 extend Question 4 to include a question that requires students to make use of the count

occurrences algorithm

14

Question 3: Store Cards

A retail store employs ten sales staff. The store keeps a record of the number of new

store cards issued by its sales staff over the first six months of the year. Sample data is

shown in the table below.

 Jan Feb Mar Apr May Jun

Adams 12 12 6 8 3 2

Burns 12 17 7 4 5 9

Cook 2 12 0 12 0 3

Davies 4 10 7 4 8 9

East 5 0 0 0 0 0

Faass 6 1 4 6 7 18

Gray 12 19 12 16 17 7

Hill 13 9 7 3 4 5

Iozzi 12 8 4 4 5 4

Jian 14 11 12 4 5 6

 The sales data is to be stored in a 2-dimensional array called storeCards with

each row of the array representing the sales for one salesperson and each column

representing a month.

Two separate 1-dimensional arrays called person and month will be used to

store the name of each salesperson and the names of the first six months of the

year.

The sample data in the table above would be stored in the three arrays as shown

below.

storeCards person month

12 12 6 8 3 2 Adams Jan

12 17 7 4 5 9 Burns Feb

2 12 0 12 0 3 Cook Mar

4 10 7 4 8 9 Davies Apr

5 0 0 0 0 0 East May

6 1 4 6 7 18 Faass Jun
12 19 12 16 17 7 Gray

13 9 7 3 4 5 Hill

12 8 4 4 5 4 Iozzi

14 11 12 4 5 6 Jian

a) i) Use a programming language of your choice to write a declaration statement for

the two-dimensional array storeCards.

ii) Write the statement used to assign the value of the April sales for salesperson

Gray.

2

1

15

b) Describe the purpose of the following section of code. 2

SEND "Enter a number 1 to 10 to represent one salesperson" TO DISPLAY

RECEIVE salesPersonNumber (INTEGER) FROM KEYBOARD

SET personTotal TO 0

FOR index FROM 0 TO 5 DO

 SET personTotal TO personTotal + storeCards[salesPersonNumber-1,

index]

END FOR

SEND "The result is " & personTotal TO DISPLAY

c) The one-dimensional array called monthlyTotals will store the total number of

new cards issued each month. Use a programming language of your choice to write

the code for a procedure that can used to work out each monthly total and assign

them to the array called monthlyTotals. 3

d) Any member of staff who issues 16 or more cards in any month is due to receive a

bonus. Details of qualifying staff are to be stored in a database called

StaffBonus in a table called Bonus.

 Structure of the Bonus table

 Use pseudocode to design an algorithm

to identify qualifying staff and store the

relevant details in the database table

called Bonus.

field key validation

id PK auto number

salesPersonID required

monthID required

 cardsInMonth required 5

e) Write the code for a procedure called display that can be activated in the main

program and used to display the name of the salesperson who issued the highest

number of store cards in any one month in the first half of the year.

4

Marking Instructions

a)

i) DECLARE storeCards AS ARRAY OF ARRAY OF INTEGER < 2D array

with 10 rows and 6 columns, all elements set initially to

zero >

Award 1 mark for correct dimensions

Award 1 mark for correct data type

ii) SET storeCards [6] [3] TO 16

Award 1 mark for correct assignment

16

b)

This section of code allows the user to enter a value 1–10 that represents one of the

company sales staff and acts as the row index for the 2D array. The code then totals the

values in all six columns of the selected row of the 2D array.

The total sales for the required sales person for the first six months of the year is

displayed on the screen.

Award 1 mark for description that refers to user selection used as row index

Award 1 mark for description that refers to totalling of the sales for the required

sales person

c)

PROCEDURE calculate (ARRAY OF ARRAY OF INTEGER storeCards, ARRAY

OF INTEGER monthlyTotals)

 FOR row FROM 0 TO 9 DO

 FOR column FROM 0 TO 5 DO

 SET monthlyTotals[column] TO monthlyTotals[column} +

storeCards[row][column]

 END FOR

 END FOR

END PROCEDURE

Award 1 mark for correct use of nested loop

Award 1 mark for correct use of column index to process monthlyTotals array

Award 1 mark for correct use of row and column indices to process storeCards

array

d)

1. open connection with StaffBonus database on the secure database server
2. start loop for each row from 0 to 9
3. start loop for each column from 0 to 5
4. if storeCards[row][column] >= 16 then
5. create SQL INSERT query to add the salesperson’s id, month id and

number of store cards issued to the Bonus table
6. execute SQL INSERT query
7. end if
8. end column loop
9. end row loop
10. close connection with database server

Award 1 mark for open and close connection to the database

Award 1 mark for use of nested loop

Award 1 mark for correct use of row and column indices to process storeCards

array

Award 1 mark for correct generation of INSERT query to add salesperson’s

details to the database

Award 1 mark for execution of the INSERT query

17

e)

PROCEDURE display (ARRAY OF ARRAY OF INTEGER storeCards, ARRAY OF

STRING person)

 SET maxIssued TO -1

 SET bestPerson TO -1

 FOR row FROM 0 TO 9 DO

 FOR column FROM 0 TO 5 DO

 IF storeCards[row][column] > maxIssued THEN

 SET maxIssued TO storeCards[row][column]

 SET bestPerson TO row

 END IF

 END FOR

 END FOR

 SEND "The salesperson who issued the most store cards in the

first half of the year is " & person[bestPerson] TO DISPLAY

END PROCEDURE

Award 1 mark for nested loop

Award 1 mark for correct use of storeCards array using row and column

indices

Award 1 mark for correct use of find max algorithm to determine correct sales

person

Award 1 mark for correct use of row index to process person array

18

Question 4: Bingo Cards

A printing company uses a computer program to randomly generate and print bingo

tickets.

Each bingo ticket has a grid with three

rows and nine columns; each row on the

ticket contains five numbers and four

blank spaces.

a) Use a programming language of your choice to define a two-dimensional array

called ticket to store the numbers selected for an individual bingo ticket. 2

b) To generate the tickets, the program first fills in the columns with random integers

as specified in the table below.

Numbers selected can only appear once on each bingo ticket.

Use pseudocode to write an algorithm to fill each element of the array called

ticket with random numbers according to the rules specified above.

Note: there is no need to sort the numbers in each column of the bingo ticket. 5

19

c) After filling the array with randomly selected numbers, the program replaces four

separate positions on each row with the number 0. The bingo ticket is then printed

using the following rules.

 If the value of the array cell is 0 then display a space

 Otherwise, display the value stored in the array cell

Use pseudocode to describe an algorithm that could be used to print the numbers in

the array onto a ticket. 4

Marking Instructions

a)

DECLARE ticket AS ARRAY OF ARRAY OF INTEGER < 2D array with 3

rows and 9 columns, all elements set initially to zero >

Award 1 mark for correct dimensions

Award 1 mark for correct data type

b)

1. set all 90 elements in chosen array to false
2. set selected to false
3. start loop for each row from 0 to 2
4. start loop for each column from 0 to 8
5. repeat until selected = true
6. select random number between column*10+1 and (column+1)*10
7. if chosen[random number] = false then
8. set chosen[random number] to true
9. set tickets[row][column] to random number
10. set selected to true
11. end if
12. end repeat
13. set selected to false
14. end column loop
15. end row loop

Award 1 mark for correct use of nested loop

Award 1 mark for generation of random numbers

Award 1 mark for checking that number selected has not already been used

Award 1 mark for use of conditional loop to select three unique numbers for each

column

Award 1 mark for assignment of random number to 2D array

c)

1. start loop for each row from 0 to 2
2. set all 9 elements in successfulChoices array to false
3. start loop for choices from 1 to 4
4. set success to false
5. repeat until success = true
6. select random column between 0 and 8

20

7. if successfulChoices [random column] = false then
8. set successfulChoices [random column] to true
9. set tickets[row][random column] to 0
10. set success to true
11. end if
12. end repeat
13. end choice loop
14. start loop for each column from 0 to 8
15. if tickets[row][column] = 0 then
16. display space
17. else
18. display ticket[row][column]
19. end if
20. end row loop

Award 1 mark for random selection of 4 cells in each row of the 2D array

Award 1 mark for ensuring that 4 different cells are selected in each row

Award 1 mark for allocation of zero to 4 cells in each row of the array

Award 1 mark for displaying contents of 2D array

