\square
National Qualifications

FRIDAY, 12 MAY
1:00 PM - 3:30 PM

Fill in these boxes and read what is printed below.

Full name of centre

Forename(s)

Surname

Number of seat

Date of birth

Day	Month	Year	Scottish candidate number
	\square		\square

Total marks - 100
SECTION 1 - 25 marks
Attempt ALL questions.
Instructions for the completion of Section 1 are given on page 02.

SECTION 2 - 75 marks

Attempt ALL questions.
You may refer to the Chemistry Data Booklet for National 5.
Write your answers clearly in the spaces provided in this booklet. Additional space for answers and rough work is provided at the end of this booklet. If you use this space you must clearly identify the question number you are attempting. Any rough work must be written in this booklet. You should score through your rough work when you have written your final copy.
Use blue or black ink.
Before leaving the examination room you must give this booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

The questions for Section 1 are contained in the question paper X813/75/02.
Read these and record your answers on the answer grid on page 03 opposite.
Use blue or black ink. Do NOT use gel pens or pencil.

1. The answer to each question is either A, B, C or D. Decide what your answer is, then fill in the appropriate bubble (see sample question below).
2. There is only one correct answer to each question.
3. Any rough working should be done on the additional space for answers and rough work at the end of this booklet.

Sample question

To show that the ink in a ball-pen consists of a mixture of dyes, the method of separation would be

A fractional distillation
B chromatography
C fractional crystallisation
D filtration.
The correct answer is B - chromatography. The answer B bubble has been clearly filled in (see below).

A B C D
$\bigcirc \bigcirc \bigcirc$

Changing an answer

If you decide to change your answer, cancel your first answer by putting a cross through it (see below) and fill in the answer you want. The answer below has been changed to D.

If you then decide to change back to an answer you have already scored out, put a tick (\checkmark) to the right of the answer you want, as shown below:

A	B	C	D		A	B	C	D
$○$	\varnothing	\bigcirc	\varnothing		O	$\varnothing r$	\bigcirc	O

You must record your answers to Section 1 questions on the answer grid on page 03 of your answer booklet.

* X 813750103 *

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

1. Chlorine is an element that exists as diatomic molecules.
(a) State the number of elements, including chlorine, that exist as diatomic molecules.

(b) A sample of chlorine contains two isotopes with masses of 35 and 37 . The average mass of this sample of chlorine is 35.5 .

State the mass number of the most common isotope in this sample.

(c) Name an element that has similar chemical properties to chlorine.

You may wish to use the data booklet to help you.
\square
(d) Magnesium chloride is an ionic compound containing magnesium ions and chloride ions. The nuclide notation for these two ions are shown.

Complete the table to show the number of electrons and neutrons in these ions.

	Electrons	Neutrons
${ }_{12}^{24} \mathrm{Mg}^{2+}$		12
${ }_{17}^{37} \mathrm{Cl}^{-}$	18	

2. Ethane, ethene and ethyne are compounds that contain two carbon atoms. Hydrogen is the only other type of atom present in these compounds.
(a) State the term used to describe compounds that contain only carbon and
hydrogen atoms.
(b) Ethene can be produced from ethane as shown.

(i) State the name of chemical X produced in the reaction.
\square
(ii) Describe the chemical test, including the result, to show that ethene is unsaturated.
\square
3. (continued)
(c) (i) Ethyne contains a carbon-carbon triple bond.

Draw the full structural formula for ethyne.
(ii) Ethyne can be used as a fuel.
(A) Name the products formed when ethyne is burned in a plentiful supply of oxygen.

(B) The burning of a fuel is an exothermic reaction.

State what is meant by the term exothermic.

[Turn over
3. Metal elements make up approximately three quarters of the periodic table.
(a) The columns of elements in the periodic table are known as groups.

State a group number in which all the elements are metals.
You may wish to use the data booklet to help you.

(b) Some metals react with oxygen. A common experimental set up for this reaction is shown.

(i) Write the formula for potassium permanganate.

You may wish to use the data booklet to help you.

(ii) The observations for this reaction with four different metals were recorded.

Metal	Observation
Copper	dull red glow
Iron	red glow with a few sparks
X	bright light
Magnesium	blinding white light

Suggest a name for metal X, based on these observations.
You may wish to use the data booklet to help you.
\square

3. (continued)

(c) Some metals react with dilute hydrochloric acid to produce a gas.

Complete the table naming this gas and the test, including the result, used to identify it.

Gas produced	Test and result

(d) Metals can be used to produce a voltage using a simple cell as shown.

The results are shown in the table.

Metal A	Voltage (V)
Magnesium	2.7
Tin	0.5
Iron	

(i) Complete the table to suggest a value for the voltage produced by the cell when metal A is iron.

You may wish to use the data booklet to help you.
(ii) State what is meant by the term electrolyte.

(iii) Suggest one factor that should be kept constant to make the experiment fair.
\square
4. Read the passage and answer the questions that follow.

Carbon dioxide catalysis making jet fuel

A new catalyst for turning carbon dioxide into jet fuel has been developed. This development could lead to an industrial-scale method of extracting carbon dioxide gas from the air and using it in jet engines.
The new catalyst is made from iron, manganese and potassium, and can produce long-chain molecules from carbon dioxide in a single step. The catalyst converts carbon dioxide into molecules that are suitable for use in jet fuel.

Ultimately, 4700 g of atmospheric carbon dioxide could be turned into one litre of jet fuel using the new catalyst.
(a) State where the carbon dioxide for this industrial-scale method would be extracted from.
\square
(b) An advantage of using catalysts is that they speed up chemical reactions.

State another advantage of using catalysts.

(c) Calculate the number of moles of carbon dioxide required to produce 5 litres of jet fuel using the new catalyst.
\square
5. Nitrogen gas makes up nearly 80% of the air and is found in many compounds. Using your knowledge of chemistry, comment on the chemistry of nitrogen.
\square
6. Propenoic acid is a monomer used to make the polymer poly(propenoic acid).

(a) (i) Name the functional group circled in the diagram above.

(ii) State the type of reaction that takes place when monomers join to form a polymer.

(iii) Draw a section of poly(propenoic acid) showing three monomer units joined together.
6. (continued)
(b) Polymers such as poly(propenoic acid) are used to make materials that have the ability to swell by absorbing water.
The amount of swelling is affected by salts dissolved in the water.
Experimental data for materials A and B, with a variety of different chloride salt solutions is shown.

(i) Using the graph, identify the combination of material and salt solution that results in the most swelling.

(ii) Draw a bar on the graph to show the expected swelling for material A in a salt solution of strontium chloride, SrCl_{2}.
(An additional graph, if required, can be found on page 26.)
[Turn over

6. (continued)

(c) A student investigated the time taken for different masses of another material to absorb $100 \mathrm{~cm}^{3}$ of water.
(i) The student used a beaker to measure the $100 \mathrm{~cm}^{3}$ of water.

Suggest a more appropriate piece of apparatus to measure the volume of water.

(ii) The student's results are shown.

Mass of material (g)	Time taken to absorb $\mathbf{1 0 0} \mathrm{cm}^{3}$ of water (s)
0.1	180
0.2	160
0.5	90
0.7	50
1.0	30

Draw a graph of these results.
(Additional graph paper, if required, can be found on page 27.)

* X 813750115 *

7. Silanes are a homologous series containing atoms of silicon and hydrogen only. The table shows data for some silanes.

Compound name	Formula	Boiling point $\left({ }^{\circ} \mathrm{C}\right)$
Monosilane	SiH_{4}	-112
Disilane	$\mathrm{Si}_{2} \mathrm{H}_{6}$	-15
	$\mathrm{Si}_{3} \mathrm{H}_{8}$	53
Tetrasilane	$\mathrm{Si}_{4} \mathrm{H}_{10}$	108
Pentasilane		153
Hexasilane	$\mathrm{Si}_{6} \mathrm{H}_{14}$	

(a) Name the third member of the silane family, $\mathrm{Si}_{3} \mathrm{H}_{8}$.

(b) Calculate the number of hydrogen atoms present in a molecule of pentasilane.

(c) Predict the boiling point, in ${ }^{\circ} \mathrm{C}$, of hexasilane.

7. (continued)
(d) Draw a diagram, showing all the outer electrons, for a molecule of monosilane, SiH_{4}.
(e) Explain why pentasilane has a higher boiling point than tetrasilane.

(f) Disilane, $\mathrm{Si}_{2} \mathrm{H}_{6}$, can be produced in the following reaction.

$$
7 \mathrm{Mg}+2 \mathrm{SiO}_{2}+14 \mathrm{HCl} \rightarrow \mathrm{Si}_{2} \mathrm{H}_{6}+7 \mathrm{MgCl}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

disilane

Calculate the mass of disilane, in grams, that would be produced from the reaction of 6 g of silicon dioxide, SiO_{2}.

[Turn over
8. Read the passage and answer the questions that follow.

Phosphoric acid

Fluorapatite, a compound found in some rocks, can be used to produce phosphoric acid.
The phosphoric acid is purified using 4-methylpentan-2-one as shown below.

4-methylpentan-2-one

The salts of phosphoric acid have many uses. For example, the salt ammonium dihydrogenphosphate, $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$, more commonly known as ADP, can be used as a fertiliser. Another salt, sodium phosphate, $\mathrm{Na}_{3} \mathrm{PO}_{4}$, is used in the manufacture of pharmaceuticals, cheese and toothpastes.

Solid calcium sulfate is also produced along with liquid phosphoric acid as an impurity from fluorapatite. Calcium sulfate can exist in two common forms: 'hemihydrate', $\mathrm{CaSO}_{4} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$, and 'dihydrate', $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. The 'dihydrate' form, $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, has two moles of water present for every one mole of calcium sulfate.
(a) State the name of the compound found in some rocks, from which phosphoric acid can be produced.

(b) Write the molecular formula for the chemical used to purify phosphoric acid.

8. (continued)
(c) (i) The chemical known as ADP contains phosphorus, an element essential for healthy plant growth.

Name the other element present in ADP that is essential for healthy plant growth.

(ii) Sodium phosphate can also be used as a fertiliser as it contains phosphorus.

Suggest a property of sodium phosphate that would make it suitable for use as a fertiliser.

You may wish to use the data booklet to help you.
\square
(d) Calculate the percentage by mass of phosphorus in phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$. Show your working clearly.

(e) Name the technique that could be used to separate the calcium sulfate from the phosphoric acid.

(f) State the number of moles of water present for every one mole of calcium sulfate in the 'hemihydrate' form.

[Turn over
9. The energy stored in foods can be determined using the experiment shown.

(a) A student burned a single crisp using this apparatus and recorded the following results.

Mass of single crisp	1 g
Mass of water	10 g
Initial temperature of water	$19^{\circ} \mathrm{C}$
Final temperature of water	$34^{\circ} \mathrm{C}$

(i) Calculate the energy, in kJ , absorbed by the water in this experiment.
\square
9. (a) (continued)
(ii) In the experiment, the amount of energy absorbed by the water is lower than the expected value.
Suggest why the value in the experiment is lower than expected.

(b) The energy stored in food is more often referred to in kilocalories, where 1 kilocalorie is equal to 4.18 kJ .
A food testing laboratory measured the energy absorbed by water when burning 1 g of a biscuit to be 20.9 kJ .
Calculate the energy, in kilocalories, that would be found in a 30 g biscuit.

[Turn over
10. Caesium is a highly reactive metal that was first extracted from an ore in the late 1800s.
(a) (i) Suggest a method used to extract caesium metal from its ore.
\square
(ii) During the extraction of caesium from its ore, the caesium ions are changed to caesium atoms.

Name this type of chemical reaction.

(b) Caesium-137 is a radioactive isotope of caesium that decays by emitting beta particles.
(i) Write the nuclide notation for a beta particle.
\square
(ii) Caesium-137 is used in industry to measure the thickness of materials, such as paper and sheets of metal.
Suggest a reason why an alpha particle emitting radioactive isotope is not suitable for this purpose.
\square
10. (b) (continued)
(iii) The half-life of caesium-137 is 30 years.

(B) Calculate the fraction of caesium-137 that will have decayed after 120 years.
11. Tungsten(VI) fluoride is used in the electronics industry.
(a) Tungsten(VI) fluoride is a toxic, colourless gas at room temperature.

Circle the correct words to complete the sentence.
Tungsten(VI) fluoride has $\left\{\begin{array}{c}\text { covalent } \\ \text { ionic } \\ \text { metallic }\end{array}\right\}$ bonding and a $\left\{\begin{array}{c}\text { lattice } \\ \text { molecular } \\ \text { network }\end{array}\right\}$ structure.
(b) Tungsten(VI) fluoride reacts with water to form hydrofluoric acid, HF .

The equation for this reaction is shown.

$$
\mathrm{WF}_{6}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{WO}_{3}+\mathrm{HF}
$$

(ii) Describe the relationship between the concentration of hydrogen ions and the concentration of hydroxide ions in a solution of hydrofluoric acid.

(c) Tungsten(VI) fluoride can react to form tungsten(IV) fluoride.

Complete the ion-electron equation for the reaction of tungsten (VI) ions to form tungsten(IV) ions by adding electrons.
12. Dilute hydrochloric acid, $\mathrm{HCl}(\mathrm{aq})$, will react with marble chips, which contain calcium carbonate, $\mathrm{CaCO}_{3}(\mathrm{~s})$.
The rate of this reaction can be easily changed and measured.
Using your knowledge of chemistry, describe how a student could investigate one factor that affects the rate of a chemical reaction.

Additional graph for question 6 (b) (ii)

\square

Additional graph paper for question 6 (c) (ii)

\square
\square
\square

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

* X 813750131 *

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

* X 813750132 *

