

Advanced Higher Computing Science

Course code: C816 77

Course assessment code: X816 77

SCQF: level 7 (32 SCQF credit points)

Valid from: session 2024-25

This document provides detailed information about the course and course assessment to

ensure consistent and transparent assessment year on year. It describes the structure of

the course and the course assessment in terms of the skills, knowledge and understanding

that are assessed.

This document is for teachers and lecturers and contains all the mandatory information

required to deliver the course.

The information in this document may be reproduced in support of SQA qualifications only on

a non-commercial basis. If it is reproduced, SQA must be clearly acknowledged as the

source. If it is to be reproduced for any other purpose, written permission must be obtained

from permissions@sqa.org.uk.

Where this document includes materials from sources other than SQA (secondary copyright)

this material must only be reproduced for the purposes of instruction in an educational

establishment. If it is to be reproduced for any other purpose, it is the user’s responsibility to

obtain the necessary copyright clearance. The acknowledgements page lists sources of

copyright items that are not owned by SQA.

This edition: September 2024 (version 3.2)

© Scottish Qualifications Authority 2014, 2019, 2023, 2024

mailto:permissions@sqa.org.uk

Contents
Course overview 1

Course rationale 2

Purpose and aims 2

Who is this course for? 2

Course content 4

Skills, knowledge and understanding 5

Skills for learning, skills for life and skills for work 14

Course assessment 15

Course assessment structure: question paper 15

Course assessment structure: project 18

Grading 20

Equality and inclusion 21

Further information 22

Appendix: course support notes 23

Introduction 23

Approaches to learning and teaching 23

Preparing for course assessment 46

Developing skills for learning, skills for life and skills for work 48

Resources to support the Advanced Higher Computing Science course 49

Appendix 1: problem analysis (SDD, DDD and WDD) 50

Appendix 2: Unified Modelling Language (UML) — class diagrams (SDD) 61

Appendix 3: entity-relationship diagrams (DDD) 65

Appendix 4: data dictionary (DDD) 71

Appendix 5: query design (DDD) 73

Appendix 6: server-side process design (WDD) 77

Appendix 7: linked lists (SDD) 87

Appendix 8: connecting to a database using a programming language (SDD) 94

Appendix 9: standard algorithms (SDD) 113

Appendix 10: SQL operations (DDD) 122

Appendix 11: HTML forms (WDD) 136

Appendix 12: PHP form processing (WDD) 139

Appendix 13: PHP sessions (WDD) 149

Appendix 14: media queries (WDD) 153

Appendix 15: integrative testing (SDD, DDD and WDD) 162

Appendix 16: fitness for purpose (SDD, DDD and WDD) 170

Copyright acknowledgements 173

Version 3.2 1

Course overview
This course consists of 32 SCQF credit points, which includes time for preparation for course

assessment. The notional length of time for candidates to complete the course is 160 hours.

The course assessment has two components.

Component Marks Duration

Question paper 55 2 hours

Project 80 see ‘Course assessment’ section

Recommended entry Progression

Entry to this course is at the discretion of

the centre.

Candidates should have achieved the

Higher Computing Science course or

equivalent qualifications and/or experience

prior to starting this course.

 a range of computing-related Higher

National Diplomas (HNDs)

 degrees in computing science or related

disciplines

 careers in computing, IT and/or related

areas

 further study, employment and/or

training

Conditions of award

The grade awarded is based on the total marks achieved across both course assessment

components.

Version 3.2 2

Course rationale
National Courses reflect Curriculum for Excellence values, purposes and principles. They

offer flexibility, provide time for learning, focus on skills and applying learning, and provide

scope for personalisation and choice.

Every course provides opportunities for candidates to develop breadth, challenge and

application. The focus and balance of assessment is tailored to each subject area.

This course highlights the central role of computing professionals as creative

problem-solvers and designers, able to conceive, design, implement, and operate complex

systems. It provides candidates with an understanding of contemporary computing

technologies, and develops a wide range of practical skills that underpin our modern, digital

world.

The course also builds awareness of the importance of computing in meeting our needs

today and for the future, in many fields including science, education, business, and industry.

Many organisations regard computing skills as vital to their growth and sustainability, while a

growing number of individuals use computing technologies as a way to create

entrepreneurial, social and enterprise-building opportunities.

Purpose and aims
The course provides a broad and challenging exploration of computing technologies,

focusing on developing advanced programming and research skills. Candidates learn to

apply a rigorous approach to the design and development process.

The course enables candidates to:

 understand and apply computational-thinking skills across a range of computing contexts

 extend and apply knowledge and understanding of advanced concepts and processes in

computing science

 apply skills and knowledge in analysis, design, development, implementation, testing,

and evaluation to a range of digital solutions with increasingly complex aspects

 apply creative problem-solving skills across a range of contexts

 develop autonomous learning, investigative, and research skills

 communicate advanced computing concepts clearly and concisely, using appropriate

terminology

 develop an informed understanding of the role and impact of computing technologies in

influencing our environment and society

Who is this course for?
The course is suitable for candidates interested in exploring the role and impact of

contemporary computing technologies. It provides a pathway for those who want to progress

to more specialised training, further education, or entry into a diverse range of occupations

Version 3.2 3

and careers, such as software programming and/or engineering, databases, and web design

and development.

The skills in the course are transferable to all areas of computing-related study including

robotics, artificial intelligence, e-commerce, networking, cyber security, and systems analysis

and testing.

Version 3.2 4

Course content
The course has three areas of study:

Software design and development

Candidates develop knowledge, understanding, and advanced practical problem-solving

skills in software design and development. They do this by using appropriate software

development environments. Candidates develop object-oriented programming and

computational-thinking skills by analysing, designing, implementing, testing, and evaluating

practical solutions and explaining how these modular programs work. They use their

knowledge of data types and constructs to create efficient programs to solve advanced

problems.

Database design and development

Candidates develop knowledge, understanding, and advanced practical problem-solving

skills in database design and development. They do this through a range of practical tasks,

using SQL to create and query relational databases. Candidates apply computational-

thinking skills to analyse, design, implement, test, and evaluate practical solutions, using a

range of development tools. Candidates apply interpretation skills to tasks involving some

complex features in both familiar and new contexts.

Web design and development

Candidates develop knowledge, understanding, and advanced practical problem-solving

skills in web design and development. They do this through a range of practical and

investigative tasks. Candidates apply computational-thinking skills to analyse, design,

implement, test, and evaluate practical solutions to web-based problems, using a range of

development tools including HTML, Cascading Style Sheets (CSS) and PHP. Candidates

apply interpretation skills to tasks involving some complex features in both familiar and new

contexts.

Integration

The integration of technologies is central to the course. Teachers and lecturers should

consider candidates’ previous experience in ‘Database design and development’ and ‘Web

design and development’ when planning delivery. This will ensure candidates are prepared

for the integration that is required for the question paper and project assessment

components. These requirements are set out in ‘Course assessment structure: question

paper’ on pages 14–17 and in the Coursework Assessment Task.

https://www.sqa.org.uk/files_ccc/ah-cat-computing-science.pdf

Version 3.2 5

Skills, knowledge and understanding

Skills, knowledge and understanding for the course

The following provides a broad overview of the subject skills, knowledge and understanding

developed in the course:

 applying computational thinking to solve complex computing problems

 analysing complex problems within computing science, across a range of contemporary

contexts

 designing, developing, implementing, testing, and evaluating digital solutions (including

computer programs) to complex problems across a range of contexts

 developing advanced skills in computer programming and the ability to communicate how

a program works

 communicating an understanding of complex concepts related to computing science

design and development, clearly and concisely, using appropriate terminology

 knowledge and understanding of the role and impact of contemporary computing

technologies on the environment and society

Version 3.2 6

Skills, knowledge and understanding for the course assessment

The following provides details of skills, knowledge and understanding sampled in the course assessment.

 Software design and development Database design and development Web design and development

Analysis Identify the purpose and functional requirements of a problem that relates to the design and implementation at this level

in terms of:

 inputs

 processes

 outputs

Describe, exemplify and implement research for:

 feasibility studies:

— economic

— time

— legal

— technical

— user surveys

Describe, exemplify and implement planning in terms of:

 scheduling

 resources

 Gantt charts

Version 3.2 7

 Software design and development Database design and development Web design and development

Analysis

(continued)

Produce requirement specifications for end users and develop:

 end-user requirements

 scope, boundaries and constraints

 functional requirements

Describe, exemplify and implement Unified Modelling Language (UML):

 use case diagrams:

— actors

— use cases

— relationships

Design Identify the data types and structures

required for a problem that relates to

the implementation at this level.

Read and understand designs of

solutions to problems at this level

using the following design techniques:

 structure diagrams

 pseudocode

 UML

Describe, exemplify and implement

entity-relationship diagrams with three

or more entities indicating:

 entity name

 entity type (strong, weak)

 attributes

 relationship participation

(mandatory, optional)

 name of relationship

 cardinality

Identify relationship participation from

an entity-occurrence diagram.

Describe, exemplify and implement

wireframe designs showing:

 visual layout

 navigation

 consistency

 underlying processes

Describe, exemplify and implement

low-fidelity prototype from wireframe

design.

Version 3.2 8

 Software design and development Database design and development Web design and development

Design

(continued)

Exemplify and implement efficient

design solutions to a problem at this

level, using pseudocode, showing:

 top-level design

 the data flow

 refinements

Describe, exemplify and implement

UML for the following:

 class diagrams:

— class name

— instance variables and data

types

— methods

— public and private

— inheritance

— constructor

— array of objects

Describe, exemplify and implement

surrogate keys.

Describe and exemplify a data

dictionary, in relation to SQL, with three

or more entities for the following:

 entity name

 attribute name

 primary and foreign key

 attribute type:

— varchar

— integer

— float

— date

— tie

 attribute size

 validation:

— presence check

— restricted choice

— field length

— range

Read and understand designs of

server-side processes at this level,

using the following techniques:

 structure diagrams

 pseudocode

Exemplify and implement the design of

server-side processes using

pseudocode.

Version 3.2 9

 Software design and development Database design and development Web design and development

Design

(continued)

Describe, exemplify and implement

user-interface design using a

wireframe, indicating:

 visual layout

 inputs

 validation

 underlying processes

 outputs

Exemplify a design of a solution query

using:

 tables and queries

 fields

 search criteria

 sort order

 calculations

 grouping

 having

Implementation
Data types and structures

Describe, exemplify, and implement

the following structures in solutions to

problems at this level:

 parallel 1-D arrays

 records

 arrays of records

 2-D arrays

 array of objects

Describe and exemplify the operation

of linked lists (double and single).

SQL

Implement relational database using

SQL Data Definition Language (DDL)

and Data Manipulation Language

(DML) to match the design.

CSS

Describe, exemplify, and implement

responsive pages using the following

media queries:

 media type:

— print

— screen

 media feature:

— max-width

Version 3.2 10

 Software design and development Database design and development Web design and development

Implementation

(continued)

Computational constructs

Describe, exemplify, and implement

the following object-oriented

constructs:

 object

 property

 method

 class

 sub-class

 encapsulation

 inheritance

 instantiation

 polymorphism

Describe, exemplify, and implement

code to:

 open and close connection to

database server

 execute SQL query

 format query results

Describe, exemplify, and implement the

following SQL operations:

 CREATE statement:

— CREATE DATABASE

— CREATE TABLE

constraints:

o primary key

o foreign key

o not null

o check

o auto increment

 DROP statement:

— DROP DATABASE

— DROP TABLE

 HAVING clause of the SELECT

statement

 subqueries used with the WHERE

clause of SELECT statements

 data types:

— varchar

— integer

— float

— date

— time

HTML

Describe, exemplify, and implement

form elements including:

 FORM element:

— action

— method (get and post)

 INPUT, SELECT and TEXTAREA

elements:

— name

— value

 TABLE element:

— th, tr, td

PHP

Describe, exemplify, and implement

coding of server-side processing to:

 assign form data to server-side

variables:

— $_get()

— $_post()

Version 3.2 11

 Software design and development Database design and development Web design and development

Implementation

(continued)

Algorithm specification

Describe, exemplify, and implement

standard algorithms including:

 binary search

 insertion sort

 bubble sort

Read and explain code that uses

constructs appropriate to this level.

 logical operators:

— IN

— NOT

— BETWEEN

— ANY

— EXISTS

Read and explain code that uses the

SQL at this level.

 open and close connection to

database server:

— die()

— mysqli_connect()

— mysqli_close()

 execute SQL query:

— mysqli_query()

 format query results:

— echo

— mysqli_fetch_array()

— mysqli_num_row()

and:

 assignment, repetition and

selection using server-side local

and global variables

 sessions:

— session_start()

— session_destroy()

Read and explain code that uses

constructs appropriate to this level.

Version 3.2 12

 Software design and development Database design and development Web design and development

Testing Describe, exemplify and implement the following:

 integrative testing

 usability testing based on prototypes

 final testing

 end-user testing

 and:

 component testing during the

development of the solution

and:

 SQL-implemented tables match

design

 SQL operations work correctly at

this level

Evaluation Evaluate solution in terms of:

 fitness for purpose

 maintainability

— perfective

— corrective

— adaptive

 robustness

 and:

 efficiency

 usability

and:

 accuracy of output

and:

 usability

Version 3.2 13

Skills, knowledge and understanding included in the course are appropriate to the SCQF level of the course. The SCQF level descriptors give

further information on characteristics and expected performance at each SCQF level, and are available on the SCQF website.

Version 3.2 14

Skills for learning, skills for life and skills for work
This course helps candidates to develop broad, generic skills. These skills are based on

SQA’s Skills Framework: Skills for Learning, Skills for Life and Skills for Work and draw from

the following main skills areas:

2 Numeracy

2.3 Information handling

3 Health and wellbeing

3.1 Personal learning

4 Employability, enterprise and citizenship

4.2 Information and communication technology (ICT)

5 Thinking skills

5.3 Applying

5.4 Analysing and evaluating

Teachers and lecturers must build these skills into the course at an appropriate level, where

there are suitable opportunities.

http://www.sqa.org.uk/sqa/63101.html

Version 3.2 15

Course assessment
Course assessment is based on the information in this course specification.

The course assessment meets the purposes and aims of the course by addressing:

 breadth — drawing on knowledge and skills from across the course

 challenge — requiring greater depth or extension of knowledge and/or skills

 application — requiring application of knowledge and/or skills in practical or theoretical

contexts as appropriate

This enables candidates to apply:

 knowledge and skills from across the course to plan, analyse, design, implement, test

and evaluate a solution to solve an appropriately challenging practical computing science

problem

 breadth of knowledge from across the course, and depth of understanding, to answer

appropriately challenging questions in computing science contexts

Course assessment structure: question paper

Question paper 55 marks

The question paper gives candidates the opportunity to:

 apply computational thinking to solve complex computing problems

 analyse complex problems within computing science, across a range of contemporary

contexts

 design, develop, implement, test, and evaluate digital solutions (including computer

programs) to complex problems across a range of contexts

 communicate how a well-structured, complex, modular program works

 demonstrate understanding of complex concepts relating to computing science design

and development by communicating clearly and concisely, using appropriate terminology

 demonstrate knowledge and understanding of key aspects of contemporary project

planning and management

 demonstrate knowledge and understanding of object-oriented programming

The question paper has 55 marks, which is approximately 40% of the overall marks for the

course assessment (135 marks).

Version 3.2 16

The question paper has three sections. Section 1 is mandatory, and candidates have the

option to complete wither section 2 or section 3.

 Section 1: Software design and development — 35 marks

 Section 2: Database design and development — 20 marks

 Section 3: Web design and development — 20 marks

Each section begins with a number of short, stand-alone questions. These are predominantly

‘C’ mark questions, based on Advanced Higher concepts, presented in a clear and concise

way, in a simple and/or familiar context.

This is followed by more challenging, context-based questions with multiple subparts. These

require a range of responses including restricted and extended response, designing solutions

and writing code, and feature both ‘C’ mark and ‘A’ mark questions. Some questions are

designed to be more challenging and feature higher-order Advanced Higher concepts, such

as the integration of technologies or understanding and/or designing solutions to complex,

unfamiliar problems.

The questions will:

 require candidates to understand and design solutions to complex, unfamiliar problems

 be set in meaningful contexts that require candidates to provide some descriptions and

explanations

 provide integration by drawing on understanding from other areas of the course

 sample across the course in a balanced way

Integration

The ‘Database design and development’ and ‘Web design and development’ sections will
each contain a question set in the context of a database-driven website. Part of this question
will require some integration with the other option. The tables below detail what could be
asked in the question paper.

For ‘Database design and development’, candidates will need to be familiar with the following

‘Web design and development’ skills, knowledge and understanding so they can design and

implement HTML forms.

Design

Describe, exemplify, and implement wireframe designs showing:

 visual layout

 navigation

 consistency

 underlying processes

Version 3.2 17

Implementation

Describe, exemplify, and implement form elements including:

 FORM element:

— action

— method (get and post)

 INPUT, SELECT and TEXTAREA elements:

— name

— value

Describe, exemplify and implement form elements:

 form element: input

— text

— number

— textarea

— radio

— submit

 form element: select

Describe, exemplify and implement form data validation:

 length

 presence

 range

Read and explain code that makes use of the above HTML.

For ‘Web design and development’, candidates will need to be familiar with the following

‘Database design and development’ skills, knowledge and understanding in order that they

can implement SQL queries:

 select:

— from

— where:

 o AND, OR, <, >, =

 o order by with a single field

— use of MAX, MIN, AVG, COUNT and SUM to return a single value

 insert

 update

 delete

Read and explain code that makes use of the above SQL.

Version 3.2 18

SQA’s standardised reference language

Questions assessing understanding and application of programming skills are expressed

using SQA’s standardised reference language. Further information can be found in the

document Reference language for Computing Science question papers, which can be

downloaded from the Advanced Higher Computing Science subject page on SQA’s website.

Where candidates need to answer by writing code, answers may be expressed using any

programming language. Candidates are not expected to write code in SQA’s standardised

reference language. Marks are awarded for demonstrating understanding, not for the correct

use of syntax.

Setting, conducting and marking the question paper

SQA sets and marks the question paper. It is conducted in centres under conditions specified

for external examinations by SQA.

Candidates have 2 hours to complete the question paper.

Specimen question papers for Advanced Higher courses are published on SQA’s website.

These illustrate the standard, structure and requirements of the question papers. The

specimen papers also include marking instructions.

Course assessment structure: project

Project 80 marks

The project gives candidates the opportunity to:

 apply computational thinking to solve a complex computing problem

 analyse a complex problem within a computing science context

 design, develop, implement, test, and evaluate a digital solution to a complex problem

 demonstrate advanced skills in computer programming

 communicate understanding of complex concepts related to computing science, clearly

and concisely, using appropriate terminology

The project is designed to allow candidates to demonstrate their ability to work

independently.

The project must:

 be based on one of the following study areas of the course:

— software design and development

— database design and development

— web design and development

 include at least two concepts from this area of the course

 integrate with one of the other two areas of the course

Version 3.2 19

It is important for teachers and lecturers to discuss potential project ideas with candidates to

ensure that they meet the criteria for the Advanced Higher project, and are achievable within

the constraints of time, expertise and resources available.

The project has 80 marks, which is approximately 60% of the overall marks for the course

assessment (135 marks).

Candidates gain marks for the following stages of the project:

 analysis of the problem 10 marks

 design of the solution 20 marks

 implementation 30 marks

 testing the solution 15 marks

 evaluation of the solution 5 marks

Setting, conducting and marking the project

The project is:

 an open brief — candidates choose the topic for their project in discussion with their

teacher or lecturer

 conducted under some supervision and control

 submitted to SQA for external marking

Assessment conditions

Time

There is no time limit for the project. It is recommended that the project is completed within

40 hours. This can be broken down for each section as follows:

 Analysis — 5 hours

 Design — 10 hours

 Implementation — 15 hours

 Testing — 8 hours

 Evaluation — 2 hours

Candidates should start at an appropriate point in the course.

Supervision, control and authentication

The project is conducted under some supervision and control.

Candidates can complete part of the work outwith the learning and teaching setting;

therefore, teachers and lecturers must exercise professional responsibility to ensure that

evidence submitted by a candidate is their own work.

Resources

This is an open-book assessment. Candidates can access any appropriate resources.

Version 3.2 20

Reasonable assistance

Candidates must carry out the assessment independently. However, teachers and lecturers

can provide reasonable assistance prior to, and during, the formal assessment process.

Teachers and lecturers should advise candidates on their choice of problem. This is to

ensure that their chosen problem meets the criteria for the Advanced Higher project and is

achievable.

Candidates must work independently once the formal assessment process has started, with

teacher and lecturer input limited to constructive comment and/or questioning.

Once projects are completed and submitted, they must not be returned to candidates for

further work.

Evidence to be gathered
Candidate evidence includes program listings, screenshots, web page source files, data files
or similar, as appropriate.

Volume

There is no word count. The project should have no more than 24 functional requirements.

This will ensure that the volume of evidence is not excessive.

Grading
Candidates’ overall grades are determined by their performance across the course

assessment. The course assessment is graded A–D based on the total mark for both course

assessment components.

Grade description for C

For the award of grade C, candidates will typically have demonstrated successful

performance in relation to the skills, knowledge and understanding for the course.

Grade description for A

For the award of grade A, candidates will typically have demonstrated a consistently high

level of performance in relation to the skills, knowledge and understanding for the course.

Version 3.2 21

Equality and inclusion
This course is designed to be as fair and as accessible as possible with no unnecessary

barriers to learning or assessment.

Guidance on assessment arrangements for disabled candidates and/or those with additional

support needs is available on the assessment arrangements web page:

www.sqa.org.uk/assessmentarrangements.

http://www.sqa.org.uk/assessmentarrangements

Version 3.2 22

Further information

 Advanced Higher Computing Science subject page

 Assessment arrangements web page

 Building the Curriculum 3–5

 Guidance on conditions of assessment for coursework

 SQA Skills Framework: Skills for Learning, Skills for Life and Skills for Work

 Educational Research Reports

 SQA e-assessment web page

 SCQF website: framework, level descriptors and SCQF Handbook

https://www.sqa.org.uk/sqa/48508.html
http://www.sqa.org.uk/assessmentarrangements
https://education.gov.scot/education-scotland/scottish-education-system/policy-for-scottish-education/policy-drivers/cfe-building-from-the-statement-appendix-incl-btc1-5/building-the-curriculum/
https://education.gov.scot/education-scotland/scottish-education-system/policy-for-scottish-education/policy-drivers/cfe-building-from-the-statement-appendix-incl-btc1-5/building-the-curriculum/
http://www.sqa.org.uk/sqa/files_ccc/Guidance_on_conditions_of_assessment_for_coursework.pdf
http://www.sqa.org.uk/sqa/63101.html
http://www.sqa.org.uk/sqa/35847.958.html
http://www.sqa.org.uk/sqa/68750.html
https://scqf.org.uk/

Version 3.2 23

Appendix: course support notes

Introduction
These support notes are not mandatory. They provide advice and guidance to teachers and

lecturers on approaches to delivering the course. Please read these course support notes in

conjunction with the course specification and the specimen question paper and coursework.

Approaches to learning and teaching
At Advanced Higher, a significant amount of learning may be self-directed and require

candidates to demonstrate initiative and work on their own.

Some candidates may find this challenging, so it is important that you have strategies in

place to support them, for example planning time for regular feedback sessions and/or

discussions on a one-to-one or group basis.

You should encourage candidates to use an enquiring, critical and problem-solving approach

to their learning. Give them the opportunity to practise and develop research and

investigation skills, and higher-order evaluation and analytical skills.

Where possible, provide opportunities to personalise learning to enable candidates to have

choices in approaches to learning and teaching. The flexibility in the Advanced Higher course

and the independence with which candidates carry out the work lends itself to this.

Encourage candidates to participate fully in active learning and practical activities by working

together, analysing, investigating, debating and evaluating topics, problems and solutions,

while you act increasingly as a facilitator.

You should use an appropriate balance of teaching methodologies when delivering the

course. A variety of active learning approaches is encouraged, including the following:

Activity-based learning

You should balance whole-class, direct teaching opportunities with activity-based learning

using practical tasks. An investigatory approach is encouraged, with candidates actively

involved in developing their skills, knowledge and understanding by investigating a range of

real-life and relevant problems and solutions related to areas of study. You should support

learning with appropriate practical activities, so that skills are developed simultaneously with

knowledge and understanding.

Group work

Practical activities and investigations lend themselves to group work, and you should

encourage this. Candidates engaged in collaborative group working strategies can capitalise

on one another’s knowledge, resources and skills by questioning, investigating, evaluating

and presenting ideas to the group. Working as a team is a fundamental aspect of working in

the IT and related industries, and so should be encouraged and developed.

Version 3.2 24

Problem-based learning

Problem-based learning (PBL) is another approach that can support candidates to progress

through the course. This method may be best utilised at the end of a topic, where additional

challenge is required to ensure candidates are secure in their knowledge and understanding,

and to develop the ability to apply knowledge and skills in less familiar contexts. Learning

through PBL develops skills in problem solving, decision making, investigation, creative

thinking, team working and evaluation.

Computational thinking

Computational thinking is recognised as a key skill set for all 21st century candidates —

whether they intend to continue with computing science or not. It involves a set of

problem-solving skills and techniques used by software developers to write programs.

There are various ways of defining computational thinking. One useful structure is to group

these problem-solving skills and techniques under five broad headings (concepts):

 Abstraction: seeing a problem and its solution at many levels of detail and generalising

the necessary information. Abstraction allows us to represent an idea or a process in

general terms (for example variables) and use it to solve other problems that are similar

in nature.

 Algorithms: the ability to develop a step-by-step strategy for solving a problem.

Algorithm design is often based on the decomposition of a problem and the identification

of patterns that help to solve the problem. In computing science as well as in

mathematics, algorithms are often written abstractly, utilising variables in place of specific

numbers.

 Decomposition: breaking down a task so that we can clearly explain a process to

another person — or to a computer. Decomposing a problem frequently leads to pattern

recognition and generalisation/abstraction, and ultimately the ability to design an

algorithm.

 Pattern recognition: the ability to notice similarities or common differences that help us

make predictions or lead us to shortcuts. Pattern recognition is frequently the basis for

solving problems and designing algorithms.

 Generalisation: realising that we can use a solution to one problem to solve a whole

range of related problems.

Underpinning all of these concepts is the idea that computers are deterministic: they do

exactly what we tell them to do and so can be understood.

Computational thinking can be a component of many subjects; computing science delivers

this particularly well. You are encouraged to emphasise, exemplify and make these aspects

of computational thinking explicit, wherever there are opportunities to do so throughout the

teaching and learning of this course.

Using online and outside resources

Stimulating interest and curiosity should be a prime objective when teaching this course.

Engaging with outside agencies or industry professionals can greatly enhance the learning

process. Online resources can provide a valuable addition to teaching and learning activities,

Version 3.2 25

encouraging research, collation and storage of information and evaluation of these materials.

Using interactive multimedia learning resources, online quizzes, and web-based software

can also support teacher-led approaches.

Blending assessment activities with learning activities throughout the course can support

learning, for example:

 sharing learning intentions and/or success criteria

 using assessment information to set learning targets and next steps

 adapting teaching and learning activities based on assessment information

 boosting confidence by providing supportive feedback

If appropriate, you should encourage self-assessment and peer-assessment techniques.

Meeting the needs of all candidates

Within any class, each candidate has individual strengths and areas for improvement. If there

are candidates capable of achieving a higher level in some aspects of the course, you should

give them the opportunity to do so, where possible. Advanced Higher is particularly suited to

candidates researching knowledge and developing skills beyond the course requirements.

Where Advanced Higher candidates have studied National 5 and Higher in previous years, it

is important that you provide them with new and different contexts for learning to avoid

demotivation. For example, candidates could work in a different type of development

environment or language at Advanced Higher. You should also consider candidates’

previous experience in ‘Database design and development’ and ‘Web design and

development’ when planning delivery of integration across the different areas of the course.

Suggested learning activities

The course is structured around three areas of study.

Some aspects of analysis, testing and evaluation apply to all three practical areas of the

course (SDD, DDD and WDD), as well as solutions to problems that integrate these

technologies.

You are encouraged to use an investigatory approach, with candidates actively involved in

developing their skills, knowledge and understanding of a range of development problems

and solutions.

Development methodologies
 Working in groups, candidates could discuss using an agile methodology, compared to

an iterative development process. This is not assessed in the course but candidates have

to decide which approach they will follow for their project.

Analysis (SDD, DDD and WDD)

 Working individually or in groups, candidates could analyse a number of problems by

creating a use case diagram, and deciding on purpose and functional requirements.

Version 3.2 26

These could be SDD, DDD and WDD problems, as well as problems that integrate these

areas (which is a requirement of the project).

 Working individually or in groups, candidates could prepare requirements specifications

for end users.

Software design and development

 Design:

— You could present candidates with a variety of completed requirement specifications,

and ask them to complete the top level algorithm, data flow, and Unified Modelling

Language (UML) class diagram for each problem.

— Candidates could then design user interfaces using wireframes annotated with

underlying processes, inputs (including any necessary validation) and outputs.

 Implementation:

— You could provide candidates with working programs that demonstrate the use of

object-oriented programming techniques, including classes and methods.

— Ask candidates to identify and explain sections of code from within these programs.

— Using the pre-defined functions stated in the course content, candidates could tackle

a number of problems.

— Using appropriate programs created in Higher, candidates could think about how they

could use their knowledge of 2-D arrays and arrays of objects to implement them

using the new data structures.

— Working in groups, candidates could write code from designs provided in

pseudocode, structure diagrams or UML class diagrams. This would help them

implement object-oriented code.

— Using a range of working programs that use a variety of standard algorithms,

candidates could interpret and explain what is happening in the code. This would help

them develop their own modular programs that use these constructs and standard

algorithms.

— You could demonstrate how a program language is used to create a link to a

database and execute an SQL statement. You could then give candidates a

sequence of problems that requires them to update and query the database.

 Testing:

— Using a variety of modular programs, candidates could carry out component testing.

— You could demonstrate debugging techniques, for example dry runs, trace tables,

breakpoints and watchpoints, to show how they can help programmers find errors

within their code.

 Evaluation:

— In groups, candidates could evaluate completed programs in terms of efficient use of

coding constructs and usability.

Version 3.2 27

Database design and development

 Design:

— You could explain the differences between a data dictionary at National 5 and Higher,

and the same dictionary at Advanced Higher (which uses SQL data types and

validation).

— Candidates could complete different types of exercises to create a data dictionary

from given data.

— Using supplied scenarios with completed analysis, candidates could complete

entity-relationship diagrams, including notation of weak or strong entities and

mandatory or optional relationships.

— Using sample database tables, candidates could design queries to produce a

required output.

 Implementation:

— You could demonstrate the SQL operations required to create a database and

subsequently create or drop tables.

— You could demonstrate SQL operations using HAVING and Advanced Higher logical

operators. Candidates could then complete a number of exercises to solve problems

relating to using the appropriate SQL operations.

— Using SQL code and databases, candidates could explain what the output of the code

would be.

 Testing and evaluation:

— Using SQL code, candidates could test it and evaluate its fitness for purpose, and

accuracy of output.

— Using an incorrect SQL operation along with the correct expected output, candidates

could identify how to correct the SQL statement in order to produce the expected

output.

Web design and development

 Design:

— Candidates could use wire-framing design techniques to design website structures

and pages relating to multi-level websites. These could involve multiple screen views,

for example mobile and desktop.

— Using the completed website designs, candidates could create low-fidelity prototypes

to test their effectiveness.

— Candidates could complete pseudocode design for server-side processes.

 Implementation:

— Using HTML, Cascading Style Sheets (CSS) and PHP code from sample web pages,

candidates could explain which parts of the code relate to the web page.

— Using HTML, CSS and PHP, candidates could implement a design that requires data

to be retrieved from a database and displayed as a table.

— Using HTML, CSS and PHP, candidates could implement a design that requires form

data to be processed and stored in a database.

 Evaluation:

— Working in groups or individually, candidates could evaluate previous solutions for
usability.

Version 3.2 28

Testing (SDD, DDD and WDD)

These learning and teaching activities could be in the context of SDD, DDD or WDD

problems, as well as problems that integrate these areas (which is a requirement of the

project):

 Working in groups, candidates could discuss how to carry out testing of integrated

components.

 Working in groups, candidates could create prototypes and test each other’s solutions to

a problem. Following implementation of each prototype, the same end-user testing could

be carried out.

 Working individually or in groups, candidates could discuss or plan a final testing solution

for a given problem.

Evaluation (SDD, DDD and WDD)

These learning and teaching activities could be in the context of SDD, DDD or WDD

problems, as well as problems that integrate these areas (which is a requirement of the

project):

 Working in groups or individually, candidates could compare a solution to functional

requirements and discuss its fitness for purpose.

 Working in groups, candidates could discuss the maintainability of a solution in terms of

correcting, adapting or expanding a solution.

 Working in groups, candidates could perform destructive testing on each other’s solutions

to evaluate the robustness of the solution.

Resources

You need access to an SQL server and a web server to implement the following:

 PHP code to process form data

 PHP code to connect to a database

 server-side SQL execution

 create and maintain a database using SQL statements

You may wish to use prebuilt solutions installed locally, such as XAMPP or arrange access to

online resources.

You should ensure that the programming language used for the Advanced Higher course is

object-oriented (OO) capable and has the capacity to connect to a database file.

You also need:

 internet-enabled computers and a digital projector

 access to software development tools

 access to application development software and tools

 web development tools (for example HTML5 script enabled browsers and wire-framing
software)

Version 3.2 29

Some suggested software development environments

For this course, you can use any software development environment. You should base your

decision on the suitability of the chosen environment to support the delivery of the mandatory

content of the course.

Possible examples include:

 Python

 Visual Basic

 Java

 Live Code

Teaching and learning materials

A number of online resources are available.

 Software design and development

www.java.com

www.python.org

www.codeacademy.com

www.programiz.com/python-programming

www.livecode.com

www.draw.io

 Database design and development

www.w3schools.com

www.codeacademy.com

www.tutorialspoint.com/sql

www.sqlcourse.com

Apex.oracle.com/en

 Web design and development

www.w3schools.com

www.codeacademy.com

html.net/tutorials

www.khanacademy.org

pencil.evolus.vn

balsamiq.com

resources.infosecinstitute.com/prototyping

Goggles.mozilla.org

http://hackasaurus.toolness.org

[date accessed August 2019]

http://www.java.com/
http://www.python.org/
http://www.codeacademy.com/
http://www.programiz.com/python-programming
http://www.livecode.com/
http://www.draw.io/
http://www.w3schools.com/
http://www.codeacademy.com/
http://www.tutorialspoint.com/sql
http://www.sqlcourse.com/
https://apex.oracle.com/en/
http://www.w3schools.com/
http://www.codeacademy.com/
http://html.net/tutorials/
http://html.net/tutorials/
https://www.khanacademy.org/
http://pencil.evolus.vn/
https://balsamiq.com/
http://resources.infosecinstitute.com/prototyping/
https://goggles.mozilla.org/
http://hackasaurus.toolness.org/

Version 3.2 30

Comparison of skills, knowledge and understanding for Higher and Advanced Higher

The following table shows the relationship between the mandatory Higher and Advanced Higher skills, knowledge and understanding.

You can use this to:

 ensure seamless progression between levels

 identify important prior learning for candidates at Advanced Higher

Analysis

Area Higher Advanced Higher

SDD Identify the:

 purpose

 scope

 boundaries

 functional requirements

of a problem that relates to the design and

implementation at this level, in terms of:

 inputs

 processes

 outputs

Identify the purpose and functional requirements of a

problem that relates to the design and implementation at this

level in terms of:

 inputs

 processes

 outputs

Describe, exemplify, and implement research for:

 feasibility studies:

— economic

— time

Version 3.2 31

Analysis (continued)

Area Higher Advanced Higher

DDD Identify the end-user and functional requirements of a

database problem that relates to the implementation at

this level.

— legal

— technical

 user surveys

Describe, exemplify, and implement planning in terms of:

 scheduling

 resources

 Gantt charts

Produce requirement specifications for end users and

develop:

 end-user requirements

 scope, boundaries and constraints

 functional requirements

Describe, exemplify, and implement Unified Modelling

Language (UML):

 use case diagrams:

— actors

— use cases

— relationships

WDD Identify the end-user and functional requirements of a

website problem that relates to the design and

implementation at this level.

Version 3.2 32

Design

Area Higher Advanced Higher

SDD Identify the data types and structures required for a

problem that relates to the implementation at this level.

Read and understand designs of solutions to problems at

this level, using the following design techniques:

 structure diagrams

 pseudocode

Exemplify and implement efficient design solutions to a

problem, using a recognised design technique, showing:

 top level design

 the data flow

 refinements

Describe, exemplify and implement user-interface design,

in terms of input and output, using a wireframe.

Identify the data types and structures required for a problem

that relates to the implementation at this level.

Read and understand designs of solutions to problems at this

level using the following design techniques:

 structure diagrams

 pseudocode

 UML

Exemplify and implement efficient design solutions to a

problem at this level, using pseudocode, showing:

 top level design

 the data flow

 refinements

Describe, exemplify, and implement UML for the following:

 class diagrams:

— class name

— instance variables and data types

— methods

— public and private

Version 3.2 33

Design (continued)

Area Higher Advanced Higher

SDD — inheritance

— constructor

— array of objects

Describe, exemplify, and implement user-interface design

using a wireframe, indicating:

 visual layout

 inputs

 validation

 underlying processes

 outputs

DDD Describe and exemplify entity-relationship diagrams with

three or more entities, indicating:

 entity name

 attributes

 name of relationship

 cardinality of relationship (one-to-one, one-to-many,

many-to-many)

Describe and exemplify an instance using an entity-

occurrence diagram.

Describe, exemplify, and implement entity-relationship

diagrams with three or more entities indicating:

 entity name

 entity type (strong, weak)

 attributes

 relationship participation (mandatory, optional)

 name of relationship

 cardinality

Identify relationship participation from an entity-occurrence

diagram.

Version 3.2 34

Design (continued)

Area Higher Advanced Higher

DDD Describe and exemplify a compound key.

Describe and exemplify a data dictionary with three or

more entities:

 entity name

 attribute name

 primary and foreign key

 attribute type:

— text

— number

— date

— time

— Boolean

 attribute size

 validation:

— presence check

— restricted choice

— field length

— range

Exemplify a design of a solution to a query:

 tables and queries

Describe, exemplify, and implement surrogate keys.

Describe and exemplify a data dictionary, in relation to SQL,

with three or more entities for the following:

 entity name

 attribute name

 primary and foreign key

 attribute type:

— varchar

— integer

— float

— date

— time

 attribute size

 validation:

— presence check

— restricted choice

— field length

— range

Exemplify a design of a solution to a query using:

 tables and queries

Version 3.2 35

Design (continued)

Area Higher Advanced Higher

DDD  fields

 search criteria

 sort order

 calculations

 grouping

 fields

 search criteria

 sort order

 calculations

 grouping

 having

WDD Describe and exemplify the website structure of a

multi-level website with a home page and two additional

levels, with no more than four pages per level.

Describe, exemplify and implement, taking into account

end-user requirements and device type, an effective

user-interface design (visual layout and readability) using

wire-framing:

 horizontal navigational bar

 relative horizontal and vertical positioning of the

media

 form inputs

 file formats of the media (text, graphics, video, and

audio)

Describe, exemplify and implement prototyping (low

fidelity) from wireframe design at this level.

Describe, exemplify, and implement wireframe designs

showing:

 visual layout

 navigation

 consistency

 underlying processes

Describe, exemplify, and implement low-fidelity prototype

from wireframe design.

Read and understand designs of server-side processes at

this level, using the following design techniques:

 structure diagrams

 pseudocode

Exemplify and implement the design of server-side

processes using pseudocode.

Version 3.2 36

Implementation

Area Higher Advanced Higher

SDD Data types and structures

Describe, exemplify and implement appropriately the

following structures:

 parallel 1-D arrays

 records

 arrays of records

Computational constructs

Describe, exemplify and implement the appropriate

constructs in a procedural high-level (textual) language:

 parameter passing (formal and actual)

 the scope of local and global variables

 sub-programs/routines, defined by their name and

arguments (inputs and outputs):

— functions

— procedures

Data types and structures

Describe, exemplify, and implement the following structures

in solutions to problems at this level:

 parallel 1-D arrays

 records

 arrays of records

 2-D arrays

 array of objects

Describe and exemplify the operation of linked lists (double

and single).

Computational constructs

Describe, exemplify, and implement the following object-

oriented (OO) constructs:

 object

 property

 method

 class

 sub-class

 encapsulation

 inheritance

Version 3.2 37

Implementation (continued)

Area Higher Advanced Higher

SDD  pre-defined functions (with parameters):

— to create substrings

— to convert from character to ASCII and vice versa

— to convert floating-point numbers to integers

— modulus

 file handling:

— sequential CSV and txt files (open, create, read,

write, close)

Read and explain code that makes use of the above

constructs.

Algorithm specification

Describe, exemplify and implement standard algorithms

using 1-D arrays or arrays of records:

 linear search

 find minimum and maximum

 count occurrences

 instantiation

 polymorphism

Describe, exemplify, and implement code to:

 open and close connection to database server

 execute SQL query

 format query results

Algorithm specification

Describe, exemplify, and implement standard algorithms

including:

 binary search

 insertion sort

 bubble sort

Read and explain code that uses constructs appropriate to

this level.

Version 3.2 38

Implementation (continued)

Area Higher Advanced Higher

DDD Describe, exemplify and use SQL operations for

pre-populated relational databases, with three or more

linked tables:

 UPDATE, SELECT, DELETE, INSERT statements

making use of:

— wildcards

— aggregate functions (MIN, MAX, AVG, SUM,

COUNT)

— computed values, alias

— GROUP BY

— ORDER BY

— WHERE

Read and explain code that makes use of the above

SQL.

Implement relational database using SQL Data Definition

Language (DDL) and Data Manipulation Language (DML) to

match the design.

Describe, exemplify, and implement the following SQL

operations:

 CREATE statement:

— CREATE DATABASE

— CREATE TABLE

— constraints:

o primary key

o foreign key

o not null

o check

o auto increment

 DROP statement:

— DROP DATABASE

— DROP TABLE

 HAVING clause of the SELECT statement

 subqueries used with the WHERE clause of SELECT

statements

 data types:

— varchar

— integer

Version 3.2 39

Implementation (continued)

Area Higher Advanced Higher

DDD — float

— date

— time

 logical operators:

— IN

— NOT

— BETWEEN

— ANY

— EXISTS

Read and explain code that uses the SQL at this level.

WDD CSS

Describe, exemplify and implement efficient inline,

internal and external Cascading Style Sheets (CSS)

using grouping and descendant selectors to:

 control appearance and positioning:

— display (block, inline, none)

— float (left, right)

— clear (both)

— margins/padding

— sizes (height, width)

 create horizontal navigation bars:

— list-style-type:none

— hover

CSS

Describe, exemplify, and implement responsive pages using

the following media queries:

 media type:

— print

— screen

 media feature:

— max-width

Version 3.2 40

Implementation (continued)

Area Higher Advanced Higher

WDD Read and explain code that makes use of the above

CSS.

HTML

Describe, exemplify and implement HTML code:

 nav

 header

 footer

 section

 main

 form

 id attribute

Describe, exemplify and implement form elements:

 form element: input

— text

— number

— textarea

— radio

— submit

 form element: select

HTML

Describe, exemplify, and implement form elements including:

 FORM element:

— action

— method (get and post)

 INPUT, SELECT and TEXTAREA elements:

— name

— value

 TABLE element:

— th, tr, td

Version 3.2 41

Implementation (continued)

Area Higher Advanced Higher

WDD Describe, exemplify and implement form data validation:

 length

 presence

 range

Read and explain code that makes use of the above

HTML.

JavaScript

Describe, exemplify and implement coding of JavaScript

functions related to mouse events:

 onmouseover

 onmouseout

 onclick

PHP

No content at Higher

JavaScript

No content at Advanced Higher

PHP

Describe, exemplify, and implement coding of server-side

processing to:

 assign form data to server-side variables:

— $_get()

— $_post()

 open and close connection to database server:

— die()

Version 3.2 42

Implementation (continued)

Area Higher Advanced Higher

WDD — mysqli_connect()

— mysqli_close()

 execute SQL query:

— mysqli_query()

 format query results:

— echo

— mysqli_fetch_array()

— mysqli_num_row()

and:

 assignment, repetition and selection using server-side

local and global variables

 sessions:

— session_start()

— session_destroy()

Read and explain code that uses constructs appropriate to

this level.

Version 3.2 43

Testing

Area Higher Advanced Higher

SDD Describe, exemplify and implement a comprehensive final

test plan to show that the functional requirements are

met.

Identify syntax, execution, and logic errors at this level.

Describe and exemplify debugging techniques:

 dry runs

 trace tables/tools

 breakpoints

 watchpoints

Describe, exemplify, and implement the following for SDD,

DDD and WDD:

 integrative testing

 usability testing based on prototypes

 final testing

 end-user testing

and for SDD only:

 component testing during the development of the solution

and for DDD only:

 SQL implemented tables match design

 SQL operations work correctly at this level

DDD Describe and exemplify testing:

 SQL operations work correctly at this level

WDD Describe, exemplify and implement usability testing using

personas, test cases and scenarios based on low-fidelity

prototypes.

Describe and exemplify testing:

 input validation

 navigational bar works

 media content displays correctly

Version 3.2 44

Testing (continued)

Area Higher Advanced Higher

SDD Describe and exemplify compatibility testing:

 device type:

— tablet, smartphone, desktop

 browser

Version 3.2 45

Evaluation

Area Higher Advanced Higher

SDD Describe, identify and exemplify the evaluation of a

solution in terms of:

 fitness for purpose

 efficient use of coding constructs

 usability

 maintainability

 robustness

Evaluate solution for SDD, DDD and WDD in terms of:

 fitness for purpose

 maintainability

— perfective

— corrective

— adaptive

 robustness

and for SDD only:

 efficiency

 usability

and for DDD only:

 accuracy of output

and for WDD only:

 usability

DDD Evaluate solution at this level in terms of:

 fitness for purpose

 accuracy of output

WDD Evaluate solution at this level in terms of:

 fitness for purpose

 usability

Version 3.2 46

Preparing for course assessment
The course assessment focuses on breadth, challenge and application. Candidates should

apply the skills, knowledge and understanding they have gained during the course.

In preparation, you should give candidates the opportunity to practise activities similar to

those expected in the course assessment. For example, you could develop questions and

tasks similar to those in the specimen question paper and coursework.

You may find the following information useful:

 course assessment overview

 question paper brief

Course assessment overview

Marks: 135

The course assessment has two components:

 question paper: 55 marks

 project: 80 marks

Proportion of ‘A’ and ‘C’ type questions:

 approximately 30% of marks ‘A’ type

 approximately 50% of marks ‘C’ type

The course assessment (question paper and project) is designed using the following

breakdown of marks for each skill assessed.

Course assessment Project

Question

paper

Skill % marks
Total marks

(approximate)
Marks Marks

Analysis 10% 14 10 3–8

Design 30% 41 20 16-24

Implementation 40% 54 30 20–28

Testing 15% 21 15 2–8

Evaluation 5% 7 5 0–5

Version 3.2 47

Question paper brief

Marks: 55

Duration: 2 hours

The question paper has three sections. Section 1 is mandatory, and candidates have the

option to complete either Section 2 or Section 3.

 Section 1: Software design and development — 35 marks

 Section 2: Database design and development — 20 marks

 Section 3: Web design and development — 20 marks

Proportion of ‘A’ and ‘C’ type marks:

 approximately 30% of marks ‘A’ type (primarily in context-based questions)

 approximately 50% of marks ‘C’ type

The question paper is designed using the following range of marks, against each area of

content and skills.

The skills, knowledge and understanding across the ‘Database design and development’ and

‘Web design and development’ areas of study are not directly comparable, for example, there

is more assessable content in design for DDD than WDD, but more for implementation in

WDD than DDD.

As a result, the mark breakdown across analysis, design, implementation, testing and

evaluation will not be identical across the options, however, there will be a balance of ‘A’ type

and ‘C’ type marks across the options.

Skill Range

Analysis 3–8

Design 16-24

Implementation 20–28

Testing 2-8

Evaluation 0–5

Version 3.2 48

Developing skills for learning, skills for life and skills
for work
You should identify opportunities throughout the course for candidates to develop skills for

learning, skills for life and skills for work.

Candidates should be aware of the skills they are developing and you can provide advice on

opportunities to practise and improve them.

SQA does not formally assess skills for learning, skills for life and skills for work.

There may also be opportunities to develop additional skills depending on the approach

centres use to deliver the course. This is for individual teachers and lecturers to manage.

Some examples of potential opportunities to practise or improve these skills are as follows:

Skill How to develop

Numeracy

2.3 Information handling

Develop skills by setting problem-solving contexts where

candidates use data set out in tables or a graphical

format as the basis for input to their programs,

processing the data to produce the required output.

Health and Wellbeing

3.1 Personal learning

Candidates work autonomously on their project, taking

responsibility for completing it within the time available to

them. They plan for this and have opportunities to follow

up on curiosity, think constructively and learn from

experience.

Employability, enterprise

and citizenship

4.2 Information and

communication technology

(ICT)

Throughout the course, candidates continually interact

with the technology around them. This should provide

plenty of opportunities to extend their ICT skills.

Thinking skills

5.3 Applying

Give candidates opportunities to analyse a wide range of

problems, apply the knowledge and skills they have

acquired, and then test and review their solutions.

5.4 Analysing and evaluating Develop skills through the process of creating computer

programs to solve problems and testing them.

Version 3.2 49

Resources to support the Advanced Higher
Computing Science course
These resources provide clarification and exemplification of some of the skills, knowledge

and understanding developed in the Advanced Higher course.

Note 1: appendix 10 uses a relational database that can be found on the Advanced Higher

page on SQA’s website.

Note 2: appendices 12-14 use the Advanced Higher example website to exemplify the

course requirements for teachers and lecturers. You can download the example website from

SQA’s secure site, but you must not distribute it to candidates, as it would provide a

framework for a web-based Advanced Higher project.

https://secure.sqa.org.uk/secure/Understanding-Standards-Materials/NQCourseAssessments/Computing_Science

Version 3.2 50

Appendix 1: problem analysis (SDD, DDD and WDD)

Requirements specification

In addition to the purpose, scope, boundaries, and requirements exemplified at Higher,

analysis of any development should identify the constraints of a problem.

Constraints

Constraints are restrictions that apply to the development. These restrict the changes made

to design decisions during the development. Time, scope and cost are the main constraints

of project management; however, depending on the type of development, other constraints

may apply, for example:

Technical constraints

 knowledge and/or availability of development tools and programming language

 the operating system or platforms that will be used to deliver the working solution

 hardware considerations such as capacity

 non-functional requirements such as performance considerations

Business constraints

 schedule and timescales that must be met

 available budget

 composition and makeup of the development team

 software licensing restrictions or requirements

Further constraints

 economic considerations

 political issues

Note: the requirements specification document is often the basis of a legal contract between

the client (customer) and the software company writing the software.

Worked example of a requirements specification (SDD)

Analysis

The purpose of a program is to allow the end user to search for an item on an unsorted list of

data. If a match is found, the program will display the row of data for the item.

Scope

This development involves creating a modular program. The deliverables include:

 a detailed design of the program structure

 a test plan with a completed test data table

Version 3.2 51

 a working program

 the results of testing

 an evaluation report

Boundaries

 the program will read the data (itemID, price, and number in stock) from a sequential file

 if the data is accurate, there is no need to implement input validation

End-user requirements

End users will expect:

 to enter an itemID while the program is running

 the data corresponding to the itemID to be displayed

 a user interface that is clearly labelled and easy to use for all user types

Functional requirements

Functional requirements are defined in terms of the inputs, processes, and outputs listed

below. All inputs are imported from a sequential file and all outputs displayed on the screen.

The program is activated by double clicking on the file icon and then selecting “Run” from the

menu. Each process should be a separate procedure or function that is called from the main

program.

Inputs

 itemID

 price

 number in stock

Processes

 read in data from an external file to a 2D array

 sort the data in order of itemID from low to high

 search the 2D array for the required itemID, based on the end-user input

Output

 if a match is found, the data (itemID, price, and number in stock) will correspond to the

end-user input

 if no match is found, a suitable message will inform the end user

Constraints

The constraints that apply to this development are:

 Live Code, Python, or Visual Basic must be used to develop the program.

 The working program will run on the Windows operating system.

 The work must be completed within 8 hours.

Version 3.2 52

Worked example of a requirements specification (DDD)

Analysis

GoGoGadgets.com is a company specialising in quirky and unusual gadgets that are

available for purchase through its online catalogue.

Before customers can make a purchase, they must first register with the GoGoGadgets

website and be allocated a unique customerID.

Customers can browse the product range through an online catalogue. Each item is

categorised as one of the following: Toys, Gizmos, Office Distractions, Personal Grooming,

and Computer Accessories. All items cost less than £50.

A database is required to store details of customers, items, and orders.

Scope

This development involves creating a relational database. The deliverables include:

 a detailed design of the database structure

 a test plan with a completed test data table

 a working database

 the results of testing

 an evaluation report

Boundaries

 the database will contain a maximum of 10 000 items

 each item will cost £50 or less

 all items should be categorised as one of the following: Toys, Gizmos, Office Distractions,

Personal Grooming, and Computer Accessories

 users must enter a valid email address to register

End-user requirements

End users (customers) will expect queries that enable them to:

 register as a user and store their details in the database

 search for items based on the category of the item

 search for items based on the name of an item

 sort items by price (low to high), price (high to low) or rating

End users (administrators) will expect queries that enable them to:

 edit the price of items

 edit customer contact details

 add and remove details of individual items

 remove details of customers from the database

 view details of all orders placed each month

Version 3.2 53

Functional requirements

Functional requirements are defined in terms of the inputs, processes and outputs listed

below.

Inputs (customers)

 register: user email, password, password re-entered, firstName, lastName, address, and

postcode:

— search details: category

— search details: itemName

 sort details: field (price or rating) and order required (ascending or descending)

Inputs (administrators)

 edit item details: itemID and price

 edit customer details: customerID, address, postcode, and email

 add item details: itemID, itemName, description, category, and price

 delete item details: itemID

 delete customer details: customerID

 monthly orders: month

Processes

 auto generate customerID whenever a new customer registers

 queries to:

— insert records into the Customer and Item tables

— sort item details in order of price and rating

— delete a specific customer and an item record from the database

— edit records in the Customer and Item tables

— search Item table

— display details of all orders placed in a particular month

Output

 confirmation of successful:

— insertions

— deletions

— edits

 answer tables showing details of:

— sorted items (sorts)

— required items (searches)

Version 3.2 54

Constraints

The constraints that apply to this development are:

 The Oracle MySQL server must be used to develop the database.

 The working database will run on the Windows operating system.

 The work must be completed within 15 hours.

Unified Modelling Language (UML)

Unified Modelling Language (UML) provides a standard way to visualise, specify, construct,

and document the analysis and design of a software system.

UML is a pictorial language used to make software blueprints that can be used to model

software and non-software systems.

UML use case diagram

To model a system, it is important to capture the dynamic behaviour of the system. Dynamic

behaviour is when the system is running or operating.

The purpose of a use case diagram is to capture the dynamic aspect of the system. Use

case diagrams:

 are used to gather the requirements of the system

 are used to get an outside view of the system

 identify the internal and external factors that influence the system

 show the interaction among the requirements as ‘actors’

 aid communication between the client and the developer

Drawing a use case diagram

Use case diagrams consist of four components:

 a system boundary

 actors

 use cases

 relationships

System boundary

In a UML case diagram, a system boundary is shown as a rectangle. All components of the

use case diagram are shown inside the system boundary.

The system boundary represents the limits of the system being developed: only those actors

and processes to be considered are illustrated within the system boundary.

Version 3.2 55

Actors

An actor interacts with the system being developed. The actor may be a human or an entity

that interacts with the system, for example another system or server, and is external to the

system being developed.

An actor performs a role in a system and may be a primary or secondary actor.

A primary actor is one that uses the system to achieve a goal, for example a customer

buying an item.

A secondary actor is one that supports the system in delivering the goal, for example a bank

used to pay for the item.

A UML case diagram shows an actor by using the symbol:

The following are examples of actors, depending on the problem being solved.

Human Systems software Hardware Timer (clock)

Actor

Payroll Phone network Customer

Passenger Library Server

Scheduled backup

Scheduled anti-virus

Version 3.2 56

Use cases

A use case describes an action (process) or a sequence of actions (processes) that must be

in the system being developed.

A UML case diagram shows a use case using an ellipse:

Use cases help to determine the requirements of the system under consideration, by

describing the functionality that the system will provide.

Use case functionality (process) may be initiated by an actor or may be started by the system

itself, providing a useful result to an actor.

Naming use cases

Each use case must have the name written within the ellipse. The name describes some

observable or useful result to an actor.

Examples of naming are Update Subscription, Manage Account, and Place Order.

Relationships

A use case diagram can have five types of relationship:

 association between an actor and a use case

 generalisation of an actor

 extend between two use cases

 include between two use cases

 generalisation of a use case

Use Case

Update

Subscription

Version 3.2 57

Association between actor and use case

Each actor must be associated with at least one use case, although it can be associated with

many use cases.

A line with no arrowheads connects an actor to a use case.

Generalisation of an actor

Generalisation of an actor means one actor can inherit the role of another actor. The

descendant actor inherits all the use cases of the ancestor.

A line, with a single solid arrowhead pointing at the ancestor actor, connects a descendant

actor to the ancestor actor.

Extend between two use cases

Extending a basic use case provides additional functionality to the system.

An extended use case is connected to a basic use case using a dashed line, with a single

solid arrowhead pointing at the basic use case. The label <<extend>> is placed on the line.

Make Purchase

Credit Card

Payment

Calculate

Interest
<<extend>>

Customer

User Registered user

Version 3.2 58

Include between two use cases

An included use case is part of the basic use case. It is a mandatory process, as the basic

use case is incomplete without it.

An included use case is connected to the basic use case using a dashed line with a single

solid arrowhead, pointing at the common basic use case. The label <<include>> is placed on

the line.

Generalisation of a use case

This is similar to generalisation of an actor.

A line, with a single solid arrowhead pointing at the ancestor use case, connects a

descendant use case to the ancestor use case.

Credit Card

Application
Credit Check <<include>>

Mortgage

Application

<<include>>

Make

Payment

Card Payment

Cash

Payment

Bank Transfer

Payment

Version 3.2 59

Creating a use case diagram

The following is an example of a use case diagram.

Example

This example appeared in the 2016 question paper for Advanced Higher Computing Science:

The owners of a monthly magazine decide to update the company website. The current

website allows users to access online versions of articles printed in the monthly magazines.

Requirements for the updated website are listed below.

The updated website will allow all users to:

 access a maximum of five free articles every month

 search for articles over 12 months old

 subscribe to the full service using a secure payment system

The updated website will allow subscribed users to:

 login to gain access to the full service

 access any number of articles

 search for articles without restriction

 renew their subscription at a reduced rate using a secure payment system

Draw a use case diagram to represent these requirements.

Version 3.2 60

The following is a sample use case diagram for this scenario.

Help on search

Credit check

Access free
articles

Renew
subscription

Subscribe

Search articles

Login

Access articles

Search articles

<<extend>>

<<include>>

<<include>>

Authentication
<<include>>

User

Registered

user

Bank

Server

Version 3.2 61

Appendix 2: Unified Modelling Language (UML) —
class diagrams (SDD)
To model a system, it is important to capture the static behaviour of the system.

A class diagram is used for a quick overview of the system. It describes the structure of a

system by showing its:

 classes

 variables, structures and types

 methods of the class

 relationships between the classes

The purpose of a class diagram is to model the static aspect of the system.

Drawing a class diagram

A class is a blueprint for an object. A class diagram describes each class and the

relationships between the classes.

UML class notation

A class diagram consists of:

 a class name

 instance variables and data types:

— public

— private

 methods:

— public

— private

— constructor

 inheritance between classes

Example
A program is being written for an estate agency to store the details of houses for sale or
available to rent.

Version 3.2 62

Class diagram for House

Part of the class diagram for the House class is shown below.

Explanation

The class diagram indicates the:

 class name

 instance variables with data types in the class (instantiation variables)

 methods associated with the class (including the constructor method)

House

−address: String

−town: String

−bedrooms: Integer

−description: String

−houseValue: Integer

+house()

+setAddress()

+getAddress()

+updateBedrooms()

Constructor

A constructor is shown on a UML class diagram in the methods section. The constructor will

have the same name as the class name. The constructor method is used to create an

individual object that belongs to the class.

Public and private

The instance variables and methods within a class can be public or private elements.

Public elements can be used by any class; however, private elements can only be used by

the owning class.

UML allows any variable or method to be shown as public or private.

Class name

Instance variables

with data types

Methods

Constructor

House

address: String

town: String

bedrooms: Integer

description: String

houseValue: Integer

house()

setAddress()

getAddress()

updateBedrooms()

Version 3.2 63

In a class diagram:

 public elements are preceded with a + sign

 private elements are preceded with a − sign

The House class, with public and private elements, will look as follows.

House

−address: String

−town: String

−bedrooms: Integer

−description: String

−houseValue: Integer

+house()

+setAddress()

+getAddress()

+updateBedrooms()

The set and get methods (sometimes called mutators and accessors) are needed to retrieve
(get) or edit (set) the values held in private variables.

Example code: setAddress()

Used to edit the value stored in the private instance variable address.

PROCEDURE setAddress(STRING newAddress)

SET THIS.address TO newAddress

END FUNCTION

Example code: getAddress()

Used to retrieve the value stored in the private instance variable address.

FUNCTION getAddress() RETURNS STRING

RETURN THIS.address

END FUNCTION

Inheritance

UML allows the object-oriented construct of inheritance to be exemplified.

A sub-class can inherit all of the properties and methods of a superclass.

On a UML class diagram, this type of inheritance is indicated by an arrow from the sub-class

to the superclass.

Version 3.2 64

Array of objects

The instance variables of a class or sub-class can include an array data structure. This can

be used to store instances of another class.

An array of objects is written as:

scores: Array of Score[]

where Score is another class. On a UML class diagram, the connection between the array of
objects and the object (class) is also indicated by an arrow.

Example

The program below is for an estate agency to store the details of houses available for sale or

to rent.

House

−address: String

−town: String

−bedrooms: Integer

−description: String

−houseValue: Integer

+house()

+setAddress()

+getAddress()

+updateBedrooms()

ForSale ForRent

−askingPrice: Real

−closingDate: String

−underOffer: Boolean

−offersReceived: Array of Offer[]

−sold: Boolean

 −rentalCost: Real

−deposit: Real

−rentalLength: Integer

−rented: Boolean

+forSale()

+updateAskingPrice()

+updateSoldStatus()

 +forRent()

+updateRentStatus

Offer

−dateOfOffer: String

−amountOfOffer: Integer

+offer()

+setOfferDate()

+getOfferDate()

+setOfferAmount()

+getOfferAmount()

Version 3.2 65

Appendix 3: entity-relationship diagrams (DDD)
The Advanced Higher course requires candidates to describe, exemplify and implement

entity-relationship diagrams with three or more entities, indicating:

 entity name

 entity type (strong, weak)

 attributes

 relationship participation (mandatory, optional)

 name of relationship

 cardinality

Candidates also need to be able to identify relationship participation from an entity-

occurrence diagram.

Entity type

A strong entity is one whose existence does not depend on the existence of any other entity

in the same database. The primary key of a strong entity uniquely identifies each occurrence

within the entity.

A weak entity is one that depends on one or more strong entities for its existence. For this

reason, strong entities are sometimes referred to as owner entities. A weak entity cannot be

used independently because its existence depends on one or more owner entities.

The primary key of a weak entity is formed, in part, using the primary key of its owner

entity(ies). The presence of a weak entity is indicated by using a double line. The weak entity

itself is indicated by using optionality.

Consider the (incomplete) entity-relationship diagram shown below. This illustrates three of

the entities that form part of an online ordering system.

In this situation, the Customer and Order entities both have a primary key that uniquely

identifies individual occurrences in each entity.

postcode

custCode name

address

orderDate

custCode *
orderNumber quantity

orderNumber *
productID *

includes places
Customer OrderProduct Order

Version 3.2 66

However, only the Customer entity is a strong entity. Order is a weak entity. Since an order

occurrence can only be added if the customer details are known, the Order entity relies on

the existence of the Customer entity.

The primary key of the OrderProduct entity is a compound key that is formed using the

primary key of the Order entity. This means that OrderProduct is a weak entity. The double

line is used to represent the weak entity.

Relationship participation

Participation refers to the nature of the relationship between entities. Participation can be

either mandatory or optional.

Mandatory participation describes a relationship where at least one

occurrence of an entity must exist before any occurrences can be added to

its associated entity. The mandatory side of any relationship is indicated by

using a vertical line.

Optional participation describes a relationship between two entities where

it is possible to add occurrences of one entity without the need to have

existing occurrences in the associated entity. The optional side of a

relationship is indicated by using a bold circle.

Participation has been added to the entity-relationship diagram introduced earlier and is

shown below. For completeness, the Product entity has also been added to show all four

entities that form the online ordering system.

Customer is a strong entity, as it has its own uniquely identifying primary key and is not

dependent on any other entity.

The Customer entity is linked to the Order entity using the places relationship. Each

customer in the Customer entity can place many orders but it is also possible for details of a

customer to be stored without them placing any orders.

includes places
Customer OrderProduct

Product

appears in

 Order

Version 3.2 67

As each order in the Order entity must always have one set of corresponding customer

details in the Customer entity, it is not possible to add a new set of details to the Order entity

without first having added details of the relevant customer to the Customer entity.

Order is a weak entity. Although it does have its own identifying primary key, its entity

occurrence relies on the existence of a matching occurrence in the Customer entity.

The Order entity is linked to the weak OrderProduct entity using the includes relationship.

The entity-relationship diagram shows that a new order can be created without a

pre-existing, corresponding occurrence in the OrderProduct entity. Once it has been added

to the Order entity, the order can be linked to several occurrences within the OrderProduct

entity; it is also possible for an order to have no corresponding OrderProduct occurrences.

As OrderProduct is a weak entity, it is not possible to add an OrderProduct occurrence

without first having an existing, corresponding occurrence in the Order entity.

The Product entity is linked to OrderProduct entity using the appears in relationship. As

Product is a strong entity with its own uniquely identifying primary key, new product details

can be added without the need to have any corresponding occurrences in the OrderProduct

entity. The entity-relationship diagram shows that each product can appear in many

individual OrderProduct occurrences, but it is possible that a product is never ordered.

As OrderProduct is a weak entity, it is not possible to add an OrderProduct occurrence

without first having an existing, corresponding occurrence in the Product entity.

Example

A travel agency uses a relational database to store details on a booking system.

It stores details of Scottish holiday resorts, hotels in each resort, customers and their

bookings. These details are arranged in four separate entities.

The attributes stored in each entity are shown below.

Resort Hotel Customer Booking

resortID

resortName

resortType

hotelRef

hotelName

resortID *

starRating

seasonStartDate

mealPlan

checkInTime

pricePersonNight

customerNo

firstname

surname

address

town

postcode

hotelRef *

customerNo *

startDate

numberOfNights

numberInParty

Version 3.2 68

Strong and weak entities

From the list of attributes, we can see that Resort, and Customer are all strong entities

because they have primary keys that uniquely identify each occurrence within the entities.

Booking is a weak entity because its primary key relies on attributes from the Hotel and

Customer entities. Hotel is a weak entity because its existence relies on the resortID

attribute from the Resort entity.

Version 3.2 69

Relationship participation

An entity-occurrence diagram indicating the relationships between the entities is shown below.

Using an entity-occurrence diagram helps to clarify the nature of each relationship.

168 ⚫

212 ⚫

234 ⚫

347 ⚫

406 ⚫

⚫ AY19 ⚫

⚫ AY72 ⚫

⚫ FW01 ⚫

⚫ FW02 ⚫

⚫ FW03 ⚫

⚫ GL13 ⚫

⚫ GL31 ⚫

⚫ PR04 ⚫

⚫ FW02, 315, 26/04/2019 ⚫

⚫ AY72, 426, 30/04/2019 ⚫

⚫ AY19, 426, 04/05/2019 ⚫

⚫ PR04, 290, 05/05/2019 ⚫

⚫ PR04, 315, 01/06/2019 ⚫

⚫ AY72, 111, 01/06/2019 ⚫

⚫ PRO04, 290, 07/07/2019 ⚫

⚫ AY19, 315, 12/07/2019 ⚫

⚫ GL31, 290, 12/07/2019 ⚫

⚫ 111

⚫ 290

⚫ 315

⚫ 426

⚫ 428

⚫ 457

Resort Hotel Booking Customer

Version 3.2 70

The entity-occurrence diagram for the travel agency booking system makes it clear that:

 Resort: Hotel is a 1: M relationship:

— Resort has mandatory participation in this relationship:

o every hotel must be located in exactly one resort

— Hotel has optional participation in this relationship:

o a resort may or may not have a hotel

 Hotel: Booking is a 1: M relationship:

— Hotel has mandatory participation in this relationship:

o each booking must be associated with exactly one hotel

— Booking has optional participation in this relationship:

o a hotel may exist without any bookings

 Customer: Booking is a 1: M relationship:

- Customer has mandatory participation:

o every booking must be associated with a customer

— Booking has optional participation in this relationship:

o it is possible that some customers never make a booking (for example, details

of customers on the mailing list will be stored in the database, even though

they have never made any bookings)

Entity-relationship diagram

The complete entity-relationship diagram that represents the relationships between the

entities and relationships in the travel agency booking system is shown below.

makes

is location for
Resort

Customer Booking

is associated with

Hotel

Version 3.2 71

Appendix 4: data dictionary (DDD)
A travel agency uses a relational database to store details on a booking system.

It stores details of Scottish holiday resorts, hotels in each resort, customers and their

bookings. These details are arranged in four separate entities.

A data dictionary is used to indicate the properties of each attribute needed to define the

entities.

Sample data stored in each table of the database are shown below.

Sample data for resort

Resort ID Resort name Resort type

168 Ayr coastal

347 Portree island

Sample data for hotel

Hotel

ref

Hotel

name

Resort

ID

Star

rating

Season

start date
Meal plan

Check-in

time

Price/person/night

(£)

AY72 Cliff Top 168 3 2019/04/29 Half Board 14:30:00 85.50

PR04
Sea

View
347 5 2019/05/01

Bed and

Breakfast
16:00:00 58.99

AY19 Glee 168 2 Full Board 15:00:00 179.00

Sample data for customer

Customer No Firstname Surname Address Town Postcode

315 Edwina Jones 121 Main Street Greenock PA16 1JK

426 Omar Shakir 26a High Bridge Perth PH42 6QW

Sample data for booking

Hotel ref Customer No Start date Number of nights Number in party

PR04 315 2018/06/01 3 2

AY19 315 2018/07/12 4 4

PR04 315 2019/06/02 2 2

Version 3.2 72

In the Advanced Higher course, data dictionary attribute types are expressed as SQL data

types.

The completed data dictionary for the travel agency database is shown below.

Entity: Resort

Attribute name Key Type Size Required Validation

resortID PK integer yes

resortName varchar 20 yes

resortType varchar 20 yes
Restricted choice: coastal, city,

island, country

Entity: Hotel

Attribute name Key Type Size Required Validation

hotelRef PK varchar 4 yes Length=4

hotelName varchar 20 yes

resortID FK integer Yes Existing resortID from Resort table

starRating integer yes Range: >=1 and <=5

seasonStartDate date no

mealPlan varchar 17 yes Restricted choice: see list below*

checkInTime time yes

pricePersonNight float yes Range: >=50 and <=250

* Restricted choice for mealPlan: Room Only, Bed and Breakfast, Half Board, Full Board

Entity: Customer

Attribute name Key Type Size Required Validation

customerNo PK integer yes Auto increment

firstname varchar 20 yes

surname varchar 20 yes

address varchar 40 yes

town varchar 20 yes

postcode varchar 8 yes Length<=8

Entity: Booking

Attribute name Key Type Size Required Validation

hotelRef
PK

FK
varchar 4 yes Existing hotelRef from Hotel table

customerNo
PK

FK
integer yes

Existing customer# from Customer

table

startDate PK date yes

numberNights integer yes Range: >=1

numberInParty integer yes Range: >=1

Version 3.2 73

Appendix 5: query design (DDD)
A travel agency uses a relational database to store details on a booking system.

It stores details of Scottish holiday resorts, hotels in each resort, customers and their

bookings. These details are stored in four separate entities.

The attributes stored in each entity are shown below.

Resort Hotel Customer Booking

resortID

resortName

resortType

hotelRef

hotelName

resortID *

starRating

seasonStartDate

mealPlan

checkInTime

pricePersonNight

customerNo

firstname

surname

address

town

postcode

hotelRef*

customerNo*

startDate

numberOfNights

numberInParty

The design of an SQL query should indicate:

 the fields and/or calculations required

 the table(s) or query(-ies) needed to provide the details required

 any search criteria to be applied

 what grouping is needed (if appropriate)

 the criteria to be applied to the grouping (if appropriate)

 the field(s) used to sort the data and the type(s) of sort required

Encourage candidates to plan — this helps to reduce the amount of frustration they may

otherwise encounter when working with the SQL code.

Candidates can use a simple table template to indicate the planned design of the SQL query,

see the following examples.

Version 3.2 74

Example 1: HAVING with GROUPING and row COUNT

Display the resort name and number of hotels in any resort that has at least two hotels.

Field(s)/

calculation(s)
resortName, Number of Hotels = COUNT(*)

Table(s) query(-ies) Resort, Hotel

Search criteria

Grouping resortName

Having COUNT(*) >= 2

Sort order

Example 2: HAVING with GROUPING and sort

Display the full name and the total cost of all bookings for each customer. The query should

only list details of customers whose total cost exceeds £2000 and should list the details of

the biggest spending customer first.

Field(s)/

calculation(s)

firstName, surname, Total cost of all Bookings =

SUM(pricePersonNight * numberNights * numberInParty)

Table(s) query(-ies) Customer, Booking, Hotel

Search criteria

Grouping firstName, surname

Having SUM(pricePersonNight * numberNights * numberInParty) >= 2000

Sort order SUM(pricePersonNight * numberNights * numberInParty) DESC

Example 3: HAVING with conditional statement

Display the average price per person, per night for each holiday resort. Display only those

resorts with an average price per person, per night that exceeds £100.

Field(s)/

calculation(s)
resortName, Average Price = AVG(pricePersonNight)

Table(s) query(-ies) Resort, Hotel

Search criteria

Grouping resortName

Having AVG(pricePersonNight) > 100

Sort order

Version 3.2 75

Example 4: NOT operator

Display the name and type of non-coastal resort, together with the name and meal plan for

each hotel that meets these criteria.

Field(s)/

calculation(s)
resortName, resortType, hotelName, mealPlan

Table(s) query(-ies) Resort, Hotel

Search criteria resortType NOT "coastal"

Grouping

Having

Sort order

Example 5: BETWEEN operator with numeric values

Display the full name and total number of bookings made by each customer who has made

between two and four bookings.

Field(s)/

calculation(s)
firstName, surname, Total Bookings = COUNT(*)

Table(s) query(-ies) Customer, Booking

Search criteria

Grouping surname, firstName

Having COUNT(*) BETWEEN 2 and 4;

Sort order

Example 6: BETWEEN operator with text

Display the surname, postcode, and town of customers who live in towns that begin with the

letters ‘E’ through to ‘M’. The query should list customers in alphabetical order of town.

Field(s)/

calculation(s)
surname, postcode, town

Table(s) query(-ies) Customer

Search criteria town BETWEEN "E" and "M"

Grouping

Having

Sort order town ASC

Version 3.2 76

Example 7: IN operator

Display the hotel name and meal plan for hotels that offer room only, half board or full board.

Field(s)/

calculation(s)
hotelName, mealPlan

Table(s) query(-ies) Hotel

Search criteria mealPlan IN the list ("Room Only", "Half Board", "Full Board")

Grouping

Having

Sort order

Example 8: NOT with the IN operator

Display the name and type of resorts that are neither city nor country resorts.

Field(s)/

calculation(s)
resortName, resortType

Table(s) query(-ies) Resort

Search criteria resortType NOT IN the list ("city", "country");

Grouping

Having

Sort order

Version 3.2 77

Example 9: subquery in the where clause

Display the hotel name, star rating, and price per person for the most expensive hotel.

Field(s)/
calculation(s) hotelName, starRating, pricePersonNight

Table(s) query(-ies) Hotel

 Field(s)/
calculation(s) MAX(pricePersonNight)

Search
criteria

pricePersonNight = Inner query Table(s) Hotel

 Search criteria

Grouping

Having

Sort order

Example 10: subquery in the where clause

Display the resort name, hotel name, and star rating of all hotels that have a below-average

star rating.

Field(s)/
calculation(s) resortName, hotelName, starRating

Table(s) query(-ies) Resort, Hotel

 Field(s)/
calculation(s) AVG(starRating)

Search
criteria

starRating < Inner query Table(s) Hotel

 Search criteria

Grouping

Having

Sort order

Version 3.2 78

Example 11: subquery using the NOT operator

Display the full name and postcode of the customer who booked the same hotel as the

customer with ID 111.

Field(s)/
calculation(s) resortName, hotelName, starRating

Table(s) query(-ies) Resort, Hotel

 customerNo NOT 111

Search
 Field(s)/

calculation(s) hotelRef

criteria AND hotelRef = Inner query Table(s) Booking

 Search criteria customerNo = 111

Grouping

Having

Sort order

Example 12: subquery using the IN operator

Display the hotel name and star rating of all hotels booked by the customer with ID 315.

Field(s)/
calculation(s) hotelName, starRating

Table(s) query(-ies) Hotel

 Field(s)/
calculation(s) hotelName

Search
criteria hotelName IN Inner query Table(s) Hotel, Booking

 Search criteria customerNo = 315

Grouping

Having

Sort order

Version 3.2 79

Example 13: subquery using the NOT and IN operators

Display the names and types of resort not booked by the customer with ID 315.

Field(s)/
calculation(s) resortName, resortType

Table(s) query(-ies) Resort

 Field(s)/
calculation(s) resortName

Search
criteria

resortName NOT IN Inner query Table(s) Resort, Hotel, Booking

 Search criteria customerNo = 315

Grouping

Having

Sort order

Example 14: subquery using the ANY operator

Display the customer number, hotel reference, and booking cost for any booking that costs

more than any bookings made by customers with surnames Lowden, Shawfair or Sheriffhall.

Field(s)/
calculation(s)

customerNo, hotelRef, Booking Cost = pricePersonNight *
numberNights * numberInParty

Table(s) query(-ies) Booking. Hotel

 Field(s)/

calculation(s)

pricePersonNight *
numberNights *
numberInParty

Search
criteria

pricePersonNight *
numberNights *
numberInParty >
ANY

Inner query Table(s)
Booking, Hotel,
Customer

 Search criteria

surname in
("Sheriffhall",
"Lowden", "Shawfair")

Grouping

Having

Sort order

Version 3.2 80

Example 15: subquery using the EXISTS operator

Display the details (hotel name, star rating, meal plan and resort name) of all 3-star hotel

bookings. The query should list the hotels in alphabetical order of meal plan.

Field(s)/
calculation(s) hotelName, mealPlan, starRating, resortName

Table(s) query(-ies) Hotel, Resort

 starRating = 3

Search
 Field(s)/

calculation(s) *

criteria AND EXISTS Inner query Table(s) Booking

 Search criteria

Grouping

Having

Sort order mealPlan ASC

Example 16: subquery using the NOT and EXISTS operators
Display the full name and address of customers who have never made a booking.

Field(s)/
calculation(s) firstName, surname, address

Table(s) query(-ies) Customer

 Field(s)/
calculation(s)

Search
criteria NOT EXISTS Inner query Table(s) Booking

 Search criteria

Grouping

Having

Sort order

Version 3.2 81

Example 17: query requiring two subqueries
Display the name, star rating, and total number of customer nights booked for hotels that
have:

 a total number of customer nights booked that is more than the total number of nights

booked by the customer with ID 290 (number of nights booked multiplied by number in

party)

and

 a star rating which is less than that of the hotel with the highest star rating

The query should list the hotels from lowest star rating to the highest.

Field(s)/
calculation(s)

hotelName, starRating, Nights x Number in Party =
SUM(numberNights*numberInParty)

Table(s) query(-ies) Hotel, Booking

 Field(s)/
calculation(s)

SUM(numberNights *
numberInParty)

Search
criteria

numberNights *
numberInParty > Inner query Table(s) Booking

 Search criteria customerNo = 290

 Field(s)/
calculation(s) MAX(starRating)

Search
criteria

AND starRating < Inner query Table(s) Hotel

 Search criteria

Grouping hotelName, starRating

Sort order starRating ASC

Version 3.2 82

Appendix 6: server-side process design (WDD)
In this course, candidates are required to read and understand pseudocode, and structure

diagram designs for server-side processes. They are also required to write pseudocode for

design server-side processes.

Processes can include:

 opening and closing a database connection

 initialising and assigning session variables

 selection using conditions

 executing SQL statements

 displaying the results of SQL queries

Examples of these processes are in the structure diagrams and pseudocode below.

Example 1: executing an SQL query and displaying results

In this example, the user enters search criteria into a web form to find contact details for

companies in a ‘Suppliers’ database. The results of the query are displayed in an HTML

table.

Pseudocode

1 assign server connection variables

2 open connection to Suppliers database on database server

3 receive search criteria from HTML ‘find suppliers’ form

4 assign search criteria to PHP variables

5 execute SQL query to find company names and phone numbers of selected suppliers

6 display the results of the query in an HTML table

7 close connection to Suppliers database server

6.1 if number of rows = 0

6.2 display ‘no companies found’

6.3 else

6.4 display opening HTML table element

6.5 display field names (companyName, phoneNo) in header row of the HTML table

6.6 display names and phone numbers results in individual HTML table rows

6.7 display closing HTML table element

6.8 end if

Version 3.2 83

Structure diagram

Version 3.2 84

Refinement of ‘Display results’

Version 3.2 85

Example 2: authenticating a user login

In this example, the user (customer) needs to log into a website. The customer username

and password are authenticated by checking that the values exist within a ‘Customers’

database. Once authenticated, the customer login details are stored in PHP session

variables.

Pseudocode

1 start PHP session

2 use HTML to display login form

3 authenticate username and password submitted by the customer

4 if authenticated, assign contents of login variables to session variables

3.1 assign server connection variables

3.2 open connection to Customers database on database server

3.3 assign customer login details to PHP variables

3.4 execute SQL query to confirm customer login details

3.5 close connection to Customers database server

Version 3.2 86

Structure diagram

Refinement of ‘Authenticate customer username and password’

Version 3.2 87

Appendix 7: linked lists (SDD)

Single linked list

A linked list is a dynamic data structure. Unlike a 1-D array (which stores each piece of data sequentially in memory), a linked list stores each

data item and a pointer (address) to the next data item.

A linked list is a dynamic data structure, as it has no fixed size — it grows and shrinks as required; whereas a 1-D array typically has a set size

based on its declaration.

Each element of a linked list is called a NODE. The start of a linked list is called the HEAD and the last element points to the NULL. Each node

has its own address in memory, and stores the data item and a pointer to the next node.

The following diagram represents a node.

A simple example of a single linked list with four nodes is shown below. The four node linked list stores the words ‘Computing’, ‘Science’, ‘is’,

and ‘fun’.

Version 3.2 88

Points to note:

 A linked list can store data of multiple data types; a 1-D array is usually limited to one.

 A linked list is a linear data structure; to get to a specific data item, it must always start at the HEAD and work through each node until the

data is found.

 A single linked list can only be traversed in one direction — from HEAD to NULL.

 Inserting data into a linked list is more efficient than a 1-D array, as only a pointer is changed rather than shifting the contents of the list

(array) into different memory locations.

 Deleting data from a linked list is more efficient than a 1-D array, as only a pointer is changed rather than shifting the contents of the list

(array) into different memory locations.

Inserting new data

To insert new data into the list, for example inserting the word ‘really’ between ‘is’ and ‘fun’, a new node is created somewhere in memory and

the pointers updated accordingly. To then update the pointer, the list is traversed until ‘is’ is found.

Original

The following is an updated diagram with the word ‘really’ inserted at memory location 555.

Version 3.2 89

Updated

Using a 1-D array data structure and inserting data at a given index means that all data beyond that point is shifted along one location in

memory. A linked list is more efficient than a 1-D array, as no data is moved and just one pointer is updated.

Removing data

To remove data from the list, for example removing the word ‘Science’, the memory location where the node is stored is freed up and the pointer

on the node removed before it is updated. To do this, the list is traversed until the node before ‘Science’ is found.

Original

The following is an updated diagram with the word ‘Science’ removed.

Version 3.2 90

Updated

Using a 1-D array data structure and removing data at a given index means that all data beyond that point is shifted along one location in

memory. A linked list is more efficient than a 1-D array, as no data is moved and just one pointer is updated.

Double linked list

A double linked list is very similar to a single linked list, but has an additional pointer in each node that stores the address of the previous node.

The following diagram represents a node.

Version 3.2 91

Using the same example as for the single linked list, a sample of a double linked list with four nodes is shown below. The four node linked list

stores the words ‘Computing’, ‘Science’, ‘is’, and ‘fun’.

Points to note:

 A double linked list can be traversed in both directions.

 A double linked list requires additional memory, as an extra pointer is being stored on each node.

 If the pointer to the node to be removed is known, then removing a node in a double linked list is more efficient than in a single linked list:

— In a single linked list, to remove a node, the pointer from the previous node is required — to find the pointer, the list is traversed.

— In a double linked list, the previous node is determined using the previous pointer.

 To insert a node into a single linked list, the list is traversed until the position is found.

 To insert a node into a double linked list, the list is not traversed if the node is being inserted:

— at the start of the list

— at the end of the list

— after a given node

or

— before a given node

Version 3.2 92

Inserting new data

To insert new data into the list, for example the word ‘really’ to go after the node at address 302, a new node is created somewhere in memory

and the pointers before it and after it are updated accordingly.

Original

The following is an updated diagram with the word ‘really’ inserted at memory location 555.

Updated

Version 3.2 93

Removing data

To remove data from the list, for example the word ‘Science’, the memory location where the node is stored is freed up and the pointer on the

node before and after it is updated.

Original

The following is an updated diagram with the word ‘Science’ removed.

Updated

Version 3.2 94

Appendix 8: connecting to a database using a
programming language (SDD)
The Advanced Higher Computing Science course specifies that candidates use a

programming language to read from, and write data to, database files using SQL. Python,

Visual Basic and Java are all popular languages used by many centres to deliver the course

content. Note: all of these languages can create a database connection and execute an SQL

statement.

The question paper will only contain SQA’s standardised reference language, so the code

included in this appendix does not appear in the question paper. This appendix focuses on

supporting teachers and lecturers to deliver the content, and helping candidates develop

their projects.

For each of the three languages above, the following is included:

 advice on set-up requirements

 examples of instructions and syntax required to create a database connection

 examples of SQL execution

Python

Set-up requirements

To connect to a MySQL database using Python, the database driver ‘MySQL Connectors’

must be installed. In a school or college, IT technicians will probably install this, as teachers

and lecturers are unlikely to have the required administration rights.

If candidates want to install Python at home, they can use the following instructions for

Windows 10. Similar instructions for Linux or Apple OS are available online — these set-up

instructions assume that Python is already installed.

Step 1 — checking the system path to Python is set up

Before installing Python, check that a system path is set up. This ensures that the operating

system knows where the python.exe application is located.

Version 3.2 95

Open the folder containing the python.exe program. Click on the address bar at the top of the

window, type ‘cmd’ and press enter to open the command window.

Type ‘python’ in the command window. If the system path is already set up, a message

stating the version of Python installed is displayed — move on to step 2.

If an error is displayed, close the command window, click on the address at the top of the

window again and copy the address. The address is required later.

Version 3.2 96

Open the ‘Window Settings’ folder and type ‘advanced’ into the search bar at the top.

Select ‘View advanced system settings’ followed by Environment Variables.

Version 3.2 97

The system path is set up using this window. Click ‘Path’ followed by the ‘Edit’ button, as

shown below.

In the ‘Edit environment variable’ window, click ‘New’ and paste in the location of Python

copied earlier from the address bar of the Python window.

Step 2 — installing the ‘mysql-connector’ library using pip

Python maintains a list of online installable libraries. Any of these libraries can be installed

using the cmd prompt from within the Python folder (see step 1).

Version 3.2 98

Open the window containing the python.exe file, and type ‘cmd’ into the address bar to open

the command window.

Enter the following instruction: pip install mysql-connector

Note: if when using ‘pip install’ it generates the error “'pip' is not recognized as an

internal or external command, operable program or batch file.”, then pip

also requires a system path set up. Repeat the system path instructions using the address of

the pip.exe file. You can find this file inside the Python Scripts folder. Once the path is added,

close and reopen the cmd window from the Python folder. Re-enter the pip install

mysql-connector instruction.

Creating a connection

The code below creates a connection to a MySQL database.

Line 1 imports the mysql-connector library.

Lines 3 to 8 assign the database connection parameters for a chosen database and make a

connection, ‘conn’.

To ensure connection errors do not crash the program, place the connection code inside a

Python try structure. The ‘try’ statement prints an error if the connection fails. If the

connection is successful, any code placed within the ‘else’ statement will be executed.

Version 3.2 99

SQL execution

The following examples use a single table. Set this up using MySQL before any code is

executed, ensuring that:

 the database name is ‘StudentData’

 the table name is ‘Student’

A data dictionary for the Student table is shown below.

Insert example data for the table before executing the examples.

Example 1 — SELECT and display results

The code below displays every row from the Student table.

Line 13 associates the database connection with a new instance of a cursor object. Cursor

objects contain a variety of methods used to manipulate databases and data.

Line 14 uses the cursor’s execute() method to execute an SQL statement.

Entity Attributes Type Size

Student studentid int 4

 firstname VARCHAR 25

 lastname VARCHAR 25

 address VARCHAR 40

Version 3.2 100

Line 15 uses the fetchall() method to return the result as a list of tuples as shown below.

[(1001, 'Jane', 'White', '12 Holburn Crescent'), (1002, 'Mary',

'Cromwell', '4 Fraser Street'), (1003, 'Tessa', 'Bolden', '10

Fraserboo St')]

Lines 17 and 18 display each of the tuples, on a single line, generating the output shown

below.

(1001, 'Jane', 'White', '12 Holburn Crescent')

(1002, 'Mary', 'Cromwell', '4 Fraser Street')

(1003, 'Tessa', 'Bolden', '10 Fraserboo St')

Rather than displaying the whole tuple unformatted, edit line 18 to separate out each of the

four values within each tuple (x[0], x[1], x[2] and x[3]) to display a concatenated

string.

This produces the formatted output shown below.

1001- Jane White, 12 Holburn Crescent

1002- Mary Cromwell, 4 Fraser Street

1003- Tessa Bolden, 10 Fraserboo St

Example 2 — INSERT using user inputted values

The code below uses input boxes to input and store the details of a new student.

Lines 20 to 23 ask the user to input data for a new student.

Lines 25 and 26 build an INSERT statement. The placeholders, used in place of values, are

replaced by the variables specified in line 26, when line 27 is executed.

Line 28 is required to confirm the change to the database.

Version 3.2 101

Example 3 — counting the number of rows returned by a query

The code below asks the user to enter a name. The number of times that name appears in

the Student table is displayed.

Lines 30 to 32 build and execute a SELECT statement. A placeholder is replaced by the

user’s input.

Line 34 displays concatenated output, including the number of rows returned by the SELECT

statement. Note: the rows must be fetched before the method rowcount can be used

(line 33).

Visual Basic

Set-up requirements

The following instructions are for:

 Microsoft Visual Studio 2012 or later

 Microsoft Access 2016

This code should still be compatible with newer editions of the software.

Creating a connection

Load Visual Basic and create a new Windows Forms Application.

Version 3.2 102

Add the following to the blank SQL Connection Form:

 one list box named ‘lstoutput’

 one command button named ‘cmd_read’

 one text box named ‘txterror’

Double click on the command button to bring up the coding window.

Add the highlighted line of code to the very top of the code, ensuring it is above the Form

Class Code — as shown below.

This adds the required additional libraries.

A ‘Try Catch’ block is used to connect to the database. If any code within the try block returns

an error, the catch block is called to display the returned error message.

Version 3.2 103

Add the following code to the ‘cmd_read’ button.

Try

Catch ex As Exception

 lstoutput.Items.Add(ex.Message)

End Try

Add all subsequent code between the ‘Try’ and ‘Catch’ statements.

Use the following code to create a connection to the example database.

Dim SQLReader As OleDbDataReader

Dim connection_type As String = "Provider=Microsoft.ACE.OLEDB.12.0;"

Dim file_location As String = "Data Source=c:\desktop\test.accdb"

Dim conn As OleDbConnection

conn = New OleDbConnection(connection_type & file_location)

conn.Open()

The first line creates an object called SQLReader that is used to read data from the

database.

Next, the connection type and the location of the database file are stored as strings.

A new object called conn is used to create the connection to the database.

The conn object is set as a new OleDBConnection, with the parameters stored earlier. Note:

a single string is passed into this procedure, as the parameters have been concatenated.

The final line opens the connection to the database.

SQL execution

The following examples use a simple one-table Access database:

 The database file is called test.accdb

 The table is called Customers

Version 3.2 104

Screen shots of the table design and contents are shown below.

Example 1 — SELECT and display results

The following code reads and displays all the data in the example database.

Dim query As String = "Select * FROM [Customers]"
Dim command As New OleDbCommand(query, conn)
SQLReader = command.ExecuteReader()

If SQLReader.HasRows Then
 While SQLReader.Read
 lstoutput.Items.Add(SQLReader("ID") & " " &
 SQLReader("Firstname") & " " & SQLReader("Surname"))
 End While
Else
 lstoutput.Items.Add("No Results Returned")
End If

A simple string object is created to store the SQL query. Note: table names require square

brackets.

A new OleDbCommand object called command is created. This object contains the query

and the connection data.

The SQLReader object stores the results of the executed query.

Version 3.2 105

Example 2 — INSERT using user inputted values

The code below uses input boxes to input and store the details of a new customer.

Ask the user to enter the details of a new customer. Note: all the data entered has to be

stored as string, regardless of the datatype in the database.

Add the following code to a new button.

Dim id As String = InputBox("Please enter customer ID")

Dim firstname As String = InputBox("Please enter customer’s

firstname")

Dim surname As String = InputBox("Please enter customer’s

surname")

Convert the stored data into an SQL query, as shown below.

Dim query As String = "INSERT INTO [customers] VALUES (" &

id & " , ' " & firstname & " ', ' " & surname & " ');"

When inserting partial data, field names are required. ID information is not necessary,

because ID is an auto number and the database uses the next available number.

Dim query As String = "INSERT INTO [customers] (firstname,

surname) VALUES (' " & firstname & " ', ' " & surname & "');"

Note: the above example now specifies the two fields that data is entered into.

Execute the built query, as shown below.

Dim command As New OleDbCommand(query, conn)

SQLReader = command.ExecuteReader()

Example 3 — counting the number of rows returned by a query

The code counts the number of times that name appears in the Customer table.

Ask the user to enter the customer’s name.

Dim firstname As String = InputBox("Please enter firstname of

person(s) you would like to count")

A counter is required later to count the number of rows returned by the query.

Dim counter As Integer = 0

A SELECT statement is built using the user’s input.

Dim query As String = "SELECT * FROM [customers] WHERE firstname =

'" & firstname & "';"

Version 3.2 106

To count the rows returned, add two additional lines to the output code used in example 1:

 one line to store the result of a running total for each row

 one line to display this result

Dim command As New OleDbCommand(query, conn)

SQLReader = command.ExecuteReader()

If SQLReader.HasRows Then

 While SQLReader.Read

 lstoutput.Items.Add(SQLReader("ID") & " " &

 SQLReader("Firstname") & " " & SQLReader("Surname"))

 counter = counter + 1

 End While

lstoutput.Items.Add(counter & " Results Returned")

Else

 lstoutput.Items.Add("No Results Returned")

End If

Java

Set-up requirements

The following Java database connection examples require two installations:

 Java SE Development Kit (often referred to as JDK) — this can be downloaded from the

Oracle website.

https://www.oracle.com/technetwork/java/javase/downloads/index.html

 NetBeans — a popular integrated development environment (IDE) used to develop Java

applications.

https://netbeans.org/features/

If candidates wish to code in Java at home, they can download and install both examples at

no cost.

To connect to a database, Java Database Connectivity (JDBC) is required. JDBC drivers are

software libraries that communicate between a Java application and a database. JDBC is

already included in NetBeans, so requires no further installation.

If candidates use a different IDE for Java development, they must ensure that it includes the

JDBC library, as this is required to create a database connection.

https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://netbeans.org/features/

Version 3.2 107

Follow the instructions below to download the JDBC library, if required:

1 Open the webpage

https://dev.mysql.com/downloads/

2 Scroll down to MySQL Connectors and click the download link shown below.

3 Select ‘Connector/J’ from the list.

4 Choose ‘Select Operating System: Select platform independent’

5 Download the ZIP or TAR file.

Note: it is not necessary to login or sign up — click ‘No thanks, just start my download’.

6 It does not matter where the JDBC library is saved.

Creating a connection

Before any coding can be implemented, a new project must be created.

Open NetBeans and create a new project using the following steps:

1 File

2 New

3 Java

4 Java Application

5 Name the application — the following example is named ‘School Application’

To create a database connection, the JDBC library must be included in your project.

https://dev.mysql.com/downloads/

Version 3.2 108

Right click on Libraries and select Add Library.

Select MySQL JDBC Driver from the list as shown.

Version 3.2 109

Use the code shown below create a database connection.

Version 3.2 110

Lines 3 to 9 list several libraries that must be included at the top of the code. These contain

methods that are called when creating the connection or executing SQL.

Lines 13 to 15 initialise three variables to the database connection parameters. This is similar

to PHP but in Java, the server and database names are contained in a single URL.

Line 18 creates the connection using the parameters assigned above.

Place the connection within a ‘try’ statement (lines 18 to 26), to ensure the program does

not crash if the connection fails. If the connection is successful, a message stating this is

displayed (this message can be used during testing and removed when the successful

connection is confirmed).

If the connection fails, a system error is printed stating the issue that occurred.

Further code should be contained within the success section of the ‘try’ statement at line

22.

SQL execution

The following examples use a single table. Set this up using MySQL before any code is

executed, ensuring that:

 the database name is ‘StudentData’

 the table name is ‘Student’

A data dictionary for the Student table is shown below.

Entity Attributes Type Size

Student studentid int 4

 firstname VARCHAR 25

 lastname VARCHAR 25

 address VARCHAR 40

Version 3.2 111

Insert example data for the table before executing the examples.

Example 1 — SELECT and display results

The code below displays every row from the Student table.

Line 24 creates a statement object that allows basic SQL queries to be executed.

Line 25 executes a SELECT query by calling the executeQuery(String) method with the SQL

to be used. The results of a query are retrieved through the ResultSet class.

Lines 27 to 33 exemplify one of many solutions that could be used to display the result of the

query, now stored in ‘rs’. This solution uses StringBuilder to concatenate each row of the

results.

The output from this code is shown below.

Version 3.2 112

Example 2 — INSERT using user inputted values

The code below uses input boxes to input and store the details of a new student.

Lines 36 to 41 use the JOptionPane library to create four input boxes, one for each item of

student data. Note: as each input is stored as a string, it is necessary to convert the student

id to an integer (line 41).

Line 43 creates an INSERT statement that contains four markers (?). PreparedStatement

then replaces each marker with the student data stored earlier in the id, first, last and

address variables.

Line 49 uses the executeUpdate() method to execute the now complete SQL statement.

To directly INSERT values, use the following code.

stmt.executeUpdate("INSERT INTO Student VALUES

(1010,'Cameron','Stott','17 Dover Heights')");

Example 3 — counting the number of rows returned by a query

The code below displays the number of rows returned by an SQL SELECT query.

Line 52 executes an SQL query to return all the students called Jane. Note: the ResultSet,

used at the beginning of the same code earlier is not required, as the ‘rs’ object has already

been initialised.

Line 53 uses the last() method to move the cursor to the last row of the result set.

Line 54 displays the current row number using the getRow() method.

Version 3.2 113

Appendix 9: standard algorithms (SDD)
The following Advanced Higher standard algorithms are exemplified below in pseudocode

and SQA reference language:

 bubble sort

 insertion sort

 binary search

The two sort algorithms presented both sort into ascending order. With small changes, they

are easily adapted to descending order.

Bubble sort

A bubble sort continually swaps values in adjacent array elements until the entire list is in the

correct order.

Version 3.2 114

Pseudocode

Consider an array that stores the following values:

0 1 2 3 4 5 6 7 8

45 23 99 7 3 64 37 63 34

After one pass through the array, the largest value will always ‘bubble’ up to the end of the

array.

23 45 7 3 64 37 63 34 99

After a second pass, the second-largest number is also sorted.

23 7 3 45 37 63 34 64 99

When bubble sorting a list of values, the number of iterations carried out by each nested loop

can be reduced by one each pass. This improves the efficiency of the bubble sort algorithm.

Design Commentary

n equals the length of an array called list The length of the array is

stored in a variable

set swapped to true

start conditional loop while swapped = true

set swapped to false

fixed loop i = 0 to n - 2 Loop from the first element to

the penultimate array

element

if list[i] > list[i+1] then

swap the two values

set swapped to true

end if

end fixed loop

n = n - 1 Each fixed loop reduces the

iterations by 1, as one more

element is sorted correctly at

the end of the array

end conditional loop

Version 3.2 115

SQA reference language: bubble sort implementation

PROCEDURE bubble_sort(list)

 DECLARE n INITIALLY length(list)

 DECLARE swapped INITIALLY TRUE

 WHILE swapped

 SET swapped TO False

 FOR i = 0 to n-2 DO

 IF list[i] > list[i+1] THEN

 SET temp TO list[i]

 SET list[i] TO list[i+1]

 SET list[i+1] TO temp

 SET swapped TO TRUE

 END IF

 END FOR

 SET n TO n - 1

 END WHILE

END PROCEDURE

Insertion sort

An insertion sort traverses an array from the second element to the last. Each element is

compared to the elements before in turn, working backwards down the list. Values are

swapped until the element being compared is placed in order.

The following is a worked example of an insertion sort.

Iteration 1

Start with element 1 of the list to be sorted. This value is temporarily stored.

0 1 2 3 4 5 6 7 8 temp

45 23 99 7 8 64 37 63 34 23

If the temporary value (23) is smaller than the value before it (45), then the value before it is

copied to the right.

45 45 99 7 8 64 37 63 34 23

Each value, to the left of the element where the temporary value was originally stored, is

compared in turn until:

 the value being compared is smaller than the stored temporary value

or

 the start of the list has been reached

Version 3.2 116

When either of the previous bullets is true, the temporary value is copied back into the list.

23 45 99 7 8 64 37 63 34 23

Iteration 2

When the next element (99) is examined, the element before it (45) is smaller, so no further

action is required.

0 1 2 3 4 5 6 7 8 temp

23 45 99 7 8 64 37 63 34 99

Iteration 3

When the value in element 3 is compared to every element before it, the result is that the

values in indexes 0, 1 and 2 are all copied one element to the right (as 7 is smaller than 23,

45 and 99).

0 1 2 3 4 5 6 7 8 temp

23 45 99 7 8 64 37 63 34 7

The temporary value is copied into element index 0.

7 23 45 99 8 64 37 63 34 7

Iteration 4

When the value in element 4 is compared to the values in indexes 0 to 3, it is smaller than

every value, except element 0 (7).

0 1 2 3 4 5 6 7 8 temp

7 23 45 99 8 64 37 63 34 8

The values 23, 45 and 99 all move right. The temporary value this time is copied into index 1.

7 8 23 45 99 64 37 63 34 8

By this stage, the algorithm of an insertion sort should be apparent, as follows:

 Each element from 1 to the length of the array is copied into temporary storage and dealt

with in turn.

 Every larger value to the left is moved up one element.

 The temporary value is copied back into the list when the next value is smaller, or when

the end of the array is reached.

Version 3.2 117

Pseudocode

Design Commentary

fixed loop i = 1 to length(list)-1 Loop from the second

element to the last

store the value at array index i Store the current temporary

value

store the starting position of the

inner loop

Store the current position in

the array — this will be used

as a starting point to count

backwards during the

comparisons

while index > 0 and value < list[index-1] Continue comparing previous

values in the list with the

temporary value until the

start of the array is reached

or the two values are in the

correct order

copy the value at index i into

index i+1

The compared value is

copied into the element to the

right

reduce the index by 1 Decrement the element being

compared next

end while

copy the stored value into index i The temporarily stored value

is copied into the correct

place

end fixed loop

SQA reference language: insertion sort implementation

PROCEDURE insertion_sort(list)

 DECLARE value INITIALLY 0

 DECLARE index INITIALLY 0

 FOR i = 1 to length(list)-1 DO

 SET value TO list[i]

 SET index TO i

 WHILE (index > 0) AND (value < list[index-1]) DO

 SET list[index+1] TO list[index]

 SET index TO index - 1

 END WHILE

 SET list[index] TO value

 END FOR

END PROCEDURE

Version 3.2 118

Binary search

A binary search finds a value by continually halving a sorted list until a target is, or is not,

found.

The code begins by designating a start (S) point and an end (E) point in the list. These are

initially the first and last elements of the array.

From these, the target value positioned in the middle of the sorted list is identified

(M=(E-S)/2).

Target = 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 5 8 10 11 14 17 25 30 37 38 39 50 51 60 65 77

S M E

The algorithm compares the target to the value stored at M and makes one of three

decisions:

1 If the middle value is larger than the target, then the target must be in the half of the

list that contains smaller values.

2 If the middle value is smaller, the target must be in the larger half of the list.

3 If the middle value is equal to the target, then the target has been found and the

search ends.

If either bullet points 1 or 2 are true, then the start or end are reassigned as required. The

middle point is then calculated for the remaining list and the same decision is made again.

Target = 8

2 5 8 10 11 14 17 25 30 37 38 39 50 51 60 65 77

S M E

This is carried out again, until a match is found at M.

Target = 8

2 5 8 10 11 14 17 25 30 37 38 39 50 51 60 65 77

S M E

Version 3.2 119

Pseudocode

Note: pseudocode is not a fixed design notation, and candidates may prefer to use more

‘code-like’ pseudocode when designing algorithms. An example of this approach is shown

below.

Design Commentary

low = 0 The lowest index point (S) is

stored

high = length(list)-1 The highest index point (E) is

stored

found = false Set a flag variable to show

that a match has not yet

been found

while not found and low <= high Conditional loop until the

target is found or there are

no elements left to examine

set mid = (low + high) / 2 Find the midpoint (M) as

halfway between the lowest

and highest index

if target = list[mid] then If a match with the target is

found…

display "found" …display found to user…

set found to true ...and end the conditional

loop using the flag variable

else if target > list[mid]

set low = mid + 1

else

set high = mid – 1

end if

Reset the lowest or highest

index depending on whether

the target is greater or

smaller than the value in the

middle index

end while

If not found then

display "not found"

end if

An optional ‘not found’ may

be added to the end of the

algorithm, if required

Version 3.2 120

SQA reference language: binary search implementation (procedure)

The procedure below displays the position of the target, if it is found within the passed list.

PROCEDURE binary_search(list,target)

 DECLARE low INITIALLY 0

 DECLARE high INITIALLY length(list)-1

 DECLARE mid INITIALLY 0

 DECLARE found INITIALLY FALSE

 WHILE NOT found AND low <= high

 SET mid TO (low+high)/2

 IF target = list[mid] THEN

 SEND "Found" TO DISPLAY

 SET found TO TRUE

 ELSE IF target > list[mid] THEN

 SET low TO mid+1

 ELSE

 SET high TO mid–1

 END IF

 END WHILE

 IF NOT found THEN

 SEND "Not found" TO DISPLAY

 END IF

END PROCEDURE

Version 3.2 121

SQA reference language: binary search implementation (function)

The function below returns a Boolean value used to store whether the target value is found,

or not, in the array. The main program can then use the returned value.

FUNCTION binary_search(list,target) RETURNS BOOLEAN

 DECLARE low INITIALLY 0

 DECLARE high INITIALLY length(list)-1

 DECLARE mid INITIALLY 0

 DECLARE found INITIALLY FALSE

 WHILE NOT found AND low <= high

 SET mid TO (low+high)/2

 IF target = list[mid] THEN

 SET found TO TRUE

 ELSE IF target > list[mid] THEN

 SET low TO mid+1

 ELSE

 SET high TO mid–1

 END IF

 END WHILE

 RETURN found

END FUNCTION

#main program

DECLARE numList AS ARRAY OF INTEGER INITIALLY [3,4,7,10,15,21,36]

RECEIVE find FROM KEYBOARD

foundIt = binary_search[numList, find]

IF foundIt THEN

 SEND "Target found" TO DISPLAY

ELSE

 SEND "Target not found" TO DISPLAY

Version 3.2 122

Appendix 10: SQL operations (DDD)
Candidates need to implement relational databases using SQL Data Definition Language

(DDL) and Data Manipulation Language (DML) in the Advanced Higher course.

DDL

 CREATE statement — used to create a database and the structure of each table in the

database

 DROP statement — used to remove individual tables from a database or even the entire

database

DML

 INSERT statement — used to populate a table by adding records (this was introduced at

National 5)

 UPDATE statement — used to edit values stored in database records (this was introduced

at National 5 and extended at Higher)

 DELETE statement — used to remove records from a database table (this was introduced

at National 5)

In addition, Advanced Higher candidates should be able to describe, exemplify and

implement SQL SELECT statements that make use of:

 the HAVING clause

 logical operators IN, NOT, ANY, BETWEEN, EXISTS in the WHERE or HAVING clause

 a subquery in the WHERE clause

SQL data types

When using the SQL CREATE statement, SQL data types must be used.

Data
type

Sample
SQL

implementation
Comment

integer 32, -846 int
using a size parameter is optional; it is
used to restrict the maximum display
width

float 3.14 float(size, d)

the size parameter specifies the total
number of digits displayed, while d
specifies the number of digits after the
decimal point

varchar ABC123D varchar(size)
the size parameter is mandatory, to
restrict number of characters possible
between 0 and 65535

date 2019-05-23 date
format is YYYY-MM-DD

time 09:12:47 time
format is hh:mm:ss

Version 3.2 123

Information about each of these data types and examples of SQL statements are on the

following pages.

CREATE statement

A database is defined as being a structured set of data. The first step in building an SQL

database is to create the database structure using CREATE DATABASE.

CREATE DATABASE databaseName;

Once a database has been created, the structure for each table in the database needs to be

built using CREATE TABLE.

CREATE TABLE tableName (

 fieldName1 dataType,

 fieldName2 dataType,

);

Validation constraints

The following can be specified for individual fields:

PRIMARY KEY: uniquely identifies each record in the table

fieldName dataType PRIMARY KEY

 or

PRIMARY KEY (fieldName1)

 or

PRIMARY KEY (fieldName1, fieldName2, ...)

FOREIGN KEY: links two tables together by referencing the primary key of another table

fieldName dataType FOREIGN KEY REFERENCES tableName (fieldName)

 or

FOREIGN KEY(fieldName) REFERENCES tableName (fieldName)

NOT NULL: ensures that a field always contains a value and is not left empty

fieldName dataType NOT NULL

Version 3.2 124

CHECK: ensures that all values in a field satisfy a specific condition

fieldName dataType CHECK(fieldName condition)

AUTO INCREMENT: automatically generates a unique number when a new record is

inserted

fieldName dataType AUTO_INCREMENT

Additional notes on constraints

PRIMARY and FOREIGN KEY constraints

 Some dialects of SQL allow the PRIMARY or FOREIGN KEY constraint to be applied in

the clause used to identify the data type for the field; other dialects require the PRIMARY

or FOREIGN KEY constraint to be applied in a separate clause.

 Users should refer to the relevant documentation or reference guide to check the syntax

for the version of SQL they are using.

 If the primary or foreign key consists of multiple columns, users must specify them in a

separate clause at the end of the CREATE TABLE statement.

CHECK constraint

 Standard SQL provides the CHECK constraint, as described and exemplified in this

appendix. However, the CHECK constraint is not provided in all dialects of SQL (for

example, MS Access and MySQL do not support the use of CHECK).

 In the case of MySQL, the CHECK constraint is ignored and the intended data validation is

not carried out. To implement the CHECK constraint in MySQL, triggers or views must be

used.

Note: candidates should implement triggers or views within their project solution, as

required; however, these constraints are not assessed in the Advanced Higher

Computing Science course.

 Users should refer to the relevant documentation or reference guide to check the syntax

for the version of SQL they are using.

Applying multiple constraints

It is possible to apply several constraints to one field, for example:

fieldName dataType NOT NULL PRIMARY KEY

Version 3.2 125

DROP statement

The DROP statement is used to drop or delete a whole database. Be careful when using this

statement, as all the tables and data stored in them are removed and cannot be restored.

This statement is often exploited by cyber criminals in SQL injections.

The DROP statement can be used to permanently remove an entire database.

DROP DATABASE databaseName;

It can also be used to delete individual tables from a database. Used in this format, the

statement results in the complete loss of all data stored in the named table.

DROP TABLE tableName;

Note: The DROP statement is not supported in MS Access.

HAVING clause of a SELECT statement

The SQL HAVING clause is used in combination with the GROUP BY clause or an aggregate

function, to restrict the returned rows to only those where the HAVING condition is true.

HAVING is used to filter records that work on summarised GROUP BY results. It was added to

the SQL language because the WHERE clause cannot be used with aggregate functions. The

HAVING clause is applied to grouped records, but WHERE is applied to individual records.

Only groups that meet the HAVING criteria will be returned.

HAVING can also be used in combination with WHERE and ORDER BY clauses, for example:

 the WHERE clause is used to restrict the rows that are returned from the tables(s)

 the ORDER BY clause is used to sequence the rows in the answer table

 the HAVING clause is used to filter summarised and/or aggregated data or grouped data

Note: using HAVING requires a GROUP BY clause to be present.

SELECT list of field names

FROM list of table names

WHERE condition

GROUP BY list of field names

HAVING condition

ORDER BY list of field names;

Logical operators

Logical operators are used, together with the comparison operators =, <, >, <=, >= and

LIKE, in the WHERE clause of a SELECT query to form a condition that restricts the rows

Version 3.2 126

returned from the tables. At National 5, logical operators AND and OR were introduced. At

Advanced Higher, five specialist operators are introduced.

NOT This returns a record from the underlying tables when the specified

condition is not true.

SELECT list of field names

FROM list of table names

WHERE NOT condition;

BETWEEN This selects values that fall within a specified range of (inclusive) values.

SELECT list of field names

FROM list of table names

WHERE fieldname BETWEEN value1 AND value2;

IN This allows multiple values to be specified as an alternative to multiple OR

conditions.

SELECT list of field names

FROM list of table names

WHERE fieldName IN (value1, value2,);

subquery

SELECT list of field names

FROM list of table names

WHERE fieldName IN (SELECT statement);

ANY This returns true if any of the subquery values meet the condition specified

in the main query.

subquery

SELECT list of field names

FROM list of table names

WHERE fieldName operator ANY (SELECT statement);

EXISTS This tests for the existence of records within the subquery and returns true

when the subquery returns one or more records (this is very useful to

obtain records that do not meet a certain condition).

subquery

SELECT list of field names

FROM list of table names

WHERE EXISTS (SELECT statement);

subquery

SELECT list of field names

FROM list of table names

WHERE NOT EXISTS (SELECT statement);

Version 3.2 127

Additional notes on operators

ANY operator

The images below provide pictorial explanations of the SQL ANY operator.

Query 1: using the ANY operator, generates TRUE and so returns data to the main query.

Query 2: using the ANY operator, generates FALSE and so does not return data to the main

query.

Version 3.2 128

Query 3: using the ANY operator, generates TRUE and so returns data to the main query.

EXISTS operator

The images below provide pictorial explanations of the SQL EXISTS operator.

Query 4: general format of an SQL query that uses the EXISTS operator.

WHERE EXISTS (subquery);

EXISTS…

 is a comparison operator

 is used in the WHERE clause to validate an ‘it exists’ condition

 will tell whether a query returned results

 returns a Boolean, (TRUE or FALSE)

 returns TRUE if a subquery contains any rows

Query 5: using the EXISTS operator, returns TRUE.

The subquery contains more than one row, so it returns TRUE. Data is therefore returned
from the main query.

Version 3.2 129

Query 6: using the EXISTS operator, returns FALSE.

The subquery contains no rows, so it returns FALSE. No data is therefore returned from the
main query.

Subquery in the WHERE clause of a SELECT query

A subquery is a query embedded within the WHERE clause of another SQL query. A subquery

is sometimes referred to as an inner query or a nested query, and an SQL query is

sometimes referred to as the outer query or the parent query.

The subquery executes before the main query, so the results can be passed to the main

query as a condition to further restrict the data to be retrieved.

There are a few rules that subqueries must follow:

 Subqueries must be enclosed within brackets.

 Unless the main query has multiple fields in its SELECT clause, a subquery can have only

one field in its SELECT clause.

 The BETWEEN operator can be used within a subquery but cannot be applied to the

results of a subquery returned to the main query.

 Although an ORDER BY clause can be used with the main query, an ORDER BY clause

cannot be used in a subquery; if it is needed, the GROUP BY clause can be used to

perform the same function as the ORDER BY within a subquery.

 Many subqueries return exactly one record (called single-value subqueries); the

developer must check that this is the case, because an error will be generated if a

subquery returns more results than expected.

 Subqueries that return more than one row (called multiple-value subqueries), can only be
used with multiple-value operators such as EXISTS, IN and ANY.

SELECT list of field names

FROM list of table names

WHERE fieldName OPERATOR

 (SELECT list of field names

 FROM list of table names

 WHERE condition)

ORDER BY list of field names;

Version 3.2 130

Example queries: travel agency database

A travel agency uses a relational database to store details on a booking system.

It stores details of Scottish holiday resorts, hotels in each resort, customers and their

bookings. These details are stored in four separate entities.

The attributes stored in each entity are shown below.

Resort Hotel Customer Booking

resortID

resortName

resortType

hotelRef

hotelName

resortID *

starRating

seasonStartDate

mealPlan

checkInTime

pricePersonNight

customerNo

firstname

surname

address

town

postcode

hotelRef *

customerNo *

startDate

numberOfNights

numberInParty

SQL CREATE statement

The SQL statements below can be used to build the structure of the travel agency database.

The full data dictionary for this database is in appendix 4: data dictionary.

CREATE DATABASE TravelAgency;

CREATE TABLE Resort (

 resortID int NOT NULL PRIMARY KEY,

 resortName varchar(20) NOT NULL,

 resortType varchar(20) NOT NULL CHECK (resortType IN('coastal',

'city', 'island', 'country'))

);

CREATE TABLE Hotel (

 hotelRef varchar(4) NOT NULL PRIMARY KEY,

 hotelName varchar(20) NOT NULL,

 resortID int NOT NULL,

 starRating int NOT NULL CHECK(starRating >=1 AND starRating <=

5),

 seasonStartDate date,

 mealPlan varchar(17) NOT NULL CHECK(mealPlan IN('Room Only',

'Bed and Breakfast', 'Half Board', 'Full Board')),

 checkInTime time NOT NULL,

 pricePersonNight float(6,2) NOT NULL CHECK(pricePersonNight >=50

AND pricePersonNight <= 250),

 FOREIGN KEY (resortID) REFERENCES Resort(resortID)

);

Version 3.2 131

CREATE TABLE Customer (

 customerNo int AUTO_INCREMENT PRIMARY KEY,

 firstname varchar(20) NOT NULL,

 surname varchar(20) NOT NULL,

 address varchar(40) NOT NULL,

 town varchar(20) NOT NULL,

 postcode varchar(8) NOT NULL

);

CREATE TABLE Booking (

 hotelRef varchar(4) NOT NULL,

 customerNo int NOT NULL,

 startDate date NOT NULL,

 numberNights int NOT NULL CHECK(numberNights >=1),

 numberInParty int NOT NULL CHECK(numberInParty >=1),

 PRIMARY KEY (customerNo, hotelRef, startDate),

 FOREIGN KEY (customerNo) REFERENCES Customer(customerNo),

 FOREIGN KEY (hotelRef) REFERENCES Hotel(hotelRef)

);

The following example queries match the examples in appendix 5: query
design.

Queries making use of the HAVING clause

Query 7: display the resort name and number of hotels in any resort that has at least two

hotels.

SELECT resortName, COUNT(*) AS [Number of Hotels]

FROM Resort, Hotel

WHERE Resort.resortID = Hotel.resortID

GROUP BY resortName

HAVING COUNT(*) >= 2;

Query 8: display the full name and the total cost of all bookings for each customer. The

query should only list details of customers whose total cost exceeds £2000 and

should list the details of the biggest spending customer first.

SELECT firstName, surname, SUM(pricePersonNight * numberNights *

numberInParty) AS [Total cost of all Bookings]

FROM Customer, Booking, Hotel

WHERE Customer.customerNo = Booking.customerNo

AND Booking.hotelRef = Hotel.HotelRef

GROUP BY firstName, surname

HAVING SUM(pricePersonNight * numberNights * numberInParty) >=

2000

ORDER BY SUM(pricePersonNight * numberNights * numberInParty)

DESC;

Version 3.2 132

Query 9: display the average price per person, per night for each holiday resort. Display only

those resorts with an average price per person, per night that exceeds £100.

SELECT resortName, ROUND(AVG(pricePersonNight),2) AS [Average

Price]

FROM Resort, Hotel

WHERE Resort.resortID = Hotel.resortID

GROUP BY resortName

HAVING AVG(pricePersonNight) > 100;

Queries using logical operators

Query 10: display the name and type of non-coastal resort, together with the name and meal

plan for each hotel that meets these criteria.

SELECT resortName, resortType, hotelName, mealPlan

FROM Resort, Hotel

WHERE Resort.resortID = Hotel.resortID

AND NOT resortType = "coastal";

Query 11: display the full name and total number of bookings made by each customer who

has made between two and four bookings.

SELECT firstName, surname, COUNT(*) AS [Total Bookings]

FROM Customer, Booking

WHERE Customer.customerNo = Booking.customerNo

GROUP BY surname, firstName

HAVING COUNT(*) BETWEEN 2 AND 4;

Query 12: display the surname, postcode, and town of customers who live in towns that

begin with the letters ‘E’ through to ‘M’. The query should list customers in

alphabetical order of town.

SELECT surname, postcode, town

FROM Customer

WHERE town BETWEEN "E" AND "M"

ORDER BY town;

Version 3.2 133

Query 13: display the hotel name and meal plan for hotels that offer room only, half board or

full board.

SELECT hotelName, mealPlan

FROM Hotel

WHERE mealPlan IN ("Room Only", "Half Board", "Full Board");

Query 14: display the name and type of resorts that are neither city nor country resorts.

SELECT resortName, resortType

FROM Resort

WHERE NOT resortType IN ("city", "country");

Queries with a subquery in the WHERE clause

Query 15: display the hotel name, star rating, and price per person for the most expensive

hotel.

SELECT hotelName, starRating, pricePersonNight

FROM Hotel

WHERE pricePersonNight =

 (SELECT MAX(pricePersonNight)FROM Hotel);

Query 16: display the resort name, hotel name, and star rating of all hotels that have a

below-average star rating.

SELECT resortName, hotelName, starRating

FROM Resort, Hotel

WHERE Resort.resortID = Hotel.resortID

AND starRating <

 (SELECT AVG(starRating)FROM Hotel);

Query 17: display the full name and postcode of the customer who booked the same hotel

as the customer with ID 111.

SELECT firstName, surname, postcode

FROM Customer, Booking

WHERE Customer.customerNo = Booking.customerNo

AND NOT Customer.customerNo = 111

AND hotelRef =

 (SELECT hotelRef FROM Booking

 WHERE customerNo = 111);

Version 3.2 134

Query 18: display the name and star rating of all hotels booked by the customer with ID 315.

SELECT hotelName, starRating

FROM Hotel

WHERE hotelName IN

 (SELECT hotelName FROM Hotel, Booking

 WHERE Hotel.hotelRef = Booking.hotelRef

 AND customerNo = 315);

Query 19: display the names and types of resort not booked by the customer with ID 315.

SELECT resortName, resortType

FROM Resort

WHERE resortName NOT IN

 (SELECT resortName FROM Resort, Hotel, Booking

 WHERE Resort.resortID = Hotel.resortID

 AND Hotel.hotelRef = Booking.hotelRef

 AND customerNo = 315);

Query 20: display the customer number, hotel reference, and booking cost for any booking

that costs more than any bookings made by customers with surnames Lowden,

Shawfair or Sheriffhall.

SELECT customerNo, Hotel.hotelRef,

pricePersonNight*numberNights*numberInParty AS [Booking Cost]

FROM Booking, Hotel

WHERE Booking.hotelRef = Hotel.hotelRef

AND pricePersonNight*numberNights*numberInParty > ANY

(SELECT pricePersonNight*numberNights*numberInParty

 FROM Booking, Hotel, Customer

 WHERE Booking.hotelRef = Hotel.hotelRef

 AND Booking.customerNo = Customer.customerNo

 AND surname IN ("Danderhall", "Lowden", "Shawfair"));

Version 3.2 135

Query 21: display the details (hotel name, star rating, meal plan, and resort name) of all

3-star hotel bookings. The query should list the hotels in alphabetical order of

meal plan.

SELECT hotelname, mealPlan, starRating, resortName

FROM Hotel, Resort

WHERE Hotel.resortID = Resort.resortID

AND starRating = 3

AND EXISTS

 (SELECT * FROM Booking

 WHERE Booking.hotelRef = Hotel.hotelRef)

ORDER BY mealPlan ASC;

Query 22: display the full name and address of customers who have never made a booking.

SELECT firstName, surname, address

FROM Customer

WHERE NOT EXISTS

 (SELECT * FROM Booking

 WHERE Customer.customerNo = Booking.customerNo);

Query 23: display the name, star rating, and total of nights booked for hotels that have:

 a total number of customer nights booked that is more than the total number of nights

booked by the customer with ID 290 (number of nights booked multiplied by number in

party)

and

 a star rating which is less than that of the hotel with the highest star rating

The query should list the hotels from lowest star rating to the highest.

SELECT hotelName, starRating, SUM(numberNights*numberInParty)

AS[Nights x Number in Party]

FROM Hotel, Booking

WHERE Hotel.hotelRef= Booking.HotelRef

AND numberNights*numberInParty >(

 SELECT SUM(numberNights*numberInParty) FROM Booking

 WHERE customerNo =290)

AND starRating < (SELECT MAX(starRating) FROM Hotel)

GROUP BY hotelName, starRating

ORDER BY starRating;

Version 3.2 136

Appendix 11: HTML forms (WDD)

Continuation from Higher

The Higher Computing Science course defined the use of form elements and input types to

include validated input for text, numeric, and restricted-choice entry (select and radio). There

are no additional input methods or validation in the Advanced Higher course.

The focus of web content in the Advanced Higher course is the use of PHP to integrate with

an SQL database. This includes server-side processing of HTML form code introduced at

Higher.

Form action and method attributes

To process the contents of an HTML form, an action and method must be initiated when the

form’s ‘submit’ button is clicked. These are coded as attributes of the <form> element.

The action shown above states the file “registerStudent.php” will be opened when the form is

submitted. As this is a PHP file, the web server where it is stored will automatically execute

the PHP code contained in the file.

You can submit a form using one of two HTTP methods:

 GET

 POST

The submission process for both methods begins the same way, with the browser

constructing a form data set.

GET

If you submit a form with method="GET", the browser constructs a URL by taking the value

of the action attribute, appending a ? to it, then appending the form data set. It then

processes this URL as if following a link. The browser divides the URL into parts and

recognises a host, then sends a GET request to that host, with the rest of the URL as an

argument.

Version 3.2 137

Advantages of using GET:

 If security is not an issue, the URL can be bookmarked, allowing it to be re-used without

having to complete and submit the original form.

 If there is a network connection issue when a form is submitted, the browser will

automatically resend the form, as it assumes it does not contain sensitive data.

 GET submissions can usually be cached. If the same submission is used regularly (for

example form data used to generate the same database query), this could have a

significant effect on efficiency.

Disadvantages of using GET:

 The form data in the constructed URL is visible and so less secure.

 URLs can only contain ASCII codes, which will cause issues if the form data contains

non-ASCII characters.

 The URL constructed will be stored in the user's web browsing history, making it

inappropriate for sensitive data.

 URLs have a limited number of characters, which limits the form data submitted.

Recommended use

GET is usually used when non-sensitive data (like the parameters of a database query) is

sent to a server.

POST

When you submit a form using the POST method, the form data set is encoded within a

message that is sent to the server.

Advantages of using POST:

 The submitted form data is not visible and so more secure than GET.

 Non-ASCII characters can be submitted within the form data set.

 There is no URL character limit, so form data can be much larger.

Disadvantages of using POST:

 The submitted form cannot be bookmarked for later use.

 If there is a network issue while the form is being submitted, the browser will ask the user

to resubmit the form.

Recommended use

POST is usually used when sensitive data (like personal information) is sent to a server.

A database update would usually be initiated with the POST method.

POST can also be used for non-sensitive data: if the submitted data is likely to contain

non-ASCII characters or the length is over the limit of a URL.

Version 3.2 138

Name and value attributes for form element and input types

The form data set is comprised of key/value pairs, where key is a declared attribute of the

form input called name and value is the data entered by the user.

In the case of text and numeric input, the name attribute is defined within the input type.

These attributes are used when processing the form and must match the attributes used

when the submitted form data is assigned to server-side variables.

The value can be a number, a character or a string that the user types into the form’s field

or one that has been defined in the HTML form.

In the case of a drop-down menu or a radio button input, both the name and value are

defined in the HTML code.

Version 3.2 139

Appendix 12: PHP form processing (WDD)
The Advanced Higher course requires candidates to execute server-side code to:

 process HTML form data, using PHP

 store submitted form data within a database table, using SQL and PHP

 query a database, using SQL and PHP

 display the results of a query within HTML table elements, using PHP

Database and web servers

To execute PHP files, you need a database server (connected to a database to store or

retrieve data) and a web server. Although we usually think of a server as hardware, a web

and/or database server setup is a collection of software technologies that may be:

 installed on and run from a local PC or hardware server

 installed on and run from a USB flash drive

 installed on and run from an external PC or hardware server across the World Wide Web

There are many ways to install the required software. These range from builds of individual

components (which requires knowledge, expertise and time), to prebuilt, simple installations

that require a single install such as XAMPP, WampServer or EasyPHP.

Executing PHP files

You must have the following to execute .php files:

 web server software installed and running

 .php files saved to a specific folder within the installed server folders

Version 3.2 140

The following examples demonstrate this for an XAMPP setup.

XAMPP control panel showing both Apache (web server)

and MySQL (database server) applications running

XAMPP folder htdocs where .php files are

located

What is a PHP file?

PHP files are text files that can contain HTML, CSS, JavaScript, and PHP code.

When a .php file is executed on a server, the PHP code it contains can:

 collect form data

 add, delete and modify data in your database

 generate dynamic page content

When a .php file is executed, the results are returned to the browser as a plain HTML file.

The following examples use code taken from the Advanced Higher example website. You

can download the example website from SQA’s secure site.

https://secure.sqa.org.uk/secure/Understanding-Standards-Materials/NQCourseAssessments/Computing_Science

Version 3.2 141

HTML forms

The Drama page on the Advanced Higher example website contains the following form.

To process a form, the server requires the following:

 action=""

This contains the name of the file to be executed when the form is submitted. This can be

the current file or a different file.

 method=""

The method used to submit the form can be GET or POST:

— GET — the submitted data is visible to the user and therefore not secure

— POST — the submitted data is hidden from the user (forms are almost always

submitted using the POST method)

 name="" and value=""

When the data in the form is submitted to the server, it is converted into an array of

key/value pairs (where key is the name of the form controls and value is the data

entered by the user).

Note: with <select> and radio input, the values are defined in the form code.

Version 3.2 142

PHP form processing

When the form on the Drama web page is submitted, the following file is executed:

registerStudent.php

A .php file may contain HTML, CSS and JavaScript, so you must identify any PHP code by

placing it inside a PHP script.

<?php

// PHP code goes here

?>

Assign form data to server-side variables

The values in the array passed from the submitted form are assigned to separate variables in

the lines below. Each of these lines uses the $_POST[" "] method to extract values from

matching variables first declared in the form.

if ($_SERVER["REQUEST_METHOD"] == "POST") {

$forename = $_POST["firstname"];

 $surname = $_POST["lastname"];

 $play = $_POST["play"];

 $tickets = $_POST["tickets"];

 $age = $_POST["age"];

 $requirements = $_POST["message"];

}

Note: these assignments are placed within a conditional statement, which checks that the

form has been submitted:

If a form is submitted using the $_GET method, POST would be changed to GET as shown
below.

if ($_SERVER["REQUEST_METHOD"] == "GET") {

$forename = $_GET["firstname"];

 $surname = $_GET["lastname"];

 $play = $_GET["play"];

 $tickets = $_GET["tickets"];

 $age = $_GET["age"];

 $requirements = $_GET["message"];

}

Version 3.2 143

Open and close connection to database

To connect to a database, you need to define the following parameters. You can enter these

directly into the connection function or store them in variables, as shown below.

Line 3 defines the host name of the server. Line 4 defines the username used to connect to

the server. "root" is a default value that is usually set with administration rights for the server.

For security purposes, server access is usually password protected (for example

$password="hsd56XC89"). For teaching purposes, the password string can be left empty

as shown in line 5. The name of the database the script will connect to is stored in line 6.

The function mysqli_connect()is used to connect to the server:

or to connect to a database stored on the server:

This function returns a Boolean True if the connection is successful. You can use the

Boolean value to:

 ensure the script only proceeds when a proper connection is made

 return an error message if the function returns false

 kill the script using die() if a connection is not made, as shown below

$conn stores a single instance of a connection.

Connections should be closed using the function mysqli_close()at the end of a script.

Version 3.2 144

Executing an SQL query to insert submitted form data into a
database table

After the submitted form data has been assigned to PHP variables and a connection to the

database has been established, you can use SQL to add the form data to a database table.

The function mysqli_query() is used to execute an SQL statement, as shown below.

The function requires two parameters:

 the connection ($conn) used to identify the connection to the database being used

 the SQL statement including the PHP variables, that now store the form data

Line 67 shows the use of echo to output a message. The echo statement is often used in

PHP coding to output HTML code, which is then interpreted by the browser and displayed.

echo "<p>Hello world</p>";

Additional notes:

1 You can write the SQL statement directly into the function, but it is common practice to

assign the SQL statement to a variable, which is then used in the function. This makes

the code more readable.

2 For an SQL INSERT statement, the function returns a Boolean value (True = success,

False = failed). This can then be used to return messages.

3 The example above uses a JavaScript alert to inform the user that their drama trip details

have been successfully added to the database. This is not a requirement of the

Advanced Higher course, but may be a useful tool to visually demonstrate the success of

the mysqli_query() function, without using echo.

Version 3.2 145

Executing an SQL query and displaying formatted results using
PHP

The staff page on the Advanced Higher example website includes two further examples of

web and database integration.

Check ticket purchases

This example uses a simple form to input the name of a play. The web page outputs a list of

students, with the number of tickets each student has purchased.

When the ‘Generate List’ button is clicked,
the page is reloaded, with the query output
displayed in a table.

The results of an SQL SELECT statement returns output in the form of an array. The
following code was used to display the returned data.

Version 3.2 146

When the ‘Generate List’ button is clicked, line 63 assigns the selected play to the PHP
variable $play.

An SQL statement is used with mysqli_query() to query the database for students who

have tickets for the selected play.

SELECT forename, surname, tickets FROM studentData WHERE play =

'$play'

The PHP function mysqli_num_rows() is used in line 71, to display the number of rows

returned by the query — which is the number of students found.

Lines 75 to 81 use PHP to display an HTML table. This output is built in three stages:

 the static top part of the table

 the dynamic middle part of the table, where the number of rows displayed will depend on

the query result

 the static bottom part of the table

A while loop on line 78 uses the function mysqli_fetch_array() to extract each row

returned by the SQL select statement in turn. Each extracted row is stored as an associative
array. The contents of the array are concatenated with the HTML table elements; this is
required to create a single row of a three-column table.

<tr> <td></td> <td></td> <td></td> </tr>

Note: the first row of the table is displayed as a header row using <th> in place of <td>. Also,
mysqli_num_rows()is used to ensure the table is only displayed when >0 rows are

returned by the query (line 73). If zero rows are returned, "0 results" is displayed instead

of the table.

Check if places are available

In addition to the name of the play, this form also includes numerical input. The web page
counts the total number of tickets purchased for the selected play and calculates the number
of places remaining.

Version 3.2 147

This is achieved using the code below.

Note: the first element of the array returned by mysqli_fetch_array() stores the

numeric, aggregate result of the query.

$countArray[0]

Version 3.2 148

Building web pages generated by PHP code

You can generate the HTML returned to a browser by a .php file in the following ways:

 If the PHP script is contained within the same page as a submitted form, then the entire

page will be reloaded when the GET or POST script is executed. Any output produced by

the script will be included according to the position of the script within the HTML. This is

the simplest solution if you wish to stay on the same web page when a form is submitted.

 If you want to generate a completely different page, then the form should load a different

.php file. In this case, the PHP file will have to contain all the HTML elements required to

build the new page.

The PHP include function

This is not a requirement of the Advanced Higher course, but is an efficient way to build

pages without repeating lots of code.

The Advanced Higher example website separates out the <header>, <nav> and <footer>

elements of each page, storing them in separate HTML files.

You can include these elements in each page using the PHP function include.

In addition to substantially reducing the amount of code in each page, this also makes

maintenance of these three elements easier, as their contents are stored in a single location

and not repeated across every page of the website.

Version 3.2 149

Appendix 13: PHP sessions (WDD)

Definition and use

When a browser loads a new web page, it forgets all the information from the previous page.

A PHP session is a way of storing information within a website, so that it can be retained and

used across multiple pages.

Sessions work in a similar way to a program. The website code opens (starts) the session.

Information is generated, stored and sometimes changed. The website code then closes

(destroys) the session to end it.

Examples of session use are:

 retaining selected items in a shopping cart, as the user navigates from page to page

 displaying a user’s id on multiple pages, following a successful login

 retaining values, such as a user’s quiz Score, when each new question page loads

Starting a session

The following PHP function is used to start a session. This should be placed at the top of a

page, before any HTML code. If data is being passed between multiple pages, each page

that requires access to the session should contain the PHP code below.

<?php

// Start a new session

 session_start();

?>

<!DOCTYPE html>

<html>

<head>

When a new session starts, a user key is stored on the user’s computer. The

session_start() function looks to see if a user key exists. If it does, the current session is

continued. If no user key exists, a new session is started.

Session variables

Session variables are assigned values, as shown below.

$_SESSION['staffLogin']="False";

A PHP file that contains session_start()has access to any session variables previously

created.

Version 3.2 150

Ending a session

The PHP function session_destroy() is used to end a session. On the Advanced Higher

example website, clicking the ‘Log Out’ button calls the file logout.php. The code below

destroys the session and then reloads the staff page.

Note: this page must also include session_start(), as the current session must be

continued before it can be destroyed.

Worked example

The following examples use code taken from the Advanced Higher example website. You

can download the example website from SQA’s secure site.

To view the staff page, a password is required. The original page content remains hidden

until the correct password is entered. On the example website, the staff password is

‘password’ and has been implemented using session variables.

https://secure.sqa.org.uk/secure/Understanding-Standards-Materials/NQCourseAssessments/Computing_Science

Version 3.2 151

The page initially hides the content, and instead displays a simple form. The form calls the

PHP file login.php when the ‘staff password’ button is clicked.

<div>

<h2>Staff Page</h2>

<p>You need to enter the staff password to view this area.</p>

<form action="login.php" method="POST">

<input class="signInGap" type="text" name="staffpass"

value="">

<input class="signButton" type="submit" value="Staff

Password">

</form>

</div>

When executed, the login.php file:

1 connects to the current session

2 compares the user’s password (from the form) with the string "password"

3 sets the session variable staffLogin to True , if the user’s input and the string match

4 uses the PHP function include 'staff.php' to display the staff page

The above code contains alternative outcomes if the user’s password field is empty or the

password is incorrect.

Note: the empty() function used in this example is not a requirement of the Advanced

Higher course.

Version 3.2 152

This example could be extended to retrieve users’ names and passwords stored within a

database. PHP and SQL could be used to retrieve and then compare a stored password to

the user’s login attempt.

When the staff.php file is reloaded, the session variable staffLogin now stores True ,

indicating the user has successfully logged in. The staff page uses the value stored in the

session variable to determine if the login form or the page content is displayed.

if ($_SESSION['staffLogin']=="True") {

displays the page content

} elseif ($_SESSION['staffLogin']=="False") {

 displays the login form

}

The full code can be viewed using the Advanced Higher example website. You can download

the example website from SQA’s secure site.

https://secure.sqa.org.uk/secure/Understanding-Standards-Materials/NQCourseAssessments/Computing_Science

Version 3.2 153

Appendix 14: media queries (WDD)

The function of media queries

The @media rule is used to define alternative CSS rules that are only implemented when certain defined expressions are true.

For example, alternative CSS rules could be declared if the width of the viewport (usually a browser window or screen) is less than a maximum

of 600 pixels (px).

Screen width greater than or equal to 600px Screen width less than 600px

— original CSS applied — media query CSS applied

Version 3.2 154

Media query syntax and code structure

A media query is formatted as:

@media not|only mediatype and (expressions) {

 CSS Code;

}

Three media types are in the Advanced Higher course: all, screen and print.

Only one media feature has been defined in the Advanced Higher course: max-width. This limits using media query expressions to checking the

width of the viewport.

If candidates wish to explore media queries further, a complete list of media types and features are available using the following resource:

https://www.w3schools.com/cssref/css3_pr_mediaquery.asp

Within the CSS, default values are written first, with media queries defined underneath.

When coding media queries, only the changes are styled. All the original styles are still applied to the page elements when the media query is

triggered, so they do not need to be repeated within the @media rule.

The following example uses the Advanced Higher example website to demonstrate how a media query could be used within a candidate’s

project. You can download the example website from SQA’s secure site.

Note: only the media query declaration itself is included in the Advanced Higher course.

https://www.w3schools.com/cssref/css3_pr_mediaquery.asp
https://secure.sqa.org.uk/secure/Understanding-Standards-Materials/NQCourseAssessments/Computing_Science

Version 3.2 155

body{margin:auto;background-color:LightBlue}

body{width:800px}

header {height:80px}

footer {height:60px}

nav {height:35px}

nav ul {list-style-type:none}

nav ul li {float:left;width:80px;text-align:center}

nav ul li a {display:block;padding:8px}

nav ul li a:hover {background-color:#000;color:White}

…

When the screen width is reduced below the maximum 600px, the above media query is triggered. Any declarations within the @media rule

then become active, overriding the original declarations in the code.

When the screen width is greater than 600px, the trigger is no longer active and the original declarations once again become active.

@media screen and (max-width:600px) {

/*Alternative Body Styles */

body {background-color:red;width:300px}

/* Alternative Navigation Styles */

nav {height:125px}

nav ul li {width:100%;height:20px;font-

size:8pt}

…

}

Version 3.2 156

Media queries and design

Implementing interactive layouts should be based on multiple wireframe designs.

Version 3.2 157

Version 3.2 158

Media query examples

The following examples use code taken from the Advanced Higher example website. You can download the example website from SQA’s

secure site.

Example 1 — general page structure

The wireframes show that when the media query is triggered, some general changes are applied to the page styles.

This changes the heights and widths of the general page structure.

https://secure.sqa.org.uk/secure/Understanding-Standards-Materials/NQCourseAssessments/Computing_Science
https://secure.sqa.org.uk/secure/Understanding-Standards-Materials/NQCourseAssessments/Computing_Science

Version 3.2 159

A decision has been made to hide the news articles on smaller screen sizes, this is done by styling the id of the <section> that contains both the

news icon and text as display:none.

Example 2 — navigation bar

The horizontal navigation is not appropriate for smaller screen sizes. When the media query is triggered, the CSS of the <nav> element is

styled to create a vertical layout.

Note: only some of the <nav> styles need to be changed to achieve the different layout.

A height is added to each list item () to control the vertical spacing. This is not required in the default rules, as the height of the <nav>

element limits the height of each link.

Version 3.2 160

Example 3a — alternative layouts

The Drama web page was previously styled to position the <section> elements containing the <form> and the Drama Opportunities

information side by side. Reducing the width of the screen automatically forces the form section to appear below the paragraph.

Some styling is still required to control the width of the Drama Opportunities section (which was previously wider than the new body width) and

the margins of the form section.

Version 3.2 161

Example 3b — alternative layouts

The study page previously had three graphics with onclick JavaScript events that were used to reveal text. In the narrower layout, these were

changed to simple text links.

This was achieved by creating two matching <section> elements within the HTML file. One section includes three elements (with

JavaScript code) and the other includes three <h3> elements (with JavaScript code). The original styles and the media query styles alternately

hide or show one of these two <section> elements.

Original styles Media query styles

Version 3.2 162

Appendix 15: integrative testing (SDD, DDD and
WDD)
Integrative testing is the second level of testing used in any development and takes place

after component testing has been carried out. Component testing takes place during the

development of the solution, when individual functions or modules are created.

Integrative testing is needed for projects that require integration of separate components.

Testing is carried out to verify interaction between components and to detect interface

defects. These tests determine whether independently developed units of software work

correctly when connected to each other.

Due to the nature of integrative testing, some of the test cases needed require temporary

code. This code can generate results not explicitly mentioned in the requirements

specification. Once these tests are proved successful, any temporary code is removed.

In the examples that follow, test cases that require temporary code are marked with an

asterisk*.

Example 1: a project that combines SDD and DDD

A program is being developed to act as a personal diary app. The program will:

 allow the user to add new diary entries with a date, title, and description

 search diary entries by date

 list diary entries with the most recent entry first

 delete any diary entries that have expired

 allow a maximum of three images to be associated with each diary entry

 store details of all diary entries in a secure database server

This development meets the requirements of the Advanced Higher project, because:

 it is based on the SDD content of the course:

— details of diary entries are stored and processed in an array of records

— a sort algorithm is used to display diary entries with the most recent entry first

 it integrates with the DDD content of the course:

— details of diary entries are stored in a database table

— a connection with the database server is used to execute SQL queries

— SQL queries are used to add and delete diary entries

— an SQL query is used to search for diary entries using date entered by the user

— an SQL query is used to select all diary entries, to enable processing to take place

Version 3.2 163

On-going testing is used throughout the development to test each component as it is created.

Integrative testing is needed, as the development integrates SDD and DDD content. The

following three examples describe integrative tests for this development.

Test

case ID
Test case objective Test case description Expected result

1

Check communication from
the program to the secure

database server*

Use program code to

connect to the secure

database server

Message is displayed

confirming a successful

connection with the

database server

2

Check that all diary entries
are selected from the
database and stored in the

array of records*

Use program code to

execute the SQL query,

store the query results in

the array of records, and

then display the contents

Details of all diary

entries in the database

are stored in the array

of records and are

displayed successfully

3

Check the details of a new

diary entry have been added

to the database

Enter details of a new

diary entry, use program

code to execute the SQL

query to store the details

in a new record of the

database table

A new record has been

added to the database

table to store the new

diary entry (check

contents of the

database table)

Example 2: a project that combines SDD and WDD

An object-oriented program is being developed to act as a recipe manager. The program will:

 use a recipe class to define the data types and methods associated with a recipe

 store recipe details in an array of objects for processing

 allow the user to add new recipes

 save recipe details to a sequential file

 allow the user to search for recipes by ingredient or category (starter, main course or

dessert)

 display recipe details in alphabetical order of recipe title

This development meets the requirements of the Advanced Higher project, because:

 it is based on the SDD content of the course:

— a recipe class is defined

— an array of objects is used to store and process recipe details

— the linear search algorithm is used to search the recipe details

— a sort algorithm is used to arrange the search results, in alphabetical order of recipe

title

 it integrates with the WDD content of the course. A web page is used to:

— present the user with output

— allow the user to enter details of a new recipe and indicate search criteria

— display the search results

Version 3.2 164

On-going testing is used throughout the development to test each component as it is created.

Integrative testing is needed, as the development integrates SDD and WDD content. The

following three examples describe integrative tests for this development.

Test case ID Test case objective Test case description Expected result

1

Check communication
between the program

code and the web page*

Use a HTML textbox to

enter the recipe title,

then use Java code to

display the title entered

Message is displayed on

the web page showing

the recipe title entered

2

Check that all recipe
details are stored in the

array of objects*

Use Java code to import

recipe details, store in

the array of objects, and

then display the array

contents

Details of all recipes in

the array of objects are

displayed correctly on

the web page

3

Check the recipes are

displayed in alphabetical

order of title

Use Java code to sort

contents of the array of

objects in alphabetical

order of recipe title, and

display the results

Recipe details are

displayed on the web

page in alphabetical

order of recipe title

Example 3: a project that combines DDD and SDD
A movie review database is being developed. The database will:

 store details of movies, actors, reviews, and reviewers in five linked tables of a relational
database

 allow users to search for details of individual movies

 allow users to add details of new movies to the database

 allow users to add a review and rating for any movie

 use forms to create an interface for all SQL functionality

 use subqueries to display details of the highest rated movie(s) and details of any movie
that has at least five reviews

 use a query to display details of any movie that was not made in the UK

This development meets the requirements of the Advanced Higher project, because:

 it is based on the DDD content of the course:

— details of movies, actors, reviews, and reviewers are stored in five linked tables of a

relational database

— subqueries are used to extract details from the database

— queries make use of logical operators to search for required details

— queries and subqueries make use of at least three database tables

 it integrates with the SDD content of the course:

— forms created using toolbox controls provided within the integrated development

environment provide an interface for all SQL functionality

— the program forms a connection with the secure database server to execute SQL

queries

— the program is used to format and display query results

Version 3.2 165

On-going testing is used throughout the development to test each component as it is created.

Integrative testing is needed, as the development integrates DDD and SDD content. The

following three examples describe integrative tests for this development.

Test case ID Test case objective Test case description Expected result

1

Check communication

between the program

form used to enter

details of a new review

and the secure database

server*

Use program code to

connect to the secure

database server

Message is displayed

confirming a successful

connection with the

database server

2

Check that the query
selected by the user has

executed correctly*

Use program code to

generate the query

required, execute the

query and display a

query confirmation

message

Message is displayed to

confirm a successful

execution of the query

3

Check the details of the

highest rated movie(s)

have been displayed

correctly

Use program code to

execute the SQL query

required and then display

the results

Details of the highest

rated movie(s) are

formatted and displayed

Example 4: a project that combines DDD and WDD

A music albums database is being developed. The database will:

 store details of albums, artists, and tracks in five linked tables of a relational database

 allow the user to search for details of individual albums, artists, and tracks

 allow details of new albums to be added to the database and stored in the relevant tables

 use web pages to create an interface for all SQL functionality

 use subqueries to display details of the most popular albums, artists, and tracks

 use a subquery to display details of the tracks in any album, that has at least ten tracks

This development meets the requirements of the Advanced Higher project, because:

 it is based on the DDD content of the course:

— details of albums, artists, and tracks are stored in five linked tables of a relational

database

— subqueries are used to extract required album, artist and track details

— queries and subqueries use at least three database tables

 it integrates with the WDD content of the course:

— web pages provide an interface to display results of SQL queries

— online forms are used to enter query search criteria

— online forms are used to gather details of new albums

— PHP code is used to form a connection with the secure database server and to

execute SQL queries

— PHP is used to format and display the results returned by SQL queries

Version 3.2 166

On-going testing is used throughout the development to test each component as it is created.

Integrative testing is needed, as the development integrates DDD and WDD content. The

following three examples describe integrative tests for this development.

Test case ID Test case objective Test case description Expected result

1

Check communication

between the online form

used to enter details and

the secure database

server*

Enter the title of a new

album, then use PHP

code to connect to the

database server

Message is displayed

confirming a successful

connection with the

database server

2

Check that the query

selected by user has

been formed correctly

and has executed

successfully*

Search for details of all

albums by the band

Genesis, use PHP code

to generate the SQL

query required. Use an

‘echo’ statement to

display the syntax of the

query formed, then

execute the query and

display the query

confirmation message

The ‘echo’ statement is

used to display the

correct SQL query and a

message is displayed on

the web page confirming

successful execution of

the query

3

Check the details of the

most popular artist are

displayed correctly

Use PHP code to

generate the SQL query

required, to execute the

query and display the

results

Details of the most

popular artist are

formatted and displayed

on the web page

Example 5: a project that combines WDD and SDD

A website is being developed to allow the user to play a game of ‘Connect Counters’.

This is a 2-player game played on a 5 x 5 grid. Users take it in turns to either position a

coloured counter in the grid to form a continuous sequence of counters (horizontally,

vertically or diagonally), or block their opponent’s sequence. Once the grid is full, the player

who has the longest sequence of counters gets a point (in the event of a draw, both players

receive points).

The software will:

 allow each player’s name to be entered at the start of the game, together with the number

of rounds being played (the maximum number of rounds is three)

 allow players to take it in turn to indicate the position of their coloured counter in the grid

 control the game play and award points

 display the name of the winner(s) and points awarded at the end of each round

 display the name of the overall winner, once all rounds of the game have been played

Version 3.2 167

This development meets the requirements of the Advanced Higher project, because:

 it is based on the WDD content of the course:

— an online form is used to gather and submit details at the start of the game

— players use an online form of submit buttons to indicate the grid position they want to

use on the ‘Game Play’ page

— PHP is used to assign variables and process the form data

— session variables are used to store details entered by the players for the duration of

the game

— external CSS is used to format the layout of all web pages in the website

— a media query is used to create multiple layouts

 it integrates with the SDD content of the course:

— a 2-D array is used to represent the position of the players’ counters

On-going testing is used throughout the development to test each component as it is created.

Integrative testing is needed, as the development integrates WDD and SDD content. The

following three examples describe integrative tests for this development.

Test case ID Test case objective Test case description Expected result

1

Check that the number of

rounds entered by the

user is passed to the

game code successfully*

Enter the number of

rounds = 2, assign to a

PHP session variable and

use this to control a fixed

loop displaying the round

number being played

Messages

‘Round 1 being played’

‘Round 2 being played’

are displayed

successfully on the

‘Game Play’ page of the

website

2

Check that the grid

position selected by player

1 is updated correctly in

the 2-D array*

Once the game starts, the

first grid position selected

by player 1 is (2,4), a value

of 1 should be assigned to

position (1,3) of the 2-D

array and the full contents

of the array displayed

Contents of 2-D array are

displayed correctly on

the ‘Game Play’ page of

the website

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3

Check that players’ names

entered at the start are

displayed correctly at the

end of each round

Enter players’ names and

number of rounds = 2 at

the start of the game, play

the game for two rounds,

and player details

displayed at the end of

each round

At the end of rounds 1

and 2, a message is

displayed showing the

correct player names and

both scores on the

‘Game Play’ page of the

website

Version 3.2 168

Example 6: a project that combines WDD and DDD

A photo gallery website is being developed. The website will:

 allow all users to view thumbnails of all publicly available images

 allow new users to create an account for the website

 allow registered users to login and view thumbnails of images that they have stored and
have marked as ‘private’

 allow all users to click a thumbnail image and display a full-sized image

 allow registered users to add details of new images to the database, indicating whether
access to the images is ‘public’ or ‘private’

 use web pages to create an interface for all SQL functionality

This development meets the requirements of the Advanced Higher project, because:

 it is based on the WDD content of the course:

— users login to the website using an online form

— PHP is used to assign variables and process the form data

— session variables are used to store a user’s login details while they are logged in to
the website

— external CSS is used to format the layout of all web pages in the website

— media query is used to create multiple layouts

 it integrates with the DDD content of the course:

— details of uploaded images are stored in a database table

— a separate database table is used to store users’ login details

— a connection with the database server is used to execute SQL queries

— an SQL query is used to check a user’s login credentials

— SQL queries are used to select the images to be displayed

On-going testing is used throughout the development to test each component as it is created.

Integrative testing is needed, as the development integrates WDD and DDD content. The

following three examples describe integrative tests for this development.

Version 3.2 169

Test case ID Test case objective Test case description Expected result

1

Check communication

between the online form

used to login to the

website and the secure

database server*

Login to the website with

any username and

password, then use PHP

code to connect to the

database server

Message is displayed

confirming successful

connection with the

database server

2

Check that the user is

successfully logged into

the website and their

login details have been

passed to a new page*

Login to the website with

a stored username and

password, execute the

SQL query to check the

login details, assign

details to the session

variables. Display a

personalised

confirmation message on

a separate page

Personalised message is

displayed on the ‘User

Gallery’ page of the

website, confirming

successful login to the

website

3

Check that only

thumbnails of images

marked ‘public’ are

displayed on the ‘Public

Gallery’ page of the

website

Click the link to load the

‘Public Gallery’ page,

execute the SQL query

to identify the images

marked ‘public’, then

only display thumbnails

of these images

Only thumbnails of the

images marked ‘public’

are displayed on the

‘Public Gallery’ page of

the website. (compare

with the details stored in

the Photos database

table)

Version 3.2 170

Appendix 16: fitness for purpose (SDD, DDD and
WDD)

Functional requirements and fitness for purpose

During the analysis stage of the development cycle, candidates identify the functional

requirements when creating a requirements specification. The functional requirements are

the inputs, processes, and outputs that must be included in the design and implementation

of any solution to a problem.

A solution is fit for purpose if (following design, implementation and testing) it meets all the

functional requirements. In the evaluation stage of the Advanced Higher project, candidates

discuss if their solution is fit for purpose.

The following examples use functional requirements identified in appendix 1. Both examples

assume that a program, website, and database are designed, implemented, and tested.

Example of an evaluation of a solution that is fit for purpose (SDD)

Functional requirements (from appendix 1)

The functional requirements are defined in terms of the inputs, processes, and outputs listed

below.

All inputs are imported from a sequential file and all outputs are displayed on the screen. The

program is activated by double clicking on the file icon and then selecting ‘Run’ from the

menu. Each process should be a separate procedure or function that is ‘called’ from the main

program.

Inputs:

 itemID

 price

 number in stock

Processes:

 read in data from external file to a 2-D array

 sort the data in order of itemID, from low to high

 search a 2-D array, based on end-user input, for the required itemID

Output:

 If a match is found, the data (itemID, price, number in stock) corresponds to the end-user

input.

 If no match is found, a suitable message informs the end-user.

Version 3.2 171

Fitness for purpose

Following comprehensive testing, the program is fit for purpose.

The solution:

 reads data from an external stock file, splits the data and allocates it to a 2-D array

 sorts the data in numerical order using the itemID

 allows the user to display a stock item by selecting an itemID

 searches the data in the 2-D array for the itemID selected and returns the result

 displays formatted output, showing the itemID, price, and number in stock for the
selected items

 displays a message ‘sorry your item has not been found’ if the stock item is not found in
the 2-D array

Example of an evaluation of a solution that is NOT fit for purpose
(DDD)

Functional requirements (from appendix 1)

The functional requirements are defined in terms of the inputs, processes, and outputs

detailed below.

Inputs (customer):

 register: user email, password, password re-entered, firstName, lastName, address,
postcode, email

 search details: category

 search details: itemName

 sort details: Field (price or rating) and order required (ascending or descending)

Input (administrator):

 edit item details: itemID, price

 edit customer details: customerID, address, postcode, email

 add item details: itemID, itemName, description, category, price

 delete item details: itemID

 delete customer details: customerID

 monthly orders: month

Processes:

 auto generate the customerID when a new customer registers

 queries to insert records into the Customer and Item tables

 queries to sort the item details in order of price and rating

 queries to delete specific customer and item records from the database

 queries to edit records in the Customer and Item tables

 queries to search Item table

 queries to display details of all orders placed in a particular month

Version 3.2 172

Output:

 confirmation of successful insertions

 confirmation of successful deletions

 confirmation of successful edits

 answer tables showing details of sorted items (sorts)

 answer tables showing details of required items (searches)

Fitness for purpose

Following comprehensive testing, the database-driven website and its user interface are not

fit for purpose.

Although the solution successfully implements all insertions, deletions, and edits of the

back-end database table data, it does not:

 provide confirmation of these actions

 allow the customer to sort the results of a stock item search

The solution does successfully:

 store the required information for each new customer (including an auto-generated

customerID) when they register

 allow a customer’s address, postcode, and email to be edited and deleted by an

administrator

 store the required information for each new stock item

 allow stock item details to be edited and deleted by an administrator

 display stock items (descriptions, categories and prices) following a customer search for

stock items by either name or category

 display all the orders for a month selected by an administrator

Version 3.2 173

Copyright acknowledgements

Appendix 10: all images copyright SQA

Appendix 13 and 14: all images Shutterstock:

School activities banner — 553188940

Appendix 14: Footballers lifting trophy — 370092275

Table tennis — 87611998

Karate — 740133061

Drama opportunities — 329907647

Version 3.2 174

Administrative information

Published: September 2024 (version 3.2)

History of changes

Version Description of change Date

2.0 Course support notes added as appendix — it includes the

‘Resources to support the Advanced Higher Computing Science

course’ appendices.

Diagram in appendix 1 altered to move actors outside system

process box.

Amended ‘entries’ to ‘entities’ in the ‘Skills, knowledge and

understanding for course assessment’ section.

August

2019

3.0 Amendments to the ‘Course overview’ section, ‘Course content’

section, ‘Course Assessment’ section and ‘Course support notes’.

This provides information on the structure of the question paper,

the scope for integration in each optional section, and reflects

changes to the marks and duration.

Appendix 3: amendments to exemplification of mandatory/optional

relationships

Appendices 12 and 13: deletions of additional HTML/PHP

functions.

Appendices 17, 18 and 19: deleted.

May 2023

3.1 Appendix 3: text changed to remove reference to ‘dotted line’, to

match diagrams.

September

2023

3.2 Additional guidance on time and volume for project component

Appendix 3: amended to provide greater clarity on strong/weak

entities.

Appendix 9: amended to ensure consistency across pseudocode

design and SQA Reference Language examples of standard

algorithms.

September

2024

Version 3.2 175

Note: please check SQA’s website to ensure you are using the most up-to-date version of

this document.

© Scottish Qualifications Authority 2014, 2019, 2023, 2024

	Structure Bookmarks
	Advanced Higher Computing Science
	Advanced Higher Computing Science
	
	Course code:
	Course code:
	Course code:
	Course code:
	Course code:

	C816 77
	C816 77

	Course assessment code:
	Course assessment code:
	Course assessment code:
	Course assessment code:

	X816 77
	X816 77

	SCQF:
	SCQF:
	SCQF:

	level 7 (32 SCQF credit points)
	level 7 (32 SCQF credit points)

	Valid from:
	Valid from:
	Valid from:

	session 2024-25
	session 2024-25

	
	
	
	This document provides detailed information about the course and course assessment to ensure consistent and transparent assessment year on year. It describes the structure of the course and the course assessment in terms of the skills, knowledge and understanding that are assessed.
	
	This document is for teachers and lecturers and contains all the mandatory information required to deliver the course.
	
	
	
	
	
	The information in this document may be reproduced in support of SQA qualifications only on a non-commercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from .
	permissions@sqa.org.uk
	permissions@sqa.org.uk

	
	Where this document includes materials from sources other than SQA (secondary copyright) this material must only be reproduced for the purposes of instruction in an educational establishment. If it is to be reproduced for any other purpose, it is the user’s responsibility to obtain the necessary copyright clearance. The acknowledgements page lists sources of copyright items that are not owned by SQA.
	Span
	Span
	Span
	
	This edition: September 2024 (version 3.2)
	
	© Scottish Qualifications Authority 2014, 2019, 2023, 2024
	Span
	Contents
	Course overview 1
	Course overview 1
	Course overview 1
	Course overview 1

	

	Course rationale 2
	Course rationale 2
	Course rationale 2

	

	Purpose and aims 2
	Purpose and aims 2
	Purpose and aims 2

	

	Who is this course for? 2
	Who is this course for? 2
	Who is this course for? 2

	

	Course content 4
	Course content 4
	Course content 4

	

	Skills, knowledge and understanding 5
	Skills, knowledge and understanding 5
	Skills, knowledge and understanding 5

	

	Skills for learning, skills for life and skills for work 14
	Skills for learning, skills for life and skills for work 14
	Skills for learning, skills for life and skills for work 14

	

	Course assessment 15
	Course assessment 15
	Course assessment 15

	

	Course assessment structure: question paper 15
	Course assessment structure: question paper 15
	Course assessment structure: question paper 15

	

	Course assessment structure: project 18
	Course assessment structure: project 18
	Course assessment structure: project 18

	

	Grading 20
	Grading 20
	Grading 20

	

	Equality and inclusion 21
	Equality and inclusion 21
	Equality and inclusion 21

	

	Further information 22
	Further information 22
	Further information 22

	

	Appendix: course support notes 23
	Appendix: course support notes 23
	Appendix: course support notes 23

	

	Introduction 23
	Introduction 23
	Introduction 23

	

	Approaches to learning and teaching 23
	Approaches to learning and teaching 23
	Approaches to learning and teaching 23

	

	Preparing for course assessment 46
	Preparing for course assessment 46
	Preparing for course assessment 46

	

	Developing skills for learning, skills for life and skills for work 48
	Developing skills for learning, skills for life and skills for work 48
	Developing skills for learning, skills for life and skills for work 48

	

	Resources to support the Advanced Higher Computing Science course 49
	Resources to support the Advanced Higher Computing Science course 49
	Resources to support the Advanced Higher Computing Science course 49

	

	Appendix 1: problem analysis (SDD, DDD and WDD) 50
	Appendix 1: problem analysis (SDD, DDD and WDD) 50
	Appendix 1: problem analysis (SDD, DDD and WDD) 50

	

	Appendix 2: Unified Modelling Language (UML) — class diagrams (SDD) 61
	Appendix 2: Unified Modelling Language (UML) — class diagrams (SDD) 61
	Appendix 2: Unified Modelling Language (UML) — class diagrams (SDD) 61

	

	Appendix 3: entity-relationship diagrams (DDD) 65
	Appendix 3: entity-relationship diagrams (DDD) 65
	Appendix 3: entity-relationship diagrams (DDD) 65

	

	Appendix 4: data dictionary (DDD) 71
	Appendix 4: data dictionary (DDD) 71
	Appendix 4: data dictionary (DDD) 71

	

	Appendix 5: query design (DDD) 73
	Appendix 5: query design (DDD) 73
	Appendix 5: query design (DDD) 73

	

	Appendix 6: server-side process design (WDD) 77
	Appendix 6: server-side process design (WDD) 77
	Appendix 6: server-side process design (WDD) 77

	

	Appendix 7: linked lists (SDD) 87
	Appendix 7: linked lists (SDD) 87
	Appendix 7: linked lists (SDD) 87

	

	Appendix 8: connecting to a database using a programming language (SDD) 94
	Appendix 8: connecting to a database using a programming language (SDD) 94
	Appendix 8: connecting to a database using a programming language (SDD) 94

	

	Appendix 9: standard algorithms (SDD) 113
	Appendix 9: standard algorithms (SDD) 113
	Appendix 9: standard algorithms (SDD) 113

	

	Appendix 10: SQL operations (DDD) 122
	Appendix 10: SQL operations (DDD) 122
	Appendix 10: SQL operations (DDD) 122

	

	Appendix 11: HTML forms (WDD) 136
	Appendix 11: HTML forms (WDD) 136
	Appendix 11: HTML forms (WDD) 136

	

	Appendix 12: PHP form processing (WDD) 139
	Appendix 12: PHP form processing (WDD) 139
	Appendix 12: PHP form processing (WDD) 139

	

	Appendix 13: PHP sessions (WDD) 149
	Appendix 13: PHP sessions (WDD) 149
	Appendix 13: PHP sessions (WDD) 149

	

	Appendix 14: media queries (WDD) 153
	Appendix 14: media queries (WDD) 153
	Appendix 14: media queries (WDD) 153

	

	Appendix 15: integrative testing (SDD, DDD and WDD) 162
	Appendix 15: integrative testing (SDD, DDD and WDD) 162
	Appendix 15: integrative testing (SDD, DDD and WDD) 162

	

	Appendix 16: fitness for purpose (SDD, DDD and WDD) 170
	Appendix 16: fitness for purpose (SDD, DDD and WDD) 170
	Appendix 16: fitness for purpose (SDD, DDD and WDD) 170

	

	Copyright acknowledgements
	Copyright acknowledgements
	Copyright acknowledgements
	 173

	

	

	Course overview
	This course consists of 32 SCQF credit points, which includes time for preparation for course assessment. The notional length of time for candidates to complete the course is 160 hours.
	
	The course assessment has two components.
	
	Component
	Component
	Component
	Component
	Component

	Marks
	Marks

	Duration
	Duration

	Question paper
	Question paper
	Question paper
	Question paper

	55
	55

	2 hours
	2 hours

	Project
	Project
	Project

	80
	80

	see ‘Course assessment’ section
	see ‘Course assessment’ section

	
	
	Recommended entry
	Recommended entry
	Recommended entry
	Recommended entry
	Recommended entry

	Progression
	Progression

	Entry to this course is at the discretion of the centre.
	Entry to this course is at the discretion of the centre.
	Entry to this course is at the discretion of the centre.
	Entry to this course is at the discretion of the centre.
	
	Candidates should have achieved the Higher Computing Science course or equivalent qualifications and/or experience prior to starting this course.
	

	
	
	
	
	 a range of computing-related Higher National Diplomas (HNDs)

	
	
	 degrees in computing science or related disciplines

	
	
	 careers in computing, IT and/or related areas

	
	
	 further study, employment and/or training

	
	Conditions of award
	The grade awarded is based on the total marks achieved across both course assessment components.
	
	
	Course rationale
	National Courses reflect Curriculum for Excellence values, purposes and principles. They offer flexibility, provide time for learning, focus on skills and applying learning, and provide scope for personalisation and choice.
	
	Every course provides opportunities for candidates to develop breadth, challenge and application. The focus and balance of assessment is tailored to each subject area.
	
	This course highlights the central role of computing professionals as creative problem-solvers and designers, able to conceive, design, implement, and operate complex systems. It provides candidates with an understanding of contemporary computing technologies, and develops a wide range of practical skills that underpin our modern, digital world.
	
	The course also builds awareness of the importance of computing in meeting our needs today and for the future, in many fields including science, education, business, and industry. Many organisations regard computing skills as vital to their growth and sustainability, while a growing number of individuals use computing technologies as a way to create entrepreneurial, social and enterprise-building opportunities.
	
	Purpose and aims
	The course provides a broad and challenging exploration of computing technologies, focusing on developing advanced programming and research skills. Candidates learn to apply a rigorous approach to the design and development process.
	
	The course enables candidates to:
	
	
	
	
	 understand and apply computational-thinking skills across a range of computing contexts

	
	
	 extend and apply knowledge and understanding of advanced concepts and processes in computing science

	
	
	 apply skills and knowledge in analysis, design, development, implementation, testing, and evaluation to a range of digital solutions with increasingly complex aspects

	
	
	 apply creative problem-solving skills across a range of contexts

	
	
	 develop autonomous learning, investigative, and research skills

	
	
	 communicate advanced computing concepts clearly and concisely, using appropriate terminology

	
	
	 develop an informed understanding of the role and impact of computing technologies in influencing our environment and society

	
	Who is this course for?
	The course is suitable for candidates interested in exploring the role and impact of contemporary computing technologies. It provides a pathway for those who want to progress to more specialised training, further education, or entry into a diverse range of occupations
	and careers, such as software programming and/or engineering, databases, and web design and development.

	
	The skills in the course are transferable to all areas of computing-related study including robotics, artificial intelligence, e-commerce, networking, cyber security, and systems analysis and testing.
	
	
	Course content
	The course has three areas of study:
	
	Software design and development
	Candidates develop knowledge, understanding, and advanced practical problem-solving skills in software design and development. They do this by using appropriate software development environments. Candidates develop object-oriented programming and computational-thinking skills by analysing, designing, implementing, testing, and evaluating practical solutions and explaining how these modular programs work. They use their knowledge of data types and constructs to create efficient programs to solve advanced pro
	
	Database design and development
	Candidates develop knowledge, understanding, and advanced practical problem-solving skills in database design and development. They do this through a range of practical tasks, using SQL to create and query relational databases. Candidates apply computational-thinking skills to analyse, design, implement, test, and evaluate practical solutions, using a range of development tools. Candidates apply interpretation skills to tasks involving some complex features in both familiar and new contexts.
	
	Web design and development
	Candidates develop knowledge, understanding, and advanced practical problem-solving skills in web design and development. They do this through a range of practical and investigative tasks. Candidates apply computational-thinking skills to analyse, design, implement, test, and evaluate practical solutions to web-based problems, using a range of development tools including HTML, Cascading Style Sheets (CSS) and PHP. Candidates apply interpretation skills to tasks involving some complex features in both famili
	
	Integration
	The integration of technologies is central to the course. Teachers and lecturers should consider candidates’ previous experience in ‘Database design and development’ and ‘Web design and development’ when planning delivery. This will ensure candidates are prepared for the integration that is required for the question paper and project assessment components. These requirements are set out in ‘Course assessment structure: question paper’ on pages 14–17 and in the .
	Coursework Assessment Task
	Coursework Assessment Task

	
	
	Skills, knowledge and understanding
	Skills, knowledge and understanding for the course
	The following provides a broad overview of the subject skills, knowledge and understanding developed in the course:
	
	
	
	
	 applying computational thinking to solve complex computing problems

	
	
	 analysing complex problems within computing science, across a range of contemporary contexts

	
	
	 designing, developing, implementing, testing, and evaluating digital solutions (including computer programs) to complex problems across a range of contexts

	
	
	 developing advanced skills in computer programming and the ability to communicate how a program works

	
	
	 communicating an understanding of complex concepts related to computing science design and development, clearly and concisely, using appropriate terminology

	
	
	 knowledge and understanding of the role and impact of contemporary computing technologies on the environment and society

	
	
	Skills, knowledge and understanding for the course assessment
	The following provides details of skills, knowledge and understanding sampled in the course assessment.
	
	
	
	
	
	

	Software design and development
	Software design and development

	Database design and development
	Database design and development

	Web design and development
	Web design and development

	Analysis
	Analysis
	Analysis
	Analysis

	Identify the purpose and functional requirements of a problem that relates to the design and implementation at this level in terms of:
	Identify the purpose and functional requirements of a problem that relates to the design and implementation at this level in terms of:
	
	
	
	
	 inputs

	
	
	 processes

	
	
	 outputs

	
	Describe, exemplify and implement research for:
	
	
	
	
	 feasibility studies:

	—
	—
	 economic

	—
	—
	 time

	—
	—
	 legal

	—
	—
	 technical

	—
	—
	 user surveys

	
	Describe, exemplify and implement planning in terms of:
	
	
	
	
	 scheduling

	
	
	 resources

	
	
	 Gantt charts

	
	
	
	
	
	
	

	Software design and development
	Software design and development

	Database design and development
	Database design and development

	Web design and development
	Web design and development

	Analysis (continued)
	Analysis (continued)
	Analysis (continued)
	Analysis (continued)

	Produce requirement specifications for end users and develop:
	Produce requirement specifications for end users and develop:
	
	
	
	
	 end-user requirements

	
	
	 scope, boundaries and constraints

	
	
	 functional requirements

	
	Describe, exemplify and implement Unified Modelling Language (UML):
	
	
	
	
	 use case diagrams:

	—
	—
	 actors

	—
	—
	 use cases

	—
	—
	 relationships

	Design
	Design
	Design

	Identify the data types and structures required for a problem that relates to the implementation at this level.
	Identify the data types and structures required for a problem that relates to the implementation at this level.
	
	Read and understand designs of solutions to problems at this level using the following design techniques:
	
	
	
	
	 structure diagrams

	
	
	 pseudocode

	
	
	 UML

	
	

	Describe, exemplify and implement entity-relationship diagrams with three or more entities indicating:
	Describe, exemplify and implement entity-relationship diagrams with three or more entities indicating:
	
	
	
	
	 entity name

	
	
	 entity type (strong, weak)

	
	
	 attributes

	
	
	 relationship participation (mandatory, optional)

	
	
	 name of relationship

	
	
	 cardinality

	
	Identify relationship participation from an entity-occurrence diagram.
	

	Describe, exemplify and implement wireframe designs showing:
	Describe, exemplify and implement wireframe designs showing:
	
	
	
	
	 visual layout

	
	
	 navigation

	
	
	 consistency

	
	
	 underlying processes

	
	Describe, exemplify and implement low-fidelity prototype from wireframe design.
	
	

	
	
	
	
	

	Software design and development
	Software design and development

	Database design and development
	Database design and development

	Web design and development
	Web design and development

	Design (continued)
	Design (continued)
	Design (continued)
	Design (continued)

	Exemplify and implement efficient design solutions to a problem at this level, using pseudocode, showing:
	Exemplify and implement efficient design solutions to a problem at this level, using pseudocode, showing:
	
	
	
	
	 top-level design

	
	
	 the data flow

	
	
	 refinements

	
	Describe, exemplify and implement UML for the following:
	
	
	
	
	 class diagrams:

	—
	—
	 class name

	—
	—
	 instance variables and data types

	—
	—
	 methods

	—
	—
	 public and private

	—
	—
	 inheritance

	—
	—
	 constructor

	—
	—
	 array of objects

	
	

	Describe, exemplify and implement surrogate keys.
	Describe, exemplify and implement surrogate keys.
	
	Describe and exemplify a data dictionary, in relation to SQL, with three or more entities for the following:
	
	
	
	
	 entity name

	
	
	 attribute name

	
	
	 primary and foreign key

	
	
	 attribute type:

	—
	—
	 varchar

	—
	—
	 integer

	—
	—
	 float

	—
	—
	 date

	—
	—
	 tie

	
	
	 attribute size

	
	
	 validation:

	—
	—
	 presence check

	—
	—
	 restricted choice

	—
	—
	 field length

	—
	—
	 range

	
	

	Read and understand designs of server-side processes at this level, using the following techniques:
	Read and understand designs of server-side processes at this level, using the following techniques:
	
	
	
	
	 structure diagrams

	
	
	 pseudocode

	
	Exemplify and implement the design of server-side processes using pseudocode.

	
	
	
	
	
	
	

	Software design and development
	Software design and development

	Database design and development
	Database design and development

	Web design and development
	Web design and development

	Design (continued)
	Design (continued)
	Design (continued)
	Design (continued)

	Describe, exemplify and implement user-interface design using a wireframe, indicating:
	Describe, exemplify and implement user-interface design using a wireframe, indicating:
	
	
	
	
	 visual layout

	
	
	 inputs

	
	
	 validation

	
	
	 underlying processes

	
	
	 outputs

	Exemplify a design of a solution query using:
	Exemplify a design of a solution query using:
	
	
	
	
	 tables and queries

	
	
	 fields

	
	
	 search criteria

	
	
	 sort order

	
	
	 calculations

	
	
	 grouping

	
	
	 having

	
	

	Implementation
	Implementation
	Implementation

	Data types and structures
	Data types and structures
	Describe, exemplify, and implement the following structures in solutions to problems at this level:
	
	
	
	
	 parallel 1-D arrays

	
	
	 records

	
	
	 arrays of records

	
	
	 2-D arrays

	
	
	 array of objects

	
	Describe and exemplify the operation of linked lists (double and single).
	

	SQL
	SQL
	Implement relational database using SQL Data Definition Language (DDL) and Data Manipulation Language (DML) to match the design.
	

	CSS
	CSS
	Describe, exemplify, and implement responsive pages using the following media queries:
	
	
	
	
	 media type:

	—
	—
	 print

	—
	—
	 screen

	
	
	 media feature:

	—
	—
	 max-width

	

	
	
	
	
	
	
	
	

	Software design and development
	Software design and development

	Database design and development
	Database design and development

	Web design and development
	Web design and development

	Implementation (continued)
	Implementation (continued)
	Implementation (continued)
	Implementation (continued)

	Computational constructs
	Computational constructs
	Describe, exemplify, and implement the following object-oriented constructs:
	
	
	
	
	 object

	
	
	 property

	
	
	 method

	
	
	 class

	
	
	 sub-class

	
	
	 encapsulation

	
	
	 inheritance

	
	
	 instantiation

	
	
	 polymorphism

	
	Describe, exemplify, and implement code to:
	
	
	
	
	 open and close connection to database server

	
	
	 execute SQL query

	
	
	 format query results

	
	

	Describe, exemplify, and implement the following SQL operations:
	Describe, exemplify, and implement the following SQL operations:
	
	
	
	
	 CREATE statement:

	—
	—
	 CREATE DATABASE

	—
	—
	 CREATE TABLE

	constraints:
	o
	o
	o
	 primary key

	o
	o
	 foreign key

	o
	o
	 not null

	o
	o
	 check

	o
	o
	 auto increment

	
	
	 DROP statement:

	—
	—
	 DROP DATABASE

	—
	—
	 DROP TABLE

	
	
	 HAVING clause of the SELECT statement

	
	
	 subqueries used with the WHERE clause of SELECT statements

	
	
	 data types:

	—
	—
	 varchar

	—
	—
	 integer

	—
	—
	 float

	—
	—
	 date

	—
	—
	 time

	

	HTML
	HTML
	Describe, exemplify, and implement form elements including:
	
	
	
	
	 FORM element:

	—
	—
	 action

	—
	—
	 method (get and post)

	
	
	 INPUT, SELECT and TEXTAREA elements:

	—
	—
	 name

	—
	—
	 value

	
	
	 TABLE element:

	—
	—
	 th, tr, td

	
	PHP
	Describe, exemplify, and implement coding of server-side processing to:
	
	
	
	
	 assign form data to server-side variables:

	—
	—
	 $_get()

	—
	—
	 $_post()

	

	
	
	
	
	

	Software design and development
	Software design and development

	Database design and development
	Database design and development

	Web design and development
	Web design and development

	Implementation (continued)
	Implementation (continued)
	Implementation (continued)
	Implementation (continued)

	Algorithm specification
	Algorithm specification
	Describe, exemplify, and implement standard algorithms including:
	
	
	
	
	 binary search

	
	
	 insertion sort

	
	
	 bubble sort

	
	Read and explain code that uses constructs appropriate to this level.

	
	
	
	
	 logical operators:

	—
	—
	 IN

	—
	—
	 NOT

	—
	—
	 BETWEEN

	—
	—
	 ANY

	—
	—
	 EXISTS

	
	Read and explain code that uses the SQL at this level.
	

	
	
	
	
	 open and close connection to database server:

	—
	—
	 die()

	—
	—
	 mysqli_connect()

	—
	—
	 mysqli_close()

	
	
	 execute SQL query:

	—
	—
	 mysqli_query()

	
	
	 format query results:

	—
	—
	 echo

	—
	—
	 mysqli_fetch_array()

	—
	—
	 mysqli_num_row()

	
	and:
	
	
	
	
	 assignment, repetition and selection using server-side local and global variables

	
	
	 sessions:

	—
	—
	 session_start()

	—
	—
	 session_destroy()

	
	Read and explain code that uses constructs appropriate to this level.

	
	
	
	
	
	
	
	

	Software design and development
	Software design and development

	Database design and development
	Database design and development

	Web design and development
	Web design and development

	Testing
	Testing
	Testing
	Testing

	Describe, exemplify and implement the following:
	Describe, exemplify and implement the following:
	
	
	
	
	 integrative testing

	
	
	 usability testing based on prototypes

	
	
	 final testing

	
	
	 end-user testing

	
	
	

	and:
	and:
	
	
	
	
	 component testing during the development of the solution

	and:
	and:
	
	
	
	
	 SQL-implemented tables match design

	
	
	 SQL operations work correctly at this level

	
	

	Evaluation
	Evaluation
	Evaluation

	Evaluate solution in terms of:
	Evaluate solution in terms of:
	
	
	
	
	 fitness for purpose

	
	
	 maintainability

	—
	—
	 perfective

	—
	—
	 corrective

	—
	—
	 adaptive

	
	
	 robustness

	

	
	
	

	and:
	and:
	
	
	
	
	 efficiency

	
	
	 usability

	and:
	and:
	
	
	
	
	 accuracy of output

	and:
	and:
	
	
	
	
	 usability

	
	Skills, knowledge and understanding included in the course are appropriate to the SCQF level of the course. The SCQF level descriptors give further information on characteristics and expected performance at each SCQF level, and are available on the SCQF website.
	
	Skills for learning, skills for life and skills for work
	This course helps candidates to develop broad, generic skills. These skills are based on and draw from the following main skills areas:
	SQA’s Skills Framework: Skills for Learning, Skills for Life and Skills for Work
	SQA’s Skills Framework: Skills for Learning, Skills for Life and Skills for Work

	
	2 Numeracy
	
	2.3 Information handling
	
	3 Health and wellbeing
	
	3.1 Personal learning
	
	4 Employability, enterprise and citizenship
	
	4.2 Information and communication technology (ICT)
	
	5 Thinking skills
	
	5.3 Applying
	5.4 Analysing and evaluating
	
	Teachers and lecturers must build these skills into the course at an appropriate level, where there are suitable opportunities.
	
	
	Course assessment
	Course assessment is based on the information in this course specification.
	
	The course assessment meets the purposes and aims of the course by addressing:
	
	
	
	
	 breadth — drawing on knowledge and skills from across the course

	
	
	 challenge — requiring greater depth or extension of knowledge and/or skills

	
	
	 application — requiring application of knowledge and/or skills in practical or theoretical contexts as appropriate

	
	This enables candidates to apply:
	
	
	
	
	 knowledge and skills from across the course to plan, analyse, design, implement, test and evaluate a solution to solve an appropriately challenging practical computing science problem

	
	
	 breadth of knowledge from across the course, and depth of understanding, to answer appropriately challenging questions in computing science contexts

	
	Course assessment structure: question paper
	Question paper 55 marks
	The question paper gives candidates the opportunity to:
	
	
	
	
	 apply computational thinking to solve complex computing problems

	
	
	 analyse complex problems within computing science, across a range of contemporary contexts

	
	
	 design, develop, implement, test, and evaluate digital solutions (including computer programs) to complex problems across a range of contexts

	
	
	 communicate how a well-structured, complex, modular program works

	
	
	 demonstrate understanding of complex concepts relating to computing science design and development by communicating clearly and concisely, using appropriate terminology

	
	
	 demonstrate knowledge and understanding of key aspects of contemporary project planning and management

	
	
	 demonstrate knowledge and understanding of object-oriented programming

	
	The question paper has 55 marks, which is approximately 40% of the overall marks for the course assessment (135 marks).
	
	
	The question paper has three sections. Section 1 is mandatory, and candidates have the option to complete wither section 2 or section 3.
	
	
	
	
	 Section 1: Software design and development — 35 marks

	
	
	 Section 2: Database design and development — 20 marks

	
	
	 Section 3: Web design and development — 20 marks

	
	Each section begins with a number of short, stand-alone questions. These are predominantly ‘C’ mark questions, based on Advanced Higher concepts, presented in a clear and concise way, in a simple and/or familiar context.
	
	This is followed by more challenging, context-based questions with multiple subparts. These require a range of responses including restricted and extended response, designing solutions and writing code, and feature both ‘C’ mark and ‘A’ mark questions. Some questions are designed to be more challenging and feature higher-order Advanced Higher concepts, such as the integration of technologies or understanding and/or designing solutions to complex, unfamiliar problems.
	
	The questions will:
	
	
	
	
	 require candidates to understand and design solutions to complex, unfamiliar problems

	
	
	 be set in meaningful contexts that require candidates to provide some descriptions and explanations

	
	
	 provide integration by drawing on understanding from other areas of the course

	
	
	 sample across the course in a balanced way

	
	Integration
	The ‘Database design and development’ and ‘Web design and development’ sections will each contain a question set in the context of a database-driven website. Part of this question will require some integration with the other option. The tables below detail what could be asked in the question paper.
	
	For ‘Database design and development’, candidates will need to be familiar with the following ‘Web design and development’ skills, knowledge and understanding so they can design and implement HTML forms.
	
	Design
	Describe, exemplify, and implement wireframe designs showing:
	
	
	
	
	 visual layout

	
	
	 navigation

	
	
	 consistency

	
	
	 underlying processes

	
	
	Implementation
	Describe, exemplify, and implement form elements including:
	
	
	
	
	 FORM element:

	— action
	— method (get and post)
	
	
	
	 INPUT, SELECT and TEXTAREA elements:

	—
	—
	 name

	—
	—
	 value

	
	Describe, exemplify and implement form elements:
	
	
	
	
	 form element: input

	— text
	— number
	— textarea
	— radio
	— submit
	
	
	
	 form element: select

	
	Describe, exemplify and implement form data validation:
	
	
	
	
	 length

	
	
	 presence

	
	
	 range

	
	Read and explain code that makes use of the above HTML.
	
	
	For ‘Web design and development’, candidates will need to be familiar with the following ‘Database design and development’ skills, knowledge and understanding in order that they can implement SQL queries:
	
	
	
	
	 select:

	—
	—
	 from

	—
	—
	 where:

	 o AND, OR, <, >, =
	 o order by with a single field
	—
	—
	—
	 use of MAX, MIN, AVG, COUNT and SUM to return a single value

	
	
	 insert

	
	
	 update

	
	
	 delete

	
	Read and explain code that makes use of the above SQL.
	SQA’s standardised reference language
	Questions assessing understanding and application of programming skills are expressed using SQA’s standardised reference language. Further information can be found in the document Reference language for Computing Science question papers, which can be downloaded from the Advanced Higher Computing Science subject page on SQA’s website.
	
	Where candidates need to answer by writing code, answers may be expressed using any programming language. Candidates are not expected to write code in SQA’s standardised reference language. Marks are awarded for demonstrating understanding, not for the correct use of syntax.
	
	Setting, conducting and marking the question paper
	SQA sets and marks the question paper. It is conducted in centres under conditions specified for external examinations by SQA.
	
	Candidates have 2 hours to complete the question paper.
	
	Specimen question papers for Advanced Higher courses are published on SQA’s website. These illustrate the standard, structure and requirements of the question papers. The specimen papers also include marking instructions.
	
	Course assessment structure: project
	Project 80 marks
	The project gives candidates the opportunity to:
	
	
	
	
	 apply computational thinking to solve a complex computing problem

	
	
	 analyse a complex problem within a computing science context

	
	
	 design, develop, implement, test, and evaluate a digital solution to a complex problem

	
	
	 demonstrate advanced skills in computer programming

	
	
	 communicate understanding of complex concepts related to computing science, clearly and concisely, using appropriate terminology

	
	The project is designed to allow candidates to demonstrate their ability to work independently.
	
	The project must:
	
	
	
	
	 be based on one of the following study areas of the course:

	—
	—
	 software design and development

	—
	—
	 database design and development

	—
	—
	 web design and development

	
	
	 include at least two concepts from this area of the course

	
	
	 integrate with one of the other two areas of the course

	
	It is important for teachers and lecturers to discuss potential project ideas with candidates to ensure that they meet the criteria for the Advanced Higher project, and are achievable within the constraints of time, expertise and resources available.
	
	The project has 80 marks, which is approximately 60% of the overall marks for the course assessment (135 marks).
	
	Candidates gain marks for the following stages of the project:
	
	
	
	
	 analysis of the problem 10 marks

	
	
	 design of the solution 20 marks

	
	
	 implementation 30 marks

	
	
	 testing the solution 15 marks

	
	
	 evaluation of the solution 5 marks

	
	Setting, conducting and marking the project
	The project is:
	
	
	
	
	 an open brief — candidates choose the topic for their project in discussion with their teacher or lecturer

	
	
	 conducted under some supervision and control

	
	
	 submitted to SQA for external marking

	
	Assessment conditions
	Time
	There is no time limit for the project. It is recommended that the project is completed within 40 hours. This can be broken down for each section as follows:
	
	
	
	
	 Analysis — 5 hours

	
	
	 Design — 10 hours

	
	
	 Implementation — 15 hours

	
	
	 Testing — 8 hours

	
	
	 Evaluation — 2 hours

	
	Candidates should start at an appropriate point in the course.
	
	Supervision, control and authentication
	The project is conducted under some supervision and control.
	
	Candidates can complete part of the work outwith the learning and teaching setting; therefore, teachers and lecturers must exercise professional responsibility to ensure that evidence submitted by a candidate is their own work.
	
	Resources
	This is an open-book assessment. Candidates can access any appropriate resources.
	
	Reasonable assistance
	Candidates must carry out the assessment independently. However, teachers and lecturers can provide reasonable assistance prior to, and during, the formal assessment process.
	
	Teachers and lecturers should advise candidates on their choice of problem. This is to ensure that their chosen problem meets the criteria for the Advanced Higher project and is achievable.
	
	Candidates must work independently once the formal assessment process has started, with teacher and lecturer input limited to constructive comment and/or questioning.
	
	Once projects are completed and submitted, they must not be returned to candidates for further work.
	
	Evidence to be gathered
	Candidate evidence includes program listings, screenshots, web page source files, data files or similar, as appropriate.
	
	Volume
	There is no word count. The project should have no more than 24 functional requirements. This will ensure that the volume of evidence is not excessive.
	
	Grading
	Candidates’ overall grades are determined by their performance across the course assessment. The course assessment is graded A–D based on the total mark for both course assessment components.
	
	Grade description for C
	For the award of grade C, candidates will typically have demonstrated successful performance in relation to the skills, knowledge and understanding for the course.
	
	Grade description for A
	For the award of grade A, candidates will typically have demonstrated a consistently high level of performance in relation to the skills, knowledge and understanding for the course.
	
	
	Equality and inclusion
	This course is designed to be as fair and as accessible as possible with no unnecessary barriers to learning or assessment.
	
	Guidance on assessment arrangements for disabled candidates and/or those with additional support needs is available on the assessment arrangements web page: .
	www.sqa.org.uk/assessmentarrangements
	www.sqa.org.uk/assessmentarrangements

	
	
	Further information
	
	
	
	
	
	 Advanced Higher Computing Science subject page
	 Advanced Higher Computing Science subject page

	
	
	
	 Assessment arrangements web page
	 Assessment arrangements web page

	
	
	 Building the Curriculum 3–5
	 Building the Curriculum 3–5
	 Building the Curriculum 3–5

	
	
	
	Guidance on conditions of assessment for coursework
	Guidance on conditions of assessment for coursework

	
	
	
	 SQA Skills Framework: Skills for Learning, Skills for Life and Skills for Work
	 SQA Skills Framework: Skills for Learning, Skills for Life and Skills for Work

	
	
	
	 Educational Research Reports
	 Educational Research Reports

	
	
	
	 SQA e-assessment web page
	 SQA e-assessment web page

	
	
	
	 SCQF website: framework, level descriptors and SCQF Handbook
	 SCQF website: framework, level descriptors and SCQF Handbook

	
	
	Appendix: course support notes
	Introduction
	These support notes are not mandatory. They provide advice and guidance to teachers and lecturers on approaches to delivering the course. Please read these course support notes in conjunction with the course specification and the specimen question paper and coursework.
	
	Approaches to learning and teaching
	At Advanced Higher, a significant amount of learning may be self-directed and require candidates to demonstrate initiative and work on their own.
	
	Some candidates may find this challenging, so it is important that you have strategies in place to support them, for example planning time for regular feedback sessions and/or discussions on a one-to-one or group basis.
	
	You should encourage candidates to use an enquiring, critical and problem-solving approach to their learning. Give them the opportunity to practise and develop research and investigation skills, and higher-order evaluation and analytical skills.
	
	Where possible, provide opportunities to personalise learning to enable candidates to have choices in approaches to learning and teaching. The flexibility in the Advanced Higher course and the independence with which candidates carry out the work lends itself to this.
	
	Encourage candidates to participate fully in active learning and practical activities by working together, analysing, investigating, debating and evaluating topics, problems and solutions, while you act increasingly as a facilitator.
	
	You should use an appropriate balance of teaching methodologies when delivering the course. A variety of active learning approaches is encouraged, including the following:
	
	Activity-based learning
	You should balance whole-class, direct teaching opportunities with activity-based learning using practical tasks. An investigatory approach is encouraged, with candidates actively involved in developing their skills, knowledge and understanding by investigating a range of real-life and relevant problems and solutions related to areas of study. You should support learning with appropriate practical activities, so that skills are developed simultaneously with knowledge and understanding.
	
	Group work
	Practical activities and investigations lend themselves to group work, and you should encourage this. Candidates engaged in collaborative group working strategies can capitalise on one another’s knowledge, resources and skills by questioning, investigating, evaluating and presenting ideas to the group. Working as a team is a fundamental aspect of working in the IT and related industries, and so should be encouraged and developed.
	
	Problem-based learning
	Problem-based learning (PBL) is another approach that can support candidates to progress through the course. This method may be best utilised at the end of a topic, where additional challenge is required to ensure candidates are secure in their knowledge and understanding, and to develop the ability to apply knowledge and skills in less familiar contexts. Learning through PBL develops skills in problem solving, decision making, investigation, creative thinking, team working and evaluation.
	
	Computational thinking
	Computational thinking is recognised as a key skill set for all 21st century candidates — whether they intend to continue with computing science or not. It involves a set of problem-solving skills and techniques used by software developers to write programs.
	
	There are various ways of defining computational thinking. One useful structure is to group these problem-solving skills and techniques under five broad headings (concepts):
	
	
	
	
	 Abstraction: seeing a problem and its solution at many levels of detail and generalising the necessary information. Abstraction allows us to represent an idea or a process in general terms (for example variables) and use it to solve other problems that are similar in nature.

	
	
	 Algorithms: the ability to develop a step-by-step strategy for solving a problem. Algorithm design is often based on the decomposition of a problem and the identification of patterns that help to solve the problem. In computing science as well as in mathematics, algorithms are often written abstractly, utilising variables in place of specific numbers.

	
	
	 Decomposition: breaking down a task so that we can clearly explain a process to another person — or to a computer. Decomposing a problem frequently leads to pattern recognition and generalisation/abstraction, and ultimately the ability to design an algorithm.

	
	
	 Pattern recognition: the ability to notice similarities or common differences that help us make predictions or lead us to shortcuts. Pattern recognition is frequently the basis for solving problems and designing algorithms.

	
	
	 Generalisation: realising that we can use a solution to one problem to solve a whole range of related problems.

	
	Underpinning all of these concepts is the idea that computers are deterministic: they do exactly what we tell them to do and so can be understood.
	
	Computational thinking can be a component of many subjects; computing science delivers this particularly well. You are encouraged to emphasise, exemplify and make these aspects of computational thinking explicit, wherever there are opportunities to do so throughout the teaching and learning of this course.
	
	Using online and outside resources
	Stimulating interest and curiosity should be a prime objective when teaching this course. Engaging with outside agencies or industry professionals can greatly enhance the learning process. Online resources can provide a valuable addition to teaching and learning activities,
	encouraging research, collation and storage of information and evaluation of these materials. Using interactive multimedia learning resources, online quizzes, and web-based software can also support teacher-led approaches.

	
	Blending assessment activities with learning activities throughout the course can support learning, for example:
	
	
	
	
	 sharing learning intentions and/or success criteria

	
	
	 using assessment information to set learning targets and next steps

	
	
	 adapting teaching and learning activities based on assessment information

	
	
	 boosting confidence by providing supportive feedback

	
	If appropriate, you should encourage self-assessment and peer-assessment techniques.
	
	Meeting the needs of all candidates
	Within any class, each candidate has individual strengths and areas for improvement. If there are candidates capable of achieving a higher level in some aspects of the course, you should give them the opportunity to do so, where possible. Advanced Higher is particularly suited to candidates researching knowledge and developing skills beyond the course requirements.
	
	Where Advanced Higher candidates have studied National 5 and Higher in previous years, it is important that you provide them with new and different contexts for learning to avoid demotivation. For example, candidates could work in a different type of development environment or language at Advanced Higher. You should also consider candidates’ previous experience in ‘Database design and development’ and ‘Web design and development’ when planning delivery of integration across the different areas of the course
	
	Suggested learning activities
	The course is structured around three areas of study.
	
	Some aspects of analysis, testing and evaluation apply to all three practical areas of the course (SDD, DDD and WDD), as well as solutions to problems that integrate these technologies.
	
	You are encouraged to use an investigatory approach, with candidates actively involved in developing their skills, knowledge and understanding of a range of development problems and solutions.
	
	Development methodologies
	
	
	
	 Working in groups, candidates could discuss using an agile methodology, compared to an iterative development process. This is not assessed in the course but candidates have to decide which approach they will follow for their project.

	
	Analysis (SDD, DDD and WDD)
	
	
	
	 Working individually or in groups, candidates could analyse a number of problems by creating a use case diagram, and deciding on purpose and functional requirements.

	These could be SDD, DDD and WDD problems, as well as problems that integrate these areas (which is a requirement of the project).
	These could be SDD, DDD and WDD problems, as well as problems that integrate these areas (which is a requirement of the project).

	
	
	 Working individually or in groups, candidates could prepare requirements specifications for end users.

	
	Software design and development
	
	
	
	 Design:

	—
	—
	 You could present candidates with a variety of completed requirement specifications, and ask them to complete the top level algorithm, data flow, and Unified Modelling Language (UML) class diagram for each problem.

	—
	—
	 Candidates could then design user interfaces using wireframes annotated with underlying processes, inputs (including any necessary validation) and outputs.

	
	
	 Implementation:

	—
	—
	 You could provide candidates with working programs that demonstrate the use of object-oriented programming techniques, including classes and methods.

	—
	—
	 Ask candidates to identify and explain sections of code from within these programs.

	—
	—
	 Using the pre-defined functions stated in the course content, candidates could tackle a number of problems.

	—
	—
	 Using appropriate programs created in Higher, candidates could think about how they could use their knowledge of 2-D arrays and arrays of objects to implement them using the new data structures.

	—
	—
	 Working in groups, candidates could write code from designs provided in pseudocode, structure diagrams or UML class diagrams. This would help them implement object-oriented code.

	—
	—
	 Using a range of working programs that use a variety of standard algorithms, candidates could interpret and explain what is happening in the code. This would help them develop their own modular programs that use these constructs and standard algorithms.

	—
	—
	 You could demonstrate how a program language is used to create a link to a database and execute an SQL statement. You could then give candidates a sequence of problems that requires them to update and query the database.

	
	
	 Testing:

	—
	—
	 Using a variety of modular programs, candidates could carry out component testing.

	—
	—
	 You could demonstrate debugging techniques, for example dry runs, trace tables, breakpoints and watchpoints, to show how they can help programmers find errors within their code.

	
	
	 Evaluation:

	—
	—
	 In groups, candidates could evaluate completed programs in terms of efficient use of coding constructs and usability.

	
	
	Database design and development
	
	
	
	 Design:

	—
	—
	 You could explain the differences between a data dictionary at National 5 and Higher, and the same dictionary at Advanced Higher (which uses SQL data types and validation).

	—
	—
	 Candidates could complete different types of exercises to create a data dictionary from given data.

	—
	—
	 Using supplied scenarios with completed analysis, candidates could complete entity-relationship diagrams, including notation of weak or strong entities and mandatory or optional relationships.

	—
	—
	 Using sample database tables, candidates could design queries to produce a required output.

	
	
	 Implementation:

	—
	—
	 You could demonstrate the SQL operations required to create a database and subsequently create or drop tables.

	—
	—
	 You could demonstrate SQL operations using HAVING and Advanced Higher logical operators. Candidates could then complete a number of exercises to solve problems relating to using the appropriate SQL operations.

	—
	—
	 Using SQL code and databases, candidates could explain what the output of the code would be.

	
	
	 Testing and evaluation:

	—
	—
	 Using SQL code, candidates could test it and evaluate its fitness for purpose, and accuracy of output.

	—
	—
	 Using an incorrect SQL operation along with the correct expected output, candidates could identify how to correct the SQL statement in order to produce the expected output.

	
	Web design and development
	
	
	
	 Design:

	—
	—
	 Candidates could use wire-framing design techniques to design website structures and pages relating to multi-level websites. These could involve multiple screen views, for example mobile and desktop.

	—
	—
	 Using the completed website designs, candidates could create low-fidelity prototypes to test their effectiveness.

	—
	—
	 Candidates could complete pseudocode design for server-side processes.

	
	
	 Implementation:

	—
	—
	 Using HTML, Cascading Style Sheets (CSS) and PHP code from sample web pages, candidates could explain which parts of the code relate to the web page.

	—
	—
	 Using HTML, CSS and PHP, candidates could implement a design that requires data to be retrieved from a database and displayed as a table.

	—
	—
	 Using HTML, CSS and PHP, candidates could implement a design that requires form data to be processed and stored in a database.

	
	
	 Evaluation:

	—
	—
	 Working in groups or individually, candidates could evaluate previous solutions for usability.

	Testing (SDD, DDD and WDD)
	These learning and teaching activities could be in the context of SDD, DDD or WDD problems, as well as problems that integrate these areas (which is a requirement of the project):
	
	
	
	
	 Working in groups, candidates could discuss how to carry out testing of integrated components.

	
	
	 Working in groups, candidates could create prototypes and test each other’s solutions to a problem. Following implementation of each prototype, the same end-user testing could be carried out.

	
	
	 Working individually or in groups, candidates could discuss or plan a final testing solution for a given problem.

	
	Evaluation (SDD, DDD and WDD)
	These learning and teaching activities could be in the context of SDD, DDD or WDD problems, as well as problems that integrate these areas (which is a requirement of the project):
	
	
	
	
	 Working in groups or individually, candidates could compare a solution to functional requirements and discuss its fitness for purpose.

	
	
	 Working in groups, candidates could discuss the maintainability of a solution in terms of correcting, adapting or expanding a solution.

	
	
	 Working in groups, candidates could perform destructive testing on each other’s solutions to evaluate the robustness of the solution.

	
	Resources
	You need access to an SQL server and a web server to implement the following:
	
	
	
	
	 PHP code to process form data

	
	
	 PHP code to connect to a database

	
	
	 server-side SQL execution

	
	
	 create and maintain a database using SQL statements

	
	You may wish to use prebuilt solutions installed locally, such as XAMPP or arrange access to online resources.
	
	You should ensure that the programming language used for the Advanced Higher course is object-oriented (OO) capable and has the capacity to connect to a database file.
	
	You also need:
	
	
	
	
	 internet-enabled computers and a digital projector

	
	
	 access to software development tools

	
	
	 access to application development software and tools

	
	
	 web development tools (for example HTML5 script enabled browsers and wire-framing software)

	Some suggested software development environments
	For this course, you can use any software development environment. You should base your decision on the suitability of the chosen environment to support the delivery of the mandatory content of the course.
	
	Possible examples include:
	
	
	
	
	 Python

	
	
	 Visual Basic

	
	
	 Java

	
	
	 Live Code

	
	Teaching and learning materials
	A number of online resources are available.
	
	
	
	
	 Software design and development

	
	www.java.com
	www.java.com

	
	www.python.org
	www.python.org

	
	www.codeacademy.com
	www.codeacademy.com

	
	www.programiz.com/python-programming
	www.programiz.com/python-programming

	
	www.livecode.com
	www.livecode.com

	
	www.draw.io
	www.draw.io

	
	
	
	
	 Database design and development

	
	www.w3schools.com
	www.w3schools.com

	
	www.codeacademy.com
	www.codeacademy.com

	
	www.tutorialspoint.com/sql
	www.tutorialspoint.com/sql

	
	www.sqlcourse.com
	www.sqlcourse.com

	
	Apex.oracle.com/en
	Apex.oracle.com/en

	
	
	
	
	 Web design and development

	
	www.w3schools.com
	www.w3schools.com

	
	www.codeacademy.com
	www.codeacademy.com

	html.net/tutorials
	html.net/tutorials
	html.net/tutorials

	
	www.khanacademy.org
	www.khanacademy.org

	
	pencil.evolus.vn
	pencil.evolus.vn

	
	balsamiq.com
	balsamiq.com

	
	resources.infosecinstitute.com/prototyping
	resources.infosecinstitute.com/prototyping

	
	Goggles.mozilla.org
	Goggles.mozilla.org

	
	http://hackasaurus.toolness.org
	http://hackasaurus.toolness.org

	
	[date accessed August 2019]
	
	
	Comparison of skills, knowledge and understanding for Higher and Advanced Higher
	The following table shows the relationship between the mandatory Higher and Advanced Higher skills, knowledge and understanding.
	
	You can use this to:
	
	
	
	
	 ensure seamless progression between levels

	
	
	 identify important prior learning for candidates at Advanced Higher

	
	Analysis
	Area
	Area
	Area
	Area
	Area

	Higher
	Higher

	Advanced Higher
	Advanced Higher

	SDD
	SDD
	SDD
	SDD

	Identify the:
	Identify the:
	
	
	
	
	 purpose

	
	
	 scope

	
	
	 boundaries

	
	
	 functional requirements

	
	of a problem that relates to the design and implementation at this level, in terms of:
	
	
	
	
	 inputs

	
	
	 processes

	
	
	 outputs

	

	Identify the purpose and functional requirements of a problem that relates to the design and implementation at this level in terms of:
	Identify the purpose and functional requirements of a problem that relates to the design and implementation at this level in terms of:
	
	
	
	
	 inputs

	
	
	 processes

	
	
	 outputs

	
	Describe, exemplify, and implement research for:
	
	
	
	
	 feasibility studies:

	—
	—
	 economic

	—
	—
	 time

	

	
	
	Analysis (continued)
	Area
	Area
	Area
	Area
	Area

	Higher
	Higher

	Advanced Higher
	Advanced Higher

	DDD
	DDD
	DDD
	DDD

	Identify the end-user and functional requirements of a database problem that relates to the implementation at this level.
	Identify the end-user and functional requirements of a database problem that relates to the implementation at this level.
	

	—
	—
	—
	—
	 legal

	—
	—
	 technical

	
	
	 user surveys

	
	Describe, exemplify, and implement planning in terms of:
	
	
	
	
	 scheduling

	
	
	 resources

	
	
	 Gantt charts

	
	Produce requirement specifications for end users and develop:
	
	
	
	
	 end-user requirements

	
	
	 scope, boundaries and constraints

	
	
	 functional requirements

	
	Describe, exemplify, and implement Unified Modelling Language (UML):
	
	
	
	
	 use case diagrams:

	—
	—
	 actors

	—
	—
	 use cases

	—
	—
	 relationships

	

	TR
	WDD
	WDD

	Identify the end-user and functional requirements of a website problem that relates to the design and implementation at this level.
	Identify the end-user and functional requirements of a website problem that relates to the design and implementation at this level.
	

	
	Design
	Area
	Area
	Area
	Area
	Area

	Higher
	Higher

	Advanced Higher
	Advanced Higher

	SDD
	SDD
	SDD
	SDD

	Identify the data types and structures required for a problem that relates to the implementation at this level.
	Identify the data types and structures required for a problem that relates to the implementation at this level.
	
	Read and understand designs of solutions to problems at this level, using the following design techniques:
	
	
	
	
	 structure diagrams

	
	
	 pseudocode

	
	
	Exemplify and implement efficient design solutions to a problem, using a recognised design technique, showing:
	
	
	
	
	 top level design

	
	
	 the data flow

	
	
	 refinements

	
	Describe, exemplify and implement user-interface design, in terms of input and output, using a wireframe.
	

	Identify the data types and structures required for a problem that relates to the implementation at this level.
	Identify the data types and structures required for a problem that relates to the implementation at this level.
	
	Read and understand designs of solutions to problems at this level using the following design techniques:
	
	
	
	
	 structure diagrams

	
	
	 pseudocode

	
	
	 UML

	
	Exemplify and implement efficient design solutions to a problem at this level, using pseudocode, showing:
	
	
	
	
	 top level design

	
	
	 the data flow

	
	
	 refinements

	
	
	Describe, exemplify, and implement UML for the following:
	
	
	
	
	 class diagrams:

	—
	—
	 class name

	—
	—
	 instance variables and data types

	—
	—
	 methods

	—
	—
	 public and private

	
	Design (continued)
	Area
	Area
	Area
	Area
	Area

	Higher
	Higher

	Advanced Higher
	Advanced Higher

	SDD
	SDD
	SDD
	SDD

	
	

	—
	—
	—
	—
	 inheritance

	—
	—
	 constructor

	—
	—
	 array of objects

	
	Describe, exemplify, and implement user-interface design using a wireframe, indicating:
	
	
	
	
	 visual layout

	
	
	 inputs

	
	
	 validation

	
	
	 underlying processes

	
	
	 outputs

	

	DDD
	DDD
	DDD

	Describe and exemplify entity-relationship diagrams with three or more entities, indicating:
	Describe and exemplify entity-relationship diagrams with three or more entities, indicating:
	
	
	
	
	 entity name

	
	
	 attributes

	
	
	 name of relationship

	
	
	 cardinality of relationship (one-to-one, one-to-many, many-to-many)

	
	Describe and exemplify an instance using an entity-occurrence diagram.
	

	Describe, exemplify, and implement entity-relationship diagrams with three or more entities indicating:
	Describe, exemplify, and implement entity-relationship diagrams with three or more entities indicating:
	
	
	
	
	 entity name

	
	
	 entity type (strong, weak)

	
	
	 attributes

	
	
	 relationship participation (mandatory, optional)

	
	
	 name of relationship

	
	
	 cardinality

	
	Identify relationship participation from an entity-occurrence diagram.
	

	Design (continued)
	Area
	Area
	Area
	Area
	Area

	Higher
	Higher

	Advanced Higher
	Advanced Higher

	DDD
	DDD
	DDD
	DDD

	Describe and exemplify a compound key.
	Describe and exemplify a compound key.
	
	Describe and exemplify a data dictionary with three or more entities:
	
	
	
	
	 entity name

	
	
	 attribute name

	
	
	 primary and foreign key

	
	
	 attribute type:

	—
	—
	 text

	—
	—
	 number

	—
	—
	 date

	—
	—
	 time

	—
	—
	 Boolean

	
	
	 attribute size

	
	
	 validation:

	—
	—
	 presence check

	—
	—
	 restricted choice

	—
	—
	 field length

	—
	—
	 range

	
	Exemplify a design of a solution to a query:
	
	
	
	
	 tables and queries

	

	Describe, exemplify, and implement surrogate keys.
	Describe, exemplify, and implement surrogate keys.
	
	Describe and exemplify a data dictionary, in relation to SQL, with three or more entities for the following:
	
	
	
	
	 entity name

	
	
	 attribute name

	
	
	 primary and foreign key

	
	
	 attribute type:

	—
	—
	 varchar

	—
	—
	 integer

	—
	—
	 float

	—
	—
	 date

	—
	—
	 time

	
	
	 attribute size

	
	
	 validation:

	—
	—
	 presence check

	—
	—
	 restricted choice

	—
	—
	 field length

	—
	—
	 range

	
	Exemplify a design of a solution to a query using:
	
	
	
	
	 tables and queries

	

	Design (continued)
	Area
	Area
	Area
	Area
	Area

	Higher
	Higher

	Advanced Higher
	Advanced Higher

	DDD
	DDD
	DDD
	DDD

	
	
	
	
	 fields

	
	
	 search criteria

	
	
	 sort order

	
	
	 calculations

	
	
	 grouping

	
	
	
	
	 fields

	
	
	 search criteria

	
	
	 sort order

	
	
	 calculations

	
	
	 grouping

	
	
	 having

	WDD
	WDD
	WDD

	Describe and exemplify the website structure of a multi-level website with a home page and two additional levels, with no more than four pages per level.
	Describe and exemplify the website structure of a multi-level website with a home page and two additional levels, with no more than four pages per level.
	
	Describe, exemplify and implement, taking into account end-user requirements and device type, an effective user-interface design (visual layout and readability) using wire-framing:
	
	
	
	
	 horizontal navigational bar

	
	
	 relative horizontal and vertical positioning of the media

	
	
	 form inputs

	
	
	 file formats of the media (text, graphics, video, and audio)

	
	Describe, exemplify and implement prototyping (low fidelity) from wireframe design at this level.
	

	Describe, exemplify, and implement wireframe designs showing:
	Describe, exemplify, and implement wireframe designs showing:
	
	
	
	
	 visual layout

	
	
	 navigation

	
	
	 consistency

	
	
	 underlying processes

	
	Describe, exemplify, and implement low-fidelity prototype from wireframe design.
	
	Read and understand designs of server-side processes at this level, using the following design techniques:
	
	
	
	
	 structure diagrams

	
	
	 pseudocode

	
	Exemplify and implement the design of server-side processes using pseudocode.

	
	Implementation
	Area
	Area
	Area
	Area
	Area

	Higher
	Higher

	Advanced Higher
	Advanced Higher

	SDD
	SDD
	SDD
	SDD

	Data types and structures
	Data types and structures
	Describe, exemplify and implement appropriately the following structures:
	
	
	
	
	 parallel 1-D arrays

	
	
	 records

	
	
	 arrays of records

	
	
	
	
	
	
	
	Computational constructs
	Describe, exemplify and implement the appropriate constructs in a procedural high-level (textual) language:
	
	
	
	
	 parameter passing (formal and actual)

	
	
	 the scope of local and global variables

	
	
	 sub-programs/routines, defined by their name and arguments (inputs and outputs):

	—
	—
	 functions

	—
	—
	 procedures

	

	Data types and structures
	Data types and structures
	Describe, exemplify, and implement the following structures in solutions to problems at this level:
	
	
	
	
	 parallel 1-D arrays

	
	
	 records

	
	
	 arrays of records

	
	
	 2-D arrays

	
	
	 array of objects

	
	Describe and exemplify the operation of linked lists (double and single).
	
	Computational constructs
	Describe, exemplify, and implement the following object-oriented (OO) constructs:
	
	
	
	
	 object

	
	
	 property

	
	
	 method

	
	
	 class

	
	
	 sub-class

	
	
	 encapsulation

	
	
	 inheritance

	

	
	Implementation (continued)
	Area
	Area
	Area
	Area
	Area

	Higher
	Higher

	Advanced Higher
	Advanced Higher

	SDD
	SDD
	SDD
	SDD

	
	
	
	
	 pre-defined functions (with parameters):

	—
	—
	 to create substrings

	—
	—
	 to convert from character to ASCII and vice versa

	—
	—
	 to convert floating-point numbers to integers

	—
	—
	 modulus

	
	
	 file handling:

	—
	—
	 sequential CSV and txt files (open, create, read, write, close)

	
	Read and explain code that makes use of the above constructs.
	
	Algorithm specification
	Describe, exemplify and implement standard algorithms using 1-D arrays or arrays of records:
	
	
	
	
	 linear search

	
	
	 find minimum and maximum

	
	
	 count occurrences

	
	
	
	
	 instantiation

	
	
	 polymorphism

	
	Describe, exemplify, and implement code to:
	
	
	
	
	 open and close connection to database server

	
	
	 execute SQL query

	
	
	 format query results

	
	
	
	
	Algorithm specification
	Describe, exemplify, and implement standard algorithms including:
	
	
	
	
	 binary search

	
	
	 insertion sort

	
	
	 bubble sort

	
	Read and explain code that uses constructs appropriate to this level.
	

	
	Implementation (continued)
	Area
	Area
	Area
	Area
	Area

	Higher
	Higher

	Advanced Higher
	Advanced Higher

	DDD
	DDD
	DDD
	DDD

	Describe, exemplify and use SQL operations for pre-populated relational databases, with three or more linked tables:
	Describe, exemplify and use SQL operations for pre-populated relational databases, with three or more linked tables:
	
	
	
	
	 UPDATE, SELECT, DELETE, INSERT statements making use of:

	—
	—
	 wildcards

	—
	—
	 aggregate functions (MIN, MAX, AVG, SUM, COUNT)

	—
	—
	 computed values, alias

	—
	—
	 GROUP BY

	—
	—
	 ORDER BY

	—
	—
	 WHERE

	
	Read and explain code that makes use of the above SQL.
	

	Implement relational database using SQL Data Definition Language (DDL) and Data Manipulation Language (DML) to match the design.
	Implement relational database using SQL Data Definition Language (DDL) and Data Manipulation Language (DML) to match the design.
	
	Describe, exemplify, and implement the following SQL operations:
	
	
	
	
	 CREATE statement:

	—
	—
	 CREATE DATABASE

	—
	—
	 CREATE TABLE

	—
	—
	 constraints:

	o
	o
	 primary key

	o
	o
	 foreign key

	o
	o
	 not null

	o
	o
	 check

	o
	o
	 auto increment

	
	
	 DROP statement:

	—
	—
	 DROP DATABASE

	—
	—
	 DROP TABLE

	
	
	 HAVING clause of the SELECT statement

	
	
	 subqueries used with the WHERE clause of SELECT statements

	
	
	 data types:

	—
	—
	 varchar

	—
	—
	 integer

	

	Implementation (continued)
	Area
	Area
	Area
	Area
	Area

	Higher
	Higher

	Advanced Higher
	Advanced Higher

	DDD
	DDD
	DDD
	DDD

	
	

	—
	—
	—
	—
	 float

	—
	—
	 date

	—
	—
	 time

	
	
	 logical operators:

	—
	—
	 IN

	—
	—
	 NOT

	—
	—
	 BETWEEN

	—
	—
	 ANY

	—
	—
	 EXISTS

	
	Read and explain code that uses the SQL at this level.

	WDD
	WDD
	WDD

	CSS
	CSS
	Describe, exemplify and implement efficient inline, internal and external Cascading Style Sheets (CSS) using grouping and descendant selectors to:
	
	
	
	
	 control appearance and positioning:

	—
	—
	 display (block, inline, none)

	—
	—
	 float (left, right)

	—
	—
	 clear (both)

	—
	—
	 margins/padding

	—
	—
	 sizes (height, width)

	
	
	 create horizontal navigation bars:

	—
	—
	 list-style-type:none

	—
	—
	 hover

	

	CSS
	CSS
	Describe, exemplify, and implement responsive pages using the following media queries:
	
	
	
	
	 media type:

	—
	—
	 print

	—
	—
	 screen

	
	
	 media feature:

	—
	—
	 max-width

	

	Implementation (continued)
	Area
	Area
	Area
	Area
	Area

	Higher
	Higher

	Advanced Higher
	Advanced Higher

	WDD
	WDD
	WDD
	WDD

	Read and explain code that makes use of the above CSS.
	Read and explain code that makes use of the above CSS.
	
	HTML
	Describe, exemplify and implement HTML code:
	
	
	
	
	 nav

	
	
	 header

	
	
	 footer

	
	
	 section

	
	
	 main

	
	
	 form

	
	
	 id attribute

	
	Describe, exemplify and implement form elements:
	
	
	
	
	 form element: input

	—
	—
	 text

	—
	—
	 number

	—
	—
	 textarea

	—
	—
	 radio

	—
	—
	 submit

	
	
	 form element: select

	

	
	
	
	
	HTML
	Describe, exemplify, and implement form elements including:
	
	
	
	
	 FORM element:

	—
	—
	 action

	—
	—
	 method (get and post)

	
	
	 INPUT, SELECT and TEXTAREA elements:

	—
	—
	 name

	—
	—
	 value

	
	
	 TABLE element:

	—
	—
	 th, tr, td

	

	
	Implementation (continued)
	Area
	Area
	Area
	Area
	Area

	Higher
	Higher

	Advanced Higher
	Advanced Higher

	WDD
	WDD
	WDD
	WDD

	Describe, exemplify and implement form data validation:
	Describe, exemplify and implement form data validation:
	
	
	
	
	 length

	
	
	 presence

	
	
	 range

	Read and explain code that makes use of the above HTML.
	
	JavaScript
	Describe, exemplify and implement coding of JavaScript functions related to mouse events:
	
	
	
	
	 onmouseover

	
	
	 onmouseout

	
	
	 onclick

	
	PHP
	No content at Higher
	

	
	
	
	
	
	
	
	
	
	JavaScript
	No content at Advanced Higher
	
	
	
	
	
	
	
	PHP
	Describe, exemplify, and implement coding of server-side processing to:
	
	
	
	
	 assign form data to server-side variables:

	—
	—
	 $_get()

	—
	—
	 $_post()

	
	
	 open and close connection to database server:

	—
	—
	 die()

	

	Implementation (continued)
	Area
	Area
	Area
	Area
	Area

	Higher
	Higher

	Advanced Higher
	Advanced Higher

	WDD
	WDD
	WDD
	WDD

	
	

	—
	—
	—
	—
	 mysqli_connect()

	—
	—
	 mysqli_close()

	
	
	 execute SQL query:

	—
	—
	 mysqli_query()

	
	
	
	
	 format query results:

	—
	—
	 echo

	—
	—
	 mysqli_fetch_array()

	—
	—
	 mysqli_num_row()

	
	and:
	
	
	
	
	 assignment, repetition and selection using server-side local and global variables

	
	
	 sessions:

	—
	—
	 session_start()

	—
	—
	 session_destroy()

	
	Read and explain code that uses constructs appropriate to this level.
	

	
	Testing
	Area
	Area
	Area
	Area
	Area

	Higher
	Higher

	Advanced Higher
	Advanced Higher

	SDD
	SDD
	SDD
	SDD

	Describe, exemplify and implement a comprehensive final test plan to show that the functional requirements are met.
	Describe, exemplify and implement a comprehensive final test plan to show that the functional requirements are met.
	
	Identify syntax, execution, and logic errors at this level.
	
	Describe and exemplify debugging techniques:
	
	
	
	
	 dry runs

	
	
	 trace tables/tools

	
	
	 breakpoints

	
	
	 watchpoints

	

	Describe, exemplify, and implement the following for SDD, DDD and WDD:
	Describe, exemplify, and implement the following for SDD, DDD and WDD:
	
	
	
	
	 integrative testing

	
	
	 usability testing based on prototypes

	
	
	 final testing

	
	
	 end-user testing

	
	and for SDD only:
	
	
	
	
	 component testing during the development of the solution

	
	and for DDD only:
	
	
	
	
	 SQL implemented tables match design

	
	
	 SQL operations work correctly at this level

	TR
	DDD
	DDD

	Describe and exemplify testing:
	Describe and exemplify testing:
	
	
	
	
	 SQL operations work correctly at this level

	

	TR
	WDD
	WDD

	Describe, exemplify and implement usability testing using personas, test cases and scenarios based on low-fidelity prototypes.
	Describe, exemplify and implement usability testing using personas, test cases and scenarios based on low-fidelity prototypes.
	
	Describe and exemplify testing:
	
	
	
	
	 input validation

	
	
	 navigational bar works

	
	
	 media content displays correctly

	

	Testing (continued)
	Area
	Area
	Area
	Area
	Area

	Higher
	Higher

	Advanced Higher
	Advanced Higher

	SDD
	SDD
	SDD
	SDD

	Describe and exemplify compatibility testing:
	Describe and exemplify compatibility testing:
	
	
	
	
	 device type:

	—
	—
	 tablet, smartphone, desktop

	
	
	 browser

	

	
	

	
	Evaluation
	Area
	Area
	Area
	Area
	Area

	Higher
	Higher

	Advanced Higher
	Advanced Higher

	SDD
	SDD
	SDD
	SDD

	Describe, identify and exemplify the evaluation of a solution in terms of:
	Describe, identify and exemplify the evaluation of a solution in terms of:
	
	
	
	
	 fitness for purpose

	
	
	 efficient use of coding constructs

	
	
	 usability

	
	
	 maintainability

	
	
	 robustness

	

	Evaluate solution for SDD, DDD and WDD in terms of:
	Evaluate solution for SDD, DDD and WDD in terms of:
	
	
	
	
	 fitness for purpose

	
	
	 maintainability

	—
	—
	 perfective

	—
	—
	 corrective

	—
	—
	 adaptive

	
	
	 robustness

	
	and for SDD only:
	
	
	
	
	 efficiency

	
	
	 usability

	
	and for DDD only:
	
	
	
	
	 accuracy of output

	
	
	
	and for WDD only:
	
	
	
	
	 usability

	

	TR
	DDD
	DDD

	Evaluate solution at this level in terms of:
	Evaluate solution at this level in terms of:
	
	
	
	
	 fitness for purpose

	
	
	 accuracy of output

	

	TR
	WDD
	WDD

	Evaluate solution at this level in terms of:
	Evaluate solution at this level in terms of:
	
	
	
	
	 fitness for purpose

	
	
	 usability

	

	
	Preparing for course assessment
	The course assessment focuses on breadth, challenge and application. Candidates should apply the skills, knowledge and understanding they have gained during the course.
	
	In preparation, you should give candidates the opportunity to practise activities similar to those expected in the course assessment. For example, you could develop questions and tasks similar to those in the specimen question paper and coursework.
	
	You may find the following information useful:
	
	
	
	
	 course assessment overview

	
	
	 question paper brief

	
	Course assessment overview
	Marks: 135
	
	The course assessment has two components:
	
	
	
	
	 question paper: 55 marks

	
	
	 project: 80 marks

	
	Proportion of ‘A’ and ‘C’ type questions:
	
	
	
	
	 approximately 30% of marks ‘A’ type

	
	
	 approximately 50% of marks ‘C’ type

	
	The course assessment (question paper and project) is designed using the following breakdown of marks for each skill assessed.
	
	
	
	
	
	

	Course assessment
	Course assessment

	Project
	Project

	Question paper
	Question paper

	Skill
	Skill
	Skill
	Skill

	% marks
	% marks

	Total marks (approximate)
	Total marks (approximate)

	Marks
	Marks

	Marks
	Marks

	Analysis
	Analysis
	Analysis

	10%
	10%

	14
	14

	10
	10

	3–8
	3–8

	Design
	Design
	Design

	30%
	30%

	41
	41

	20
	20

	16-24
	16-24

	Implementation
	Implementation
	Implementation

	40%
	40%

	54
	54

	30
	30

	20–28
	20–28

	Testing
	Testing
	Testing

	15%
	15%

	21
	21

	15
	15

	2–8
	2–8

	Evaluation
	Evaluation
	Evaluation

	5%
	5%

	7
	7

	5
	5

	0–5
	0–5

	
	
	Question paper brief
	Marks: 55
	
	Duration: 2 hours
	
	The question paper has three sections. Section 1 is mandatory, and candidates have the option to complete either Section 2 or Section 3.
	
	
	
	
	 Section 1: Software design and development — 35 marks

	
	
	 Section 2: Database design and development — 20 marks

	
	
	 Section 3: Web design and development — 20 marks

	
	Proportion of ‘A’ and ‘C’ type marks:
	
	
	
	
	 approximately 30% of marks ‘A’ type (primarily in context-based questions)

	
	
	 approximately 50% of marks ‘C’ type

	
	The question paper is designed using the following range of marks, against each area of content and skills.
	
	Skill
	Skill
	Skill
	Skill
	Skill

	Range
	Range

	Analysis
	Analysis
	Analysis
	Analysis

	3–8
	3–8

	Design
	Design
	Design

	16-24
	16-24

	Implementation
	Implementation
	Implementation

	20–28
	20–28

	Testing
	Testing
	Testing

	2-8
	2-8

	Evaluation
	Evaluation
	Evaluation

	0–5
	0–5

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	The skills, knowledge and understanding across the ‘Database design and development’ and ‘Web design and development’ areas of study are not directly comparable, for example, there is more assessable content in design for DDD than WDD, but more for implementation in WDD than DDD.
	
	As a result, the mark breakdown across analysis, design, implementation, testing and evaluation will not be identical across the options, however, there will be a balance of ‘A’ type and ‘C’ type marks across the options.
	
	Developing skills for learning, skills for life and skills for work
	You should identify opportunities throughout the course for candidates to develop skills for learning, skills for life and skills for work.
	
	Candidates should be aware of the skills they are developing and you can provide advice on opportunities to practise and improve them.
	
	SQA does not formally assess skills for learning, skills for life and skills for work.
	
	There may also be opportunities to develop additional skills depending on the approach centres use to deliver the course. This is for individual teachers and lecturers to manage.
	
	Some examples of potential opportunities to practise or improve these skills are as follows:
	
	Skill
	Skill
	Skill
	Skill
	Skill

	How to develop
	How to develop

	Numeracy
	Numeracy
	Numeracy
	Numeracy
	2.3 Information handling

	Develop skills by setting problem-solving contexts where candidates use data set out in tables or a graphical format as the basis for input to their programs, processing the data to produce the required output.
	Develop skills by setting problem-solving contexts where candidates use data set out in tables or a graphical format as the basis for input to their programs, processing the data to produce the required output.
	

	Health and Wellbeing
	Health and Wellbeing
	Health and Wellbeing
	3.1 Personal learning

	Candidates work autonomously on their project, taking responsibility for completing it within the time available to them. They plan for this and have opportunities to follow up on curiosity, think constructively and learn from experience.
	Candidates work autonomously on their project, taking responsibility for completing it within the time available to them. They plan for this and have opportunities to follow up on curiosity, think constructively and learn from experience.
	

	Employability, enterprise and citizenship
	Employability, enterprise and citizenship
	Employability, enterprise and citizenship
	4.2 Information and communication technology (ICT)
	

	Throughout the course, candidates continually interact with the technology around them. This should provide plenty of opportunities to extend their ICT skills.
	Throughout the course, candidates continually interact with the technology around them. This should provide plenty of opportunities to extend their ICT skills.
	

	Thinking skills
	Thinking skills
	Thinking skills
	5.3 Applying

	Give candidates opportunities to analyse a wide range of problems, apply the knowledge and skills they have acquired, and then test and review their solutions.
	Give candidates opportunities to analyse a wide range of problems, apply the knowledge and skills they have acquired, and then test and review their solutions.
	

	5.4 Analysing and evaluating
	5.4 Analysing and evaluating
	5.4 Analysing and evaluating

	Develop skills through the process of creating computer programs to solve problems and testing them.
	Develop skills through the process of creating computer programs to solve problems and testing them.
	

	
	
	Resources to support the Advanced Higher Computing Science course
	These resources provide clarification and exemplification of some of the skills, knowledge and understanding developed in the Advanced Higher course.
	
	Note 1: appendix 10 uses a relational database that can be found on the Advanced Higher page on SQA’s website.
	
	Note 2: appendices 12-14 use the Advanced Higher example website to exemplify the course requirements for teachers and lecturers. You can download the example website from , but you must not distribute it to candidates, as it would provide a framework for a web-based Advanced Higher project.
	SQA’s secure site
	SQA’s secure site

	
	
	
	Appendix 1: problem analysis (SDD, DDD and WDD)
	Requirements specification
	In addition to the purpose, scope, boundaries, and requirements exemplified at Higher, analysis of any development should identify the constraints of a problem.
	
	Constraints
	Constraints are restrictions that apply to the development. These restrict the changes made to design decisions during the development. Time, scope and cost are the main constraints of project management; however, depending on the type of development, other constraints may apply, for example:
	
	Technical constraints
	
	
	
	 knowledge and/or availability of development tools and programming language

	
	
	 the operating system or platforms that will be used to deliver the working solution

	
	
	 hardware considerations such as capacity

	
	
	 non-functional requirements such as performance considerations

	
	Business constraints
	
	
	
	 schedule and timescales that must be met

	
	
	 available budget

	
	
	 composition and makeup of the development team

	
	
	 software licensing restrictions or requirements

	
	Further constraints
	
	
	
	 economic considerations

	
	
	 political issues

	
	Note: the requirements specification document is often the basis of a legal contract between the client (customer) and the software company writing the software.
	
	Worked example of a requirements specification (SDD)
	Analysis
	The purpose of a program is to allow the end user to search for an item on an unsorted list of data. If a match is found, the program will display the row of data for the item.
	
	Scope
	This development involves creating a modular program. The deliverables include:
	
	
	
	
	 a detailed design of the program structure

	
	
	 a test plan with a completed test data table

	
	
	 a working program

	
	
	 the results of testing

	
	
	 an evaluation report

	
	Boundaries
	
	
	
	 the program will read the data (itemID, price, and number in stock) from a sequential file

	
	
	 if the data is accurate, there is no need to implement input validation

	
	End-user requirements
	End users will expect:
	
	
	
	
	 to enter an itemID while the program is running

	
	
	 the data corresponding to the itemID to be displayed

	
	
	 a user interface that is clearly labelled and easy to use for all user types

	
	Functional requirements
	Functional requirements are defined in terms of the inputs, processes, and outputs listed below. All inputs are imported from a sequential file and all outputs displayed on the screen. The program is activated by double clicking on the file icon and then selecting “Run” from the menu. Each process should be a separate procedure or function that is called from the main program.
	
	Inputs
	
	
	
	 itemID

	
	
	 price

	
	
	 number in stock

	
	Processes
	
	
	
	 read in data from an external file to a 2D array

	
	
	 sort the data in order of itemID from low to high

	
	
	 search the 2D array for the required itemID, based on the end-user input

	
	Output
	
	
	
	 if a match is found, the data (itemID, price, and number in stock) will correspond to the end-user input

	
	
	 if no match is found, a suitable message will inform the end user

	
	Constraints
	The constraints that apply to this development are:
	
	
	
	
	 Live Code, Python, or Visual Basic must be used to develop the program.

	
	
	 The working program will run on the Windows operating system.

	
	
	 The work must be completed within 8 hours.

	Worked example of a requirements specification (DDD)
	Analysis
	GoGoGadgets.com is a company specialising in quirky and unusual gadgets that are available for purchase through its online catalogue.
	
	Before customers can make a purchase, they must first register with the GoGoGadgets website and be allocated a unique customerID.
	
	Customers can browse the product range through an online catalogue. Each item is categorised as one of the following: Toys, Gizmos, Office Distractions, Personal Grooming, and Computer Accessories. All items cost less than £50.
	
	A database is required to store details of customers, items, and orders.
	
	Scope
	This development involves creating a relational database. The deliverables include:
	
	
	
	
	 a detailed design of the database structure

	
	
	 a test plan with a completed test data table

	
	
	 a working database

	
	
	 the results of testing

	
	
	 an evaluation report

	
	Boundaries
	
	
	
	 the database will contain a maximum of 10 000 items

	
	
	 each item will cost £50 or less

	
	
	 all items should be categorised as one of the following: Toys, Gizmos, Office Distractions, Personal Grooming, and Computer Accessories

	
	
	 users must enter a valid email address to register

	
	End-user requirements
	End users (customers) will expect queries that enable them to:
	
	
	
	
	 register as a user and store their details in the database

	
	
	 search for items based on the category of the item

	
	
	 search for items based on the name of an item

	
	
	 sort items by price (low to high), price (high to low) or rating

	
	End users (administrators) will expect queries that enable them to:
	
	
	
	
	 edit the price of items

	
	
	 edit customer contact details

	
	
	 add and remove details of individual items

	
	
	 remove details of customers from the database

	
	
	 view details of all orders placed each month

	Functional requirements
	Functional requirements are defined in terms of the inputs, processes and outputs listed below.
	
	Inputs (customers)
	
	
	
	 register: user email, password, password re-entered, firstName, lastName, address, and postcode:

	—
	—
	 search details: category

	—
	—
	 search details: itemName

	
	
	 sort details: field (price or rating) and order required (ascending or descending)

	
	Inputs (administrators)
	
	
	
	 edit item details: itemID and price

	
	
	 edit customer details: customerID, address, postcode, and email

	
	
	 add item details: itemID, itemName, description, category, and price

	
	
	 delete item details: itemID

	
	
	 delete customer details: customerID

	
	
	 monthly orders: month

	
	Processes
	
	
	
	 auto generate customerID whenever a new customer registers

	
	
	 queries to:

	—
	—
	 insert records into the Customer and Item tables

	—
	—
	 sort item details in order of price and rating

	—
	—
	 delete a specific customer and an item record from the database

	—
	—
	 edit records in the Customer and Item tables

	—
	—
	 search Item table

	—
	—
	 display details of all orders placed in a particular month

	
	Output
	
	
	
	 confirmation of successful:

	—
	—
	 insertions

	—
	—
	 deletions

	—
	—
	 edits

	
	
	 answer tables showing details of:

	—
	—
	 sorted items (sorts)

	—
	—
	 required items (searches)

	
	
	Constraints
	The constraints that apply to this development are:
	
	
	
	
	 The Oracle MySQL server must be used to develop the database.

	
	
	 The working database will run on the Windows operating system.

	
	
	 The work must be completed within 15 hours.

	
	Unified Modelling Language (UML)
	Unified Modelling Language (UML) provides a standard way to visualise, specify, construct, and document the analysis and design of a software system.
	
	UML is a pictorial language used to make software blueprints that can be used to model software and non-software systems.
	
	UML use case diagram
	To model a system, it is important to capture the dynamic behaviour of the system. Dynamic behaviour is when the system is running or operating.
	
	The purpose of a use case diagram is to capture the dynamic aspect of the system. Use case diagrams:
	
	
	
	
	 are used to gather the requirements of the system

	
	
	 are used to get an outside view of the system

	
	
	 identify the internal and external factors that influence the system

	
	
	 show the interaction among the requirements as ‘actors’

	
	
	 aid communication between the client and the developer

	
	Drawing a use case diagram
	Use case diagrams consist of four components:
	
	
	
	
	 a system boundary

	
	
	 actors

	
	
	 use cases

	
	
	 relationships

	
	System boundary
	In a UML case diagram, a system boundary is shown as a rectangle. All components of the use case diagram are shown inside the system boundary.
	
	The system boundary represents the limits of the system being developed: only those actors and processes to be considered are illustrated within the system boundary.
	
	
	Actors
	An actor interacts with the system being developed. The actor may be a human or an entity that interacts with the system, for example another system or server, and is external to the system being developed.
	
	An actor performs a role in a system and may be a primary or secondary actor.
	
	A primary actor is one that uses the system to achieve a goal, for example a customer buying an item.
	
	A secondary actor is one that supports the system in delivering the goal, for example a bank used to pay for the item.
	
	A UML case diagram shows an actor by using the symbol:
	
	
	
	
	
	
	
	
	
	The following are examples of actors, depending on the problem being solved.
	
	Human
	Human
	Human
	Human
	Human

	Systems software
	Systems software

	Hardware
	Hardware

	Timer (clock)
	Timer (clock)

	
	
	
	

	
	

	
	

	
	

	Use cases
	A use case describes an action (process) or a sequence of actions (processes) that must be in the system being developed.
	
	A UML case diagram shows a use case using an ellipse:
	
	
	
	
	
	
	
	Use cases help to determine the requirements of the system under consideration, by describing the functionality that the system will provide.
	
	Use case functionality (process) may be initiated by an actor or may be started by the system itself, providing a useful result to an actor.
	
	Naming use cases
	Each use case must have the name written within the ellipse. The name describes some observable or useful result to an actor.
	
	Examples of naming are Update Subscription, Manage Account, and Place Order.
	
	
	
	
	
	
	
	
	
	Relationships
	A use case diagram can have five types of relationship:
	
	
	
	
	 association between an actor and a use case

	
	
	 generalisation of an actor

	
	
	 extend between two use cases

	
	
	 include between two use cases

	
	
	 generalisation of a use case

	
	
	Association between actor and use case
	Each actor must be associated with at least one use case, although it can be associated with many use cases.
	
	
	
	
	
	
	
	
	
	
	
	
	
	A line with no arrowheads connects an actor to a use case.
	
	Generalisation of an actor
	Generalisation of an actor means one actor can inherit the role of another actor. The descendant actor inherits all the use cases of the ancestor.
	
	
	
	
	
	
	
	
	
	
	
	
	A line, with a single solid arrowhead pointing at the ancestor actor, connects a descendant actor to the ancestor actor.
	
	Extend between two use cases
	Extending a basic use case provides additional functionality to the system.
	
	
	
	
	
	
	
	
	
	An extended use case is connected to a basic use case using a dashed line, with a single solid arrowhead pointing at the basic use case. The label <<extend>> is placed on the line.
	
	
	Include between two use cases
	An included use case is part of the basic use case. It is a mandatory process, as the basic use case is incomplete without it.
	
	
	
	
	
	
	
	
	
	
	
	
	
	An included use case is connected to the basic use case using a dashed line with a single solid arrowhead, pointing at the common basic use case. The label <<include>> is placed on the line.
	
	Generalisation of a use case
	This is similar to generalisation of an actor.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	A line, with a single solid arrowhead pointing at the ancestor use case, connects a descendant use case to the ancestor use case.
	
	Creating a use case diagram
	The following is an example of a use case diagram.
	
	Example
	This example appeared in the 2016 question paper for Advanced Higher Computing Science:
	
	The owners of a monthly magazine decide to update the company website. The current website allows users to access online versions of articles printed in the monthly magazines.
	
	Requirements for the updated website are listed below.
	
	The updated website will allow all users to:
	
	
	
	
	 access a maximum of five free articles every month

	
	
	 search for articles over 12 months old

	
	
	 subscribe to the full service using a secure payment system

	
	The updated website will allow subscribed users to:
	
	
	
	
	 login to gain access to the full service

	
	
	 access any number of articles

	
	
	 search for articles without restriction

	
	
	 renew their subscription at a reduced rate using a secure payment system

	
	Draw a use case diagram to represent these requirements.
	
	
	The following is a sample use case diagram for this scenario.
	
	
	
	
	
	
	
	
	
	
	Appendix 2: Unified Modelling Language (UML) — class diagrams (SDD)
	To model a system, it is important to capture the static behaviour of the system.
	
	A class diagram is used for a quick overview of the system. It describes the structure of a system by showing its:
	
	
	
	
	 classes

	
	
	 variables, structures and types

	
	
	 methods of the class

	
	
	 relationships between the classes

	
	The purpose of a class diagram is to model the static aspect of the system.
	
	Drawing a class diagram
	A class is a blueprint for an object. A class diagram describes each class and the relationships between the classes.
	
	UML class notation
	A class diagram consists of:
	
	
	
	
	 a class name

	
	
	 instance variables and data types:

	—
	—
	 public

	—
	—
	 private

	
	
	 methods:

	—
	—
	 public

	—
	—
	 private

	—
	—
	 constructor

	
	
	 inheritance between classes

	
	Example
	A program is being written for an estate agency to store the details of houses for sale or available to rent.
	
	
	Class diagram for House
	Part of the class diagram for the House class is shown below.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Explanation
	The class diagram indicates the:
	
	
	
	
	 class name

	
	
	 instance variables with data types in the class (instantiation variables)

	
	
	 methods associated with the class (including the constructor method)

	
	House
	−address: String
	−town: String
	−bedrooms: Integer
	−description: String
	−houseValue: Integer
	+house()
	+setAddress()
	+getAddress()
	+updateBedrooms()
	
	Constructor
	A constructor is shown on a UML class diagram in the methods section. The constructor will have the same name as the class name. The constructor method is used to create an individual object that belongs to the class.
	
	Public and private
	The instance variables and methods within a class can be public or private elements.
	
	Public elements can be used by any class; however, private elements can only be used by the owning class.
	
	UML allows any variable or method to be shown as public or private.
	In a class diagram:
	
	
	
	
	 public elements are preceded with a + sign

	
	
	 private elements are preceded with a − sign

	
	The House class, with public and private elements, will look as follows.
	
	House
	−address: String
	−town: String
	−bedrooms: Integer
	−description: String
	−houseValue: Integer
	+house()
	+setAddress()
	+getAddress()
	+updateBedrooms()
	
	The set and get methods (sometimes called mutators and accessors) are needed to retrieve (get) or edit (set) the values held in private variables.
	
	Example code: setAddress()
	Used to edit the value stored in the private instance variable address.
	
	PROCEDURE setAddress(STRING newAddress)
	SET THIS.address TO newAddress
	END FUNCTION
	
	Example code: getAddress()
	Used to retrieve the value stored in the private instance variable address.
	
	FUNCTION getAddress() RETURNS STRING
	RETURN THIS.address
	END FUNCTION
	
	Inheritance
	UML allows the object-oriented construct of inheritance to be exemplified.
	
	A sub-class can inherit all of the properties and methods of a superclass.
	
	On a UML class diagram, this type of inheritance is indicated by an arrow from the sub-class to the superclass.
	
	
	Array of objects
	The instance variables of a class or sub-class can include an array data structure. This can be used to store instances of another class.
	
	An array of objects is written as:
	
	scores: Array of Score[]
	
	where Score is another class. On a UML class diagram, the connection between the array of objects and the object (class) is also indicated by an arrow.
	
	Example
	The program below is for an estate agency to store the details of houses available for sale or to rent.
	House
	−address: String
	−town: String
	−bedrooms: Integer
	−description: String
	−houseValue: Integer
	+house()
	+setAddress()
	+getAddress()
	+updateBedrooms()
	
	ForSale
	ForSale
	ForSale
	ForSale
	ForSale

	
	

	ForRent
	ForRent

	−askingPrice: Real
	−askingPrice: Real
	−askingPrice: Real
	−askingPrice: Real
	−closingDate: String
	−underOffer: Boolean
	−offersReceived: Array of Offer[]
	−sold: Boolean

	
	

	−rentalCost: Real
	−rentalCost: Real
	−deposit: Real
	−rentalLength: Integer
	−rented: Boolean

	+forSale()
	+forSale()
	+forSale()
	+updateAskingPrice()
	+updateSoldStatus()

	
	

	+forRent()
	+forRent()
	+updateRentStatus

	
	
	Offer
	−dateOfOffer: String
	−amountOfOffer: Integer
	+offer()
	+setOfferDate()
	+getOfferDate()
	+setOfferAmount()
	+getOfferAmount()
	Appendix 3: entity-relationship diagrams (DDD)
	The Advanced Higher course requires candidates to describe, exemplify and implement entity-relationship diagrams with three or more entities, indicating:
	
	
	
	
	 entity name

	
	
	 entity type (strong, weak)

	
	
	 attributes

	
	
	 relationship participation (mandatory, optional)

	
	
	 name of relationship

	
	
	 cardinality

	
	Candidates also need to be able to identify relationship participation from an entity-occurrence diagram.
	
	Entity type
	A strong entity is one whose existence does not depend on the existence of any other entity in the same database. The primary key of a strong entity uniquely identifies each occurrence within the entity.
	
	A weak entity is one that depends on one or more strong entities for its existence. For this reason, strong entities are sometimes referred to as owner entities. A weak entity cannot be used independently because its existence depends on one or more owner entities.
	
	The primary key of a weak entity is formed, in part, using the primary key of its owner entity(ies). The presence of a weak entity is indicated by using a double line. The weak entity itself is indicated by using optionality.
	
	Consider the (incomplete) entity-relationship diagram shown below. This illustrates three of the entities that form part of an online ordering system.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	In this situation, the Customer and Order entities both have a primary key that uniquely identifies individual occurrences in each entity.
	
	However, only the Customer entity is a strong entity. Order is a weak entity. Since an order occurrence can only be added if the customer details are known, the Order entity relies on the existence of the Customer entity.
	
	The primary key of the OrderProduct entity is a compound key that is formed using the primary key of the Order entity. This means that OrderProduct is a weak entity. The double line is used to represent the weak entity.
	
	Relationship participation
	Participation refers to the nature of the relationship between entities. Participation can be either mandatory or optional.
	
	Mandatory participation describes a relationship where at least one occurrence of an entity must exist before any occurrences can be added to its associated entity. The mandatory side of any relationship is indicated by using a vertical line.
	
	Optional participation describes a relationship between two entities where it is possible to add occurrences of one entity without the need to have existing occurrences in the associated entity. The optional side of a relationship is indicated by using a bold circle.
	
	Participation has been added to the entity-relationship diagram introduced earlier and is shown below. For completeness, the Product entity has also been added to show all four entities that form the online ordering system.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Customer is a strong entity, as it has its own uniquely identifying primary key and is not dependent on any other entity.
	
	The Customer entity is linked to the Order entity using the places relationship. Each customer in the Customer entity can place many orders but it is also possible for details of a customer to be stored without them placing any orders.
	
	As each order in the Order entity must always have one set of corresponding customer details in the Customer entity, it is not possible to add a new set of details to the Order entity without first having added details of the relevant customer to the Customer entity.
	
	Order is a weak entity. Although it does have its own identifying primary key, its entity occurrence relies on the existence of a matching occurrence in the Customer entity.
	
	The Order entity is linked to the weak OrderProduct entity using the includes relationship. The entity-relationship diagram shows that a new order can be created without a pre-existing, corresponding occurrence in the OrderProduct entity. Once it has been added to the Order entity, the order can be linked to several occurrences within the OrderProduct entity; it is also possible for an order to have no corresponding OrderProduct occurrences.
	
	As OrderProduct is a weak entity, it is not possible to add an OrderProduct occurrence without first having an existing, corresponding occurrence in the Order entity.
	
	The Product entity is linked to OrderProduct entity using the appears in relationship. As Product is a strong entity with its own uniquely identifying primary key, new product details can be added without the need to have any corresponding occurrences in the OrderProduct entity. The entity-relationship diagram shows that each product can appear in many individual OrderProduct occurrences, but it is possible that a product is never ordered.
	
	As OrderProduct is a weak entity, it is not possible to add an OrderProduct occurrence without first having an existing, corresponding occurrence in the Product entity.
	
	Example
	A travel agency uses a relational database to store details on a booking system.
	
	It stores details of Scottish holiday resorts, hotels in each resort, customers and their bookings. These details are arranged in four separate entities.
	
	The attributes stored in each entity are shown below.
	
	Resort
	Resort
	Resort
	Resort
	Resort

	Hotel
	Hotel

	Customer
	Customer

	Booking
	Booking

	resortID
	resortID
	resortID
	resortID
	resortName
	resortType

	hotelRef
	hotelRef
	hotelName
	resortID *
	starRating
	seasonStartDate
	mealPlan
	checkInTime
	pricePersonNight

	customerNo
	customerNo
	firstname
	surname
	address
	town
	postcode

	hotelRef *
	hotelRef *
	customerNo *
	startDate
	numberOfNights
	numberInParty

	
	Strong and weak entities
	From the list of attributes, we can see that Resort, and Customer are all strong entities because they have primary keys that uniquely identify each occurrence within the entities. Booking is a weak entity because its primary key relies on attributes from the Hotel and Customer entities. Hotel is a weak entity because its existence relies on the resortID attribute from the Resort entity.
	Relationship participation
	An entity-occurrence diagram indicating the relationships between the entities is shown below.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Using an entity-occurrence diagram helps to clarify the nature of each relationship.
	
	The entity-occurrence diagram for the travel agency booking system makes it clear that:
	
	
	
	
	 Resort: Hotel is a 1: M relationship:

	—
	—
	 Resort has mandatory participation in this relationship:

	o
	o
	 every hotel must be located in exactly one resort

	—
	—
	 Hotel has optional participation in this relationship:
	o
	o
	o
	 a resort may or may not have a hotel

	
	
	 Hotel: Booking is a 1: M relationship:

	—
	—
	 Hotel has mandatory participation in this relationship:

	o
	o
	 each booking must be associated with exactly one hotel

	—
	—
	 Booking has optional participation in this relationship:
	o
	o
	o
	 a hotel may exist without any bookings

	
	
	
	
	 Customer: Booking is a 1: M relationship:

	-
	-
	 Customer has mandatory participation:
	o
	o
	o
	 every booking must be associated with a customer

	—
	—
	 Booking has optional participation in this relationship:

	o
	o
	 it is possible that some customers never make a booking (for example, details of customers on the mailing list will be stored in the database, even though they have never made any bookings)

	
	
	Entity-relationship diagram
	The complete entity-relationship diagram that represents the relationships between the entities and relationships in the travel agency booking system is shown below.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Appendix 4: data dictionary (DDD)
	A travel agency uses a relational database to store details on a booking system.
	
	It stores details of Scottish holiday resorts, hotels in each resort, customers and their bookings. These details are arranged in four separate entities.
	
	A data dictionary is used to indicate the properties of each attribute needed to define the entities.
	
	Sample data stored in each table of the database are shown below.
	
	Sample data for resort
	Resort ID
	Resort ID
	Resort ID
	Resort ID
	Resort ID

	Resort name
	Resort name

	Resort type
	Resort type

	168
	168
	168
	168

	Ayr
	Ayr

	coastal
	coastal

	347
	347
	347

	Portree
	Portree

	island
	island

	
	Sample data for hotel
	Hotel ref
	Hotel ref
	Hotel ref
	Hotel ref
	Hotel ref

	Hotel name
	Hotel name

	Resort ID
	Resort ID

	Star rating
	Star rating

	Season start date
	Season start date

	Meal plan
	Meal plan

	Check-in time
	Check-in time

	Price/person/night (£)
	Price/person/night (£)

	AY72
	AY72
	AY72
	AY72

	Cliff Top
	Cliff Top

	168
	168

	3
	3

	2019/04/29
	2019/04/29

	Half Board
	Half Board

	14:30:00
	14:30:00

	85.50
	85.50

	PR04
	PR04
	PR04

	Sea View
	Sea View

	347
	347

	5
	5

	2019/05/01
	2019/05/01

	Bed and Breakfast
	Bed and Breakfast

	16:00:00
	16:00:00

	58.99
	58.99

	AY19
	AY19
	AY19

	Glee
	Glee

	168
	168

	2
	2

	
	

	Full Board
	Full Board

	15:00:00
	15:00:00

	179.00
	179.00

	
	Sample data for customer
	Customer No
	Customer No
	Customer No
	Customer No
	Customer No

	Firstname
	Firstname

	Surname
	Surname

	Address
	Address

	Town
	Town

	Postcode
	Postcode

	315
	315
	315
	315

	Edwina
	Edwina

	Jones
	Jones

	121 Main Street
	121 Main Street

	Greenock
	Greenock

	PA16 1JK
	PA16 1JK

	426
	426
	426

	Omar
	Omar

	Shakir
	Shakir

	26a High Bridge
	26a High Bridge

	Perth
	Perth

	PH42 6QW
	PH42 6QW

	
	Sample data for booking
	Hotel ref
	Hotel ref
	Hotel ref
	Hotel ref
	Hotel ref

	Customer No
	Customer No

	Start date
	Start date

	Number of nights
	Number of nights

	Number in party
	Number in party

	PR04
	PR04
	PR04
	PR04

	315
	315

	2018/06/01
	2018/06/01

	3
	3

	2
	2

	AY19
	AY19
	AY19

	315
	315

	2018/07/12
	2018/07/12

	4
	4

	4
	4

	PR04
	PR04
	PR04

	315
	315

	2019/06/02
	2019/06/02

	2
	2

	2
	2

	
	
	In the Advanced Higher course, data dictionary attribute types are expressed as SQL data types.
	
	The completed data dictionary for the travel agency database is shown below.
	
	Entity: Resort
	Attribute name
	Attribute name
	Attribute name
	Attribute name
	Attribute name

	Key
	Key

	Type
	Type

	Size
	Size

	Required
	Required

	Validation
	Validation

	resortID
	resortID
	resortID
	resortID

	PK
	PK

	integer
	integer

	
	

	yes
	yes

	
	

	resortName
	resortName
	resortName

	
	

	varchar
	varchar

	20
	20

	yes
	yes

	
	

	resortType
	resortType
	resortType

	
	

	varchar
	varchar

	20
	20

	yes
	yes

	Restricted choice: coastal, city, island, country
	Restricted choice: coastal, city, island, country

	
	Entity: Hotel
	Attribute name
	Attribute name
	Attribute name
	Attribute name
	Attribute name

	Key
	Key

	Type
	Type

	Size
	Size

	Required
	Required

	Validation
	Validation

	hotelRef
	hotelRef
	hotelRef
	hotelRef

	PK
	PK

	varchar
	varchar

	4
	4

	yes
	yes

	Length=4
	Length=4

	hotelName
	hotelName
	hotelName

	
	

	varchar
	varchar

	20
	20

	yes
	yes

	
	

	resortID
	resortID
	resortID

	FK
	FK

	integer
	integer

	
	

	Yes
	Yes

	Existing resortID from Resort table
	Existing resortID from Resort table

	starRating
	starRating
	starRating

	
	

	integer
	integer

	
	

	yes
	yes

	Range: >=1 and <=5
	Range: >=1 and <=5

	seasonStartDate
	seasonStartDate
	seasonStartDate

	
	

	date
	date

	
	

	no
	no

	
	

	mealPlan
	mealPlan
	mealPlan

	
	

	varchar
	varchar

	17
	17

	yes
	yes

	Restricted choice: see list below*
	Restricted choice: see list below*

	checkInTime
	checkInTime
	checkInTime

	
	

	time
	time

	
	

	yes
	yes

	
	

	pricePersonNight
	pricePersonNight
	pricePersonNight

	
	

	float
	float

	
	

	yes
	yes

	Range: >=50 and <=250
	Range: >=50 and <=250

	
	* Restricted choice for mealPlan: Room Only, Bed and Breakfast, Half Board, Full Board
	
	Entity: Customer
	Attribute name
	Attribute name
	Attribute name
	Attribute name
	Attribute name

	Key
	Key

	Type
	Type

	Size
	Size

	Required
	Required

	Validation
	Validation

	customerNo
	customerNo
	customerNo
	customerNo

	PK
	PK

	integer
	integer

	
	

	yes
	yes

	Auto increment
	Auto increment

	firstname
	firstname
	firstname

	
	

	varchar
	varchar

	20
	20

	yes
	yes

	
	

	surname
	surname
	surname

	
	

	varchar
	varchar

	20
	20

	yes
	yes

	
	

	address
	address
	address

	
	

	varchar
	varchar

	40
	40

	yes
	yes

	
	

	town
	town
	town

	
	

	varchar
	varchar

	20
	20

	yes
	yes

	
	

	postcode
	postcode
	postcode

	
	

	varchar
	varchar

	8
	8

	yes
	yes

	Length<=8
	Length<=8

	
	Entity: Booking
	Attribute name
	Attribute name
	Attribute name
	Attribute name
	Attribute name

	Key
	Key

	Type
	Type

	Size
	Size

	Required
	Required

	Validation
	Validation

	hotelRef
	hotelRef
	hotelRef
	hotelRef

	PK FK
	PK FK

	varchar
	varchar

	4
	4

	yes
	yes

	Existing hotelRef from Hotel table
	Existing hotelRef from Hotel table

	customerNo
	customerNo
	customerNo

	PK FK
	PK FK

	integer
	integer

	
	

	yes
	yes

	Existing customer# from Customer table
	Existing customer# from Customer table

	startDate
	startDate
	startDate

	PK
	PK

	date
	date

	
	

	yes
	yes

	
	

	numberNights
	numberNights
	numberNights

	
	

	integer
	integer

	
	

	yes
	yes

	Range: >=1
	Range: >=1

	numberInParty
	numberInParty
	numberInParty

	
	

	integer
	integer

	
	

	yes
	yes

	Range: >=1
	Range: >=1

	
	Appendix 5: query design (DDD)
	A travel agency uses a relational database to store details on a booking system.
	
	It stores details of Scottish holiday resorts, hotels in each resort, customers and their bookings. These details are stored in four separate entities.
	
	The attributes stored in each entity are shown below.
	
	Resort
	Resort
	Resort
	Resort
	Resort

	Hotel
	Hotel

	Customer
	Customer

	Booking
	Booking

	resortID
	resortID
	resortID
	resortID
	resortName
	resortType

	hotelRef
	hotelRef
	hotelName
	resortID *
	starRating
	seasonStartDate
	mealPlan
	checkInTime
	pricePersonNight

	customerNo
	customerNo
	firstname
	surname
	address
	town
	postcode

	hotelRef*
	hotelRef*
	customerNo*
	startDate
	numberOfNights
	numberInParty

	
	The design of an SQL query should indicate:
	
	
	
	
	 the fields and/or calculations required

	
	
	 the table(s) or query(-ies) needed to provide the details required

	
	
	 any search criteria to be applied

	
	
	 what grouping is needed (if appropriate)

	
	
	 the criteria to be applied to the grouping (if appropriate)

	
	
	 the field(s) used to sort the data and the type(s) of sort required

	
	Encourage candidates to plan — this helps to reduce the amount of frustration they may otherwise encounter when working with the SQL code.
	
	Candidates can use a simple table template to indicate the planned design of the SQL query, see the following examples.
	
	Example 1: HAVING with GROUPING and row COUNT
	Display the resort name and number of hotels in any resort that has at least two hotels.
	
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)

	resortName, Number of Hotels = COUNT(*)
	resortName, Number of Hotels = COUNT(*)

	Table(s) query(-ies)
	Table(s) query(-ies)
	Table(s) query(-ies)
	Table(s) query(-ies)

	Resort, Hotel
	Resort, Hotel

	Search criteria
	Search criteria
	Search criteria

	
	

	Grouping
	Grouping
	Grouping

	resortName
	resortName

	Having
	Having
	Having

	COUNT(*) >= 2
	COUNT(*) >= 2

	Sort order
	Sort order
	Sort order

	
	

	
	Example 2: HAVING with GROUPING and sort
	Display the full name and the total cost of all bookings for each customer. The query should only list details of customers whose total cost exceeds £2000 and should list the details of the biggest spending customer first.
	
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)

	firstName, surname, Total cost of all Bookings = SUM(pricePersonNight * numberNights * numberInParty)
	firstName, surname, Total cost of all Bookings = SUM(pricePersonNight * numberNights * numberInParty)

	Table(s) query(-ies)
	Table(s) query(-ies)
	Table(s) query(-ies)
	Table(s) query(-ies)

	Customer, Booking, Hotel
	Customer, Booking, Hotel

	Search criteria
	Search criteria
	Search criteria

	
	

	Grouping
	Grouping
	Grouping

	firstName, surname
	firstName, surname

	Having
	Having
	Having

	SUM(pricePersonNight * numberNights * numberInParty) >= 2000
	SUM(pricePersonNight * numberNights * numberInParty) >= 2000

	Sort order
	Sort order
	Sort order

	SUM(pricePersonNight * numberNights * numberInParty) DESC
	SUM(pricePersonNight * numberNights * numberInParty) DESC

	
	Example 3: HAVING with conditional statement
	Display the average price per person, per night for each holiday resort. Display only those resorts with an average price per person, per night that exceeds £100.
	
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)

	resortName, Average Price = AVG(pricePersonNight)
	resortName, Average Price = AVG(pricePersonNight)

	Table(s) query(-ies)
	Table(s) query(-ies)
	Table(s) query(-ies)
	Table(s) query(-ies)

	Resort, Hotel
	Resort, Hotel

	Search criteria
	Search criteria
	Search criteria

	
	

	Grouping
	Grouping
	Grouping

	resortName
	resortName

	Having
	Having
	Having

	AVG(pricePersonNight) > 100
	AVG(pricePersonNight) > 100

	Sort order
	Sort order
	Sort order

	
	

	Example 4: NOT operator
	Display the name and type of non-coastal resort, together with the name and meal plan for each hotel that meets these criteria.
	
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)

	resortName, resortType, hotelName, mealPlan
	resortName, resortType, hotelName, mealPlan

	Table(s) query(-ies)
	Table(s) query(-ies)
	Table(s) query(-ies)
	Table(s) query(-ies)

	Resort, Hotel
	Resort, Hotel

	Search criteria
	Search criteria
	Search criteria

	resortType NOT "coastal"
	resortType NOT "coastal"

	Grouping
	Grouping
	Grouping

	
	

	Having
	Having
	Having

	
	

	Sort order
	Sort order
	Sort order

	
	

	
	Example 5: BETWEEN operator with numeric values
	Display the full name and total number of bookings made by each customer who has made between two and four bookings.
	
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)

	firstName, surname, Total Bookings = COUNT(*)
	firstName, surname, Total Bookings = COUNT(*)

	Table(s) query(-ies)
	Table(s) query(-ies)
	Table(s) query(-ies)
	Table(s) query(-ies)

	Customer, Booking
	Customer, Booking

	Search criteria
	Search criteria
	Search criteria

	
	

	Grouping
	Grouping
	Grouping

	surname, firstName
	surname, firstName

	Having
	Having
	Having

	COUNT(*) BETWEEN 2 and 4;
	COUNT(*) BETWEEN 2 and 4;

	Sort order
	Sort order
	Sort order

	
	

	
	Example 6: BETWEEN operator with text
	Display the surname, postcode, and town of customers who live in towns that begin with the letters ‘E’ through to ‘M’. The query should list customers in alphabetical order of town.
	
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)

	surname, postcode, town
	surname, postcode, town

	Table(s) query(-ies)
	Table(s) query(-ies)
	Table(s) query(-ies)
	Table(s) query(-ies)

	Customer
	Customer

	Search criteria
	Search criteria
	Search criteria

	town BETWEEN "E" and "M"
	town BETWEEN "E" and "M"

	Grouping
	Grouping
	Grouping

	
	

	Having
	Having
	Having

	
	

	Sort order
	Sort order
	Sort order

	town ASC
	town ASC

	
	Example 7: IN operator
	Display the hotel name and meal plan for hotels that offer room only, half board or full board.
	
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)

	hotelName, mealPlan
	hotelName, mealPlan

	Table(s) query(-ies)
	Table(s) query(-ies)
	Table(s) query(-ies)
	Table(s) query(-ies)

	Hotel
	Hotel

	Search criteria
	Search criteria
	Search criteria

	mealPlan IN the list ("Room Only", "Half Board", "Full Board")
	mealPlan IN the list ("Room Only", "Half Board", "Full Board")

	Grouping
	Grouping
	Grouping

	
	

	Having
	Having
	Having

	
	

	Sort order
	Sort order
	Sort order

	
	

	
	Example 8: NOT with the IN operator
	Display the name and type of resorts that are neither city nor country resorts.
	
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)

	resortName, resortType
	resortName, resortType

	Table(s) query(-ies)
	Table(s) query(-ies)
	Table(s) query(-ies)
	Table(s) query(-ies)

	Resort
	Resort

	Search criteria
	Search criteria
	Search criteria

	resortType NOT IN the list ("city", "country");
	resortType NOT IN the list ("city", "country");

	Grouping
	Grouping
	Grouping

	
	

	Having
	Having
	Having

	
	

	Sort order
	Sort order
	Sort order

	
	

	
	
	Example 9: subquery in the where clause
	Display the hotel name, star rating, and price per person for the most expensive hotel.
	
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)

	hotelName, starRating, pricePersonNight
	hotelName, starRating, pricePersonNight

	Table(s) query(-ies)
	Table(s) query(-ies)
	Table(s) query(-ies)
	Table(s) query(-ies)

	Hotel
	Hotel

	
	
	
	
	
	

	
	

	
	

	Field(s)/ calculation(s)
	Field(s)/ calculation(s)

	MAX(pricePersonNight)
	MAX(pricePersonNight)

	Search criteria
	Search criteria
	Search criteria
	Search criteria

	pricePersonNight =
	pricePersonNight =

	Inner query
	Inner query

	Table(s)
	Table(s)

	Hotel
	Hotel

	
	
	

	
	

	
	

	Search criteria
	Search criteria

	
	

	
	Grouping
	Grouping
	Grouping
	Grouping
	Grouping

	
	

	Having
	Having
	Having
	Having

	
	

	Sort order
	Sort order
	Sort order

	
	

	
	Example 10: subquery in the where clause
	Display the resort name, hotel name, and star rating of all hotels that have a below-average star rating.
	
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)

	resortName, hotelName, starRating
	resortName, hotelName, starRating

	Table(s) query(-ies)
	Table(s) query(-ies)
	Table(s) query(-ies)
	Table(s) query(-ies)

	Resort, Hotel
	Resort, Hotel

	
	
	
	
	
	

	
	

	
	

	Field(s)/ calculation(s)
	Field(s)/ calculation(s)

	AVG(starRating)
	AVG(starRating)

	Search criteria
	Search criteria
	Search criteria
	Search criteria

	starRating <
	starRating <

	Inner query
	Inner query

	Table(s)
	Table(s)

	Hotel
	Hotel

	
	
	

	
	

	
	

	Search criteria
	Search criteria

	
	

	
	Grouping
	Grouping
	Grouping
	Grouping
	Grouping

	
	

	Having
	Having
	Having
	Having

	
	

	Sort order
	Sort order
	Sort order

	
	

	
	
	
	
	Example 11: subquery using the NOT operator
	Display the full name and postcode of the customer who booked the same hotel as the customer with ID 111.
	
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)

	resortName, hotelName, starRating
	resortName, hotelName, starRating

	Table(s) query(-ies)
	Table(s) query(-ies)
	Table(s) query(-ies)
	Table(s) query(-ies)

	Resort, Hotel
	Resort, Hotel

	
	
	
	
	
	

	customerNo NOT 111
	customerNo NOT 111

	
	

	
	

	
	

	Search
	Search
	Search
	Search

	
	

	
	

	Field(s)/ calculation(s)
	Field(s)/ calculation(s)

	hotelRef
	hotelRef

	criteria
	criteria
	criteria

	AND hotelRef =
	AND hotelRef =

	Inner query
	Inner query

	Table(s)
	Table(s)

	Booking
	Booking

	
	
	

	
	

	
	

	Search criteria
	Search criteria

	customerNo = 111
	customerNo = 111

	
	Grouping
	Grouping
	Grouping
	Grouping
	Grouping

	
	

	Having
	Having
	Having
	Having

	
	

	Sort order
	Sort order
	Sort order

	
	

	
	Example 12: subquery using the IN operator
	Display the hotel name and star rating of all hotels booked by the customer with ID 315.
	
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)

	hotelName, starRating
	hotelName, starRating

	Table(s) query(-ies)
	Table(s) query(-ies)
	Table(s) query(-ies)
	Table(s) query(-ies)

	Hotel
	Hotel

	
	
	
	
	
	

	
	

	
	

	Field(s)/ calculation(s)
	Field(s)/ calculation(s)

	hotelName
	hotelName

	Search criteria
	Search criteria
	Search criteria
	Search criteria

	hotelName IN
	hotelName IN

	Inner query
	Inner query

	Table(s)
	Table(s)

	Hotel, Booking
	Hotel, Booking

	
	
	

	
	

	
	

	Search criteria
	Search criteria

	customerNo = 315
	customerNo = 315

	
	Grouping
	Grouping
	Grouping
	Grouping
	Grouping

	
	

	Having
	Having
	Having
	Having

	
	

	Sort order
	Sort order
	Sort order

	
	

	
	
	Example 13: subquery using the NOT and IN operators
	Display the names and types of resort not booked by the customer with ID 315.
	
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)

	resortName, resortType
	resortName, resortType

	Table(s) query(-ies)
	Table(s) query(-ies)
	Table(s) query(-ies)
	Table(s) query(-ies)

	Resort
	Resort

	
	
	
	
	
	

	
	

	
	

	Field(s)/ calculation(s)
	Field(s)/ calculation(s)

	resortName
	resortName

	Search criteria
	Search criteria
	Search criteria
	Search criteria

	resortName NOT IN
	resortName NOT IN

	Inner query
	Inner query

	Table(s)
	Table(s)

	Resort, Hotel, Booking
	Resort, Hotel, Booking

	
	
	

	
	

	
	

	Search criteria
	Search criteria

	customerNo = 315
	customerNo = 315

	
	Grouping
	Grouping
	Grouping
	Grouping
	Grouping

	
	

	Having
	Having
	Having
	Having

	
	

	Sort order
	Sort order
	Sort order

	
	

	
	Example 14: subquery using the ANY operator
	Display the customer number, hotel reference, and booking cost for any booking that costs more than any bookings made by customers with surnames Lowden, Shawfair or Sheriffhall.
	
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)

	customerNo, hotelRef, Booking Cost = pricePersonNight * numberNights * numberInParty
	customerNo, hotelRef, Booking Cost = pricePersonNight * numberNights * numberInParty

	Table(s) query(-ies)
	Table(s) query(-ies)
	Table(s) query(-ies)
	Table(s) query(-ies)

	Booking. Hotel
	Booking. Hotel

	
	
	
	
	
	

	
	

	
	

	Field(s)/ calculation(s)
	Field(s)/ calculation(s)

	pricePersonNight * numberNights * numberInParty
	pricePersonNight * numberNights * numberInParty

	Search criteria
	Search criteria
	Search criteria
	Search criteria

	pricePersonNight * numberNights * numberInParty > ANY
	pricePersonNight * numberNights * numberInParty > ANY

	Inner query
	Inner query

	Table(s)
	Table(s)

	Booking, Hotel, Customer
	Booking, Hotel, Customer

	
	
	

	
	

	
	

	Search criteria
	Search criteria

	surname in ("Sheriffhall", "Lowden", "Shawfair")
	surname in ("Sheriffhall", "Lowden", "Shawfair")

	
	Grouping
	Grouping
	Grouping
	Grouping
	Grouping

	
	

	Having
	Having
	Having
	Having

	
	

	Sort order
	Sort order
	Sort order

	
	

	Example 15: subquery using the EXISTS operator
	Display the details (hotel name, star rating, meal plan and resort name) of all 3-star hotel bookings. The query should list the hotels in alphabetical order of meal plan.
	
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)

	hotelName, mealPlan, starRating, resortName
	hotelName, mealPlan, starRating, resortName

	Table(s) query(-ies)
	Table(s) query(-ies)
	Table(s) query(-ies)
	Table(s) query(-ies)

	Hotel, Resort
	Hotel, Resort

	
	
	
	
	
	

	starRating = 3
	starRating = 3

	
	

	
	

	
	

	Search
	Search
	Search
	Search

	
	

	
	

	Field(s)/ calculation(s)
	Field(s)/ calculation(s)

	*
	*

	criteria
	criteria
	criteria

	AND EXISTS
	AND EXISTS

	Inner query
	Inner query

	Table(s)
	Table(s)

	Booking
	Booking

	
	
	

	
	

	
	

	Search criteria
	Search criteria

	
	

	
	Grouping
	Grouping
	Grouping
	Grouping
	Grouping

	
	

	Having
	Having
	Having
	Having

	
	

	Sort order
	Sort order
	Sort order

	mealPlan ASC
	mealPlan ASC

	
	Example 16: subquery using the NOT and EXISTS operators
	Display the full name and address of customers who have never made a booking.
	
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)

	firstName, surname, address
	firstName, surname, address

	Table(s) query(-ies)
	Table(s) query(-ies)
	Table(s) query(-ies)
	Table(s) query(-ies)

	Customer
	Customer

	
	
	
	
	
	

	
	

	
	

	Field(s)/ calculation(s)
	Field(s)/ calculation(s)

	
	

	Search criteria
	Search criteria
	Search criteria
	Search criteria

	NOT EXISTS
	NOT EXISTS

	Inner query
	Inner query

	Table(s)
	Table(s)

	Booking
	Booking

	
	
	

	
	

	
	

	Search criteria
	Search criteria

	
	

	
	Grouping
	Grouping
	Grouping
	Grouping
	Grouping

	
	

	Having
	Having
	Having
	Having

	
	

	Sort order
	Sort order
	Sort order

	
	

	
	
	Example 17: query requiring two subqueries
	Display the name, star rating, and total number of customer nights booked for hotels that have:
	
	
	
	
	 a total number of customer nights booked that is more than the total number of nights booked by the customer with ID 290 (number of nights booked multiplied by number in party)

	and
	
	
	
	 a star rating which is less than that of the hotel with the highest star rating

	
	The query should list the hotels from lowest star rating to the highest.
	
	
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)
	Field(s)/ calculation(s)

	hotelName, starRating, Nights x Number in Party = SUM(numberNights*numberInParty)
	hotelName, starRating, Nights x Number in Party = SUM(numberNights*numberInParty)

	Table(s) query(-ies)
	Table(s) query(-ies)
	Table(s) query(-ies)
	Table(s) query(-ies)

	Hotel, Booking
	Hotel, Booking

	
	
	
	
	
	

	
	

	
	

	Field(s)/ calculation(s)
	Field(s)/ calculation(s)

	SUM(numberNights * numberInParty)
	SUM(numberNights * numberInParty)

	Search criteria
	Search criteria
	Search criteria
	Search criteria

	numberNights * numberInParty >
	numberNights * numberInParty >

	Inner query
	Inner query

	Table(s)
	Table(s)

	Booking
	Booking

	
	
	

	
	

	
	

	Search criteria
	Search criteria

	customerNo = 290
	customerNo = 290

	
	
	
	
	
	

	
	

	
	

	Field(s)/ calculation(s)
	Field(s)/ calculation(s)

	MAX(starRating)
	MAX(starRating)

	Search criteria
	Search criteria
	Search criteria
	Search criteria

	AND starRating <
	AND starRating <

	Inner query
	Inner query

	Table(s)
	Table(s)

	Hotel
	Hotel

	
	
	

	
	

	
	

	Search criteria
	Search criteria

	
	

	
	Grouping
	Grouping
	Grouping
	Grouping
	Grouping

	hotelName, starRating
	hotelName, starRating

	Sort order
	Sort order
	Sort order
	Sort order

	starRating ASC
	starRating ASC

	
	Appendix 6: server-side process design (WDD)
	In this course, candidates are required to read and understand pseudocode, and structure diagram designs for server-side processes. They are also required to write pseudocode for design server-side processes.
	
	Processes can include:
	
	
	
	
	 opening and closing a database connection

	
	
	 initialising and assigning session variables

	
	
	 selection using conditions

	
	
	 executing SQL statements

	
	
	 displaying the results of SQL queries

	
	Examples of these processes are in the structure diagrams and pseudocode below.
	
	Example 1: executing an SQL query and displaying results
	In this example, the user enters search criteria into a web form to find contact details for companies in a ‘Suppliers’ database. The results of the query are displayed in an HTML table.
	
	Pseudocode
	
	1
	1
	1
	 assign server connection variables

	2
	2
	 open connection to Suppliers database on database server

	3
	3
	 receive search criteria from HTML ‘find suppliers’ form

	4
	4
	 assign search criteria to PHP variables

	5
	5
	 execute SQL query to find company names and phone numbers of selected suppliers

	6
	6
	 display the results of the query in an HTML table

	7
	7
	 close connection to Suppliers database server

	
	6.1 if number of rows = 0
	6.2 display ‘no companies found’
	6.3 else
	6.4 display opening HTML table element
	6.5 display field names (companyName, phoneNo) in header row of the HTML table
	6.6 display names and phone numbers results in individual HTML table rows
	6.7 display closing HTML table element
	6.8 end if
	
	Structure diagram
	
	
	Figure
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Refinement of ‘Display results’
	
	
	Figure
	
	
	
	
	Example 2: authenticating a user login
	In this example, the user (customer) needs to log into a website. The customer username and password are authenticated by checking that the values exist within a ‘Customers’ database. Once authenticated, the customer login details are stored in PHP session variables.
	
	Pseudocode
	
	1
	1
	1
	 start PHP session

	2
	2
	 use HTML to display login form

	3
	3
	 authenticate username and password submitted by the customer

	4
	4
	 if authenticated, assign contents of login variables to session variables

	
	3.1 assign server connection variables
	3.2 open connection to Customers database on database server
	3.3 assign customer login details to PHP variables
	3.4 execute SQL query to confirm customer login details
	3.5 close connection to Customers database server
	
	Structure diagram
	
	Refinement of ‘Authenticate customer username and password’
	
	
	Appendix 7: linked lists (SDD)
	Single linked list
	A linked list is a dynamic data structure. Unlike a 1-D array (which stores each piece of data sequentially in memory), a linked list stores each data item and a pointer (address) to the next data item.
	
	A linked list is a dynamic data structure, as it has no fixed size — it grows and shrinks as required; whereas a 1-D array typically has a set size based on its declaration.
	
	Each element of a linked list is called a NODE. The start of a linked list is called the HEAD and the last element points to the NULL. Each node has its own address in memory, and stores the data item and a pointer to the next node.
	
	The following diagram represents a node.
	
	Figure
	
	A simple example of a single linked list with four nodes is shown below. The four node linked list stores the words ‘Computing’, ‘Science’, ‘is’, and ‘fun’.
	Figure
	
	Points to note:
	
	
	
	
	 A linked list can store data of multiple data types; a 1-D array is usually limited to one.

	
	
	 A linked list is a linear data structure; to get to a specific data item, it must always start at the HEAD and work through each node until the data is found.

	
	
	 A single linked list can only be traversed in one direction — from HEAD to NULL.

	
	
	 Inserting data into a linked list is more efficient than a 1-D array, as only a pointer is changed rather than shifting the contents of the list (array) into different memory locations.

	
	
	 Deleting data from a linked list is more efficient than a 1-D array, as only a pointer is changed rather than shifting the contents of the list (array) into different memory locations.

	
	Inserting new data
	To insert new data into the list, for example inserting the word ‘really’ between ‘is’ and ‘fun’, a new node is created somewhere in memory and the pointers updated accordingly. To then update the pointer, the list is traversed until ‘is’ is found.
	
	Original
	
	
	Figure
	
	
	The following is an updated diagram with the word ‘really’ inserted at memory location 555.
	
	Updated
	Figure
	
	
	
	Using a 1-D array data structure and inserting data at a given index means that all data beyond that point is shifted along one location in memory. A linked list is more efficient than a 1-D array, as no data is moved and just one pointer is updated.
	
	Removing data
	To remove data from the list, for example removing the word ‘Science’, the memory location where the node is stored is freed up and the pointer on the node removed before it is updated. To do this, the list is traversed until the node before ‘Science’ is found.
	
	Original
	
	Figure
	
	
	The following is an updated diagram with the word ‘Science’ removed.
	Updated
	Figure
	
	Using a 1-D array data structure and removing data at a given index means that all data beyond that point is shifted along one location in memory. A linked list is more efficient than a 1-D array, as no data is moved and just one pointer is updated.
	
	Double linked list
	A double linked list is very similar to a single linked list, but has an additional pointer in each node that stores the address of the previous node.
	
	The following diagram represents a node.
	
	Figure
	
	Using the same example as for the single linked list, a sample of a double linked list with four nodes is shown below. The four node linked list stores the words ‘Computing’, ‘Science’, ‘is’, and ‘fun’.
	Figure
	
	
	Points to note:
	
	
	
	
	 A double linked list can be traversed in both directions.

	
	
	 A double linked list requires additional memory, as an extra pointer is being stored on each node.

	
	
	 If the pointer to the node to be removed is known, then removing a node in a double linked list is more efficient than in a single linked list:

	—
	—
	 In a single linked list, to remove a node, the pointer from the previous node is required — to find the pointer, the list is traversed.

	—
	—
	 In a double linked list, the previous node is determined using the previous pointer.

	
	
	 To insert a node into a single linked list, the list is traversed until the position is found.

	
	
	 To insert a node into a double linked list, the list is not traversed if the node is being inserted:

	—
	—
	 at the start of the list

	—
	—
	 at the end of the list

	—
	—
	 after a given node

	or
	—
	—
	—
	 before a given node

	
	
	Inserting new data
	To insert new data into the list, for example the word ‘really’ to go after the node at address 302, a new node is created somewhere in memory and the pointers before it and after it are updated accordingly.
	
	Original
	Figure
	
	
	The following is an updated diagram with the word ‘really’ inserted at memory location 555.
	
	Updated
	
	Figure
	
	
	Removing data
	To remove data from the list, for example the word ‘Science’, the memory location where the node is stored is freed up and the pointer on the node before and after it is updated.
	
	Original
	Figure
	
	The following is an updated diagram with the word ‘Science’ removed.
	
	Updated
	Figure
	Appendix 8: connecting to a database using a programming language (SDD)
	The Advanced Higher Computing Science course specifies that candidates use a programming language to read from, and write data to, database files using SQL. Python, Visual Basic and Java are all popular languages used by many centres to deliver the course content. Note: all of these languages can create a database connection and execute an SQL statement.
	
	The question paper will only contain SQA’s standardised reference language, so the code included in this appendix does not appear in the question paper. This appendix focuses on supporting teachers and lecturers to deliver the content, and helping candidates develop their projects.
	
	For each of the three languages above, the following is included:
	
	
	
	
	 advice on set-up requirements

	
	
	 examples of instructions and syntax required to create a database connection

	
	
	 examples of SQL execution

	
	Python
	Set-up requirements
	To connect to a MySQL database using Python, the database driver ‘MySQL Connectors’ must be installed. In a school or college, IT technicians will probably install this, as teachers and lecturers are unlikely to have the required administration rights.
	
	If candidates want to install Python at home, they can use the following instructions for Windows 10. Similar instructions for Linux or Apple OS are available online — these set-up instructions assume that Python is already installed.
	
	Step 1 — checking the system path to Python is set up
	Before installing Python, check that a system path is set up. This ensures that the operating system knows where the python.exe application is located.
	
	Open the folder containing the python.exe program. Click on the address bar at the top of the window, type ‘cmd’ and press enter to open the command window.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Type ‘python’ in the command window. If the system path is already set up, a message stating the version of Python installed is displayed — move on to step 2.
	
	
	
	
	
	
	
	
	
	
	
	
	If an error is displayed, close the command window, click on the address at the top of the window again and copy the address. The address is required later.
	
	Open the ‘Window Settings’ folder and type ‘advanced’ into the search bar at the top.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Select ‘View advanced system settings’ followed by Environment Variables.
	
	
	
	
	
	
	
	
	
	The system path is set up using this window. Click ‘Path’ followed by the ‘Edit’ button, as shown below.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	In the ‘Edit environment variable’ window, click ‘New’ and paste in the location of Python copied earlier from the address bar of the Python window.
	
	Step 2 — installing the ‘mysql-connector’ library using pip
	Python maintains a list of online installable libraries. Any of these libraries can be installed using the cmd prompt from within the Python folder (see step 1).
	
	
	Open the window containing the python.exe file, and type ‘cmd’ into the address bar to open the command window.
	
	Enter the following instruction: pip install mysql-connector
	
	
	
	
	
	
	
	
	
	
	
	Note: if when using ‘pip install’ it generates the error “'pip' is not recognized as an internal or external command, operable program or batch file.”, then pip also requires a system path set up. Repeat the system path instructions using the address of the pip.exe file. You can find this file inside the Python Scripts folder. Once the path is added, close and reopen the cmd window from the Python folder. Re-enter the pip install mysql-connector instruction.
	
	Creating a connection
	The code below creates a connection to a MySQL database.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Line 1 imports the mysql-connector library.
	
	Lines 3 to 8 assign the database connection parameters for a chosen database and make a connection, ‘conn’.
	
	To ensure connection errors do not crash the program, place the connection code inside a Python try structure. The ‘try’ statement prints an error if the connection fails. If the connection is successful, any code placed within the ‘else’ statement will be executed.
	
	SQL execution
	The following examples use a single table. Set this up using MySQL before any code is executed, ensuring that:
	
	
	
	
	 the database name is ‘StudentData’

	
	
	 the table name is ‘Student’

	
	A data dictionary for the Student table is shown below.
	
	Entity
	Entity
	Entity
	Entity
	Entity

	Attributes
	Attributes

	Type
	Type

	Size
	Size

	Student
	Student
	Student
	Student

	studentid
	studentid

	int
	int

	4
	4

	
	
	

	firstname
	firstname

	VARCHAR
	VARCHAR

	25
	25

	
	
	

	lastname
	lastname

	VARCHAR
	VARCHAR

	25
	25

	
	
	

	address
	address

	VARCHAR
	VARCHAR

	40
	40

	
	
	
	
	
	
	
	
	
	Insert example data for the table before executing the examples.
	
	
	
	
	
	
	
	
	
	
	Example 1 — SELECT and display results
	The code below displays every row from the Student table.
	
	
	
	
	
	
	
	
	
	
	Line 13 associates the database connection with a new instance of a cursor object. Cursor objects contain a variety of methods used to manipulate databases and data.
	
	Line 14 uses the cursor’s execute() method to execute an SQL statement.
	
	
	Line 15 uses the fetchall() method to return the result as a list of tuples as shown below.
	
	[(1001, 'Jane', 'White', '12 Holburn Crescent'), (1002, 'Mary', 'Cromwell', '4 Fraser Street'), (1003, 'Tessa', 'Bolden', '10 Fraserboo St')]
	
	Lines 17 and 18 display each of the tuples, on a single line, generating the output shown below.
	
	(1001, 'Jane', 'White', '12 Holburn Crescent')
	(1002, 'Mary', 'Cromwell', '4 Fraser Street')
	(1003, 'Tessa', 'Bolden', '10 Fraserboo St')
	
	Rather than displaying the whole tuple unformatted, edit line 18 to separate out each of the four values within each tuple (x[0], x[1], x[2] and x[3]) to display a concatenated string.
	
	
	
	
	
	This produces the formatted output shown below.
	
	1001- Jane White, 12 Holburn Crescent
	1002- Mary Cromwell, 4 Fraser Street
	1003- Tessa Bolden, 10 Fraserboo St
	
	Example 2 — INSERT using user inputted values
	The code below uses input boxes to input and store the details of a new student.
	
	
	
	
	
	
	
	
	
	
	
	Lines 20 to 23 ask the user to input data for a new student.
	
	Lines 25 and 26 build an INSERT statement. The placeholders, used in place of values, are replaced by the variables specified in line 26, when line 27 is executed.
	
	Line 28 is required to confirm the change to the database.
	
	
	Example 3 — counting the number of rows returned by a query
	The code below asks the user to enter a name. The number of times that name appears in the Student table is displayed.
	
	
	
	
	
	
	
	Lines 30 to 32 build and execute a SELECT statement. A placeholder is replaced by the user’s input.
	
	Line 34 displays concatenated output, including the number of rows returned by the SELECT statement. Note: the rows must be fetched before the method rowcount can be used (line 33).
	
	Visual Basic
	Set-up requirements
	The following instructions are for:
	
	
	
	
	 Microsoft Visual Studio 2012 or later

	
	
	 Microsoft Access 2016

	
	This code should still be compatible with newer editions of the software.
	
	Creating a connection
	Load Visual Basic and create a new Windows Forms Application.
	
	
	
	
	
	
	
	
	
	
	
	
	Add the following to the blank SQL Connection Form:
	
	
	
	
	 one list box named ‘lstoutput’

	
	
	 one command button named ‘cmd_read’

	
	
	 one text box named ‘txterror’

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Double click on the command button to bring up the coding window.
	
	Add the highlighted line of code to the very top of the code, ensuring it is above the Form Class Code — as shown below.
	
	
	
	
	
	
	
	
	
	
	
	This adds the required additional libraries.
	
	A ‘Try Catch’ block is used to connect to the database. If any code within the try block returns an error, the catch block is called to display the returned error message.
	
	
	Add the following code to the ‘cmd_read’ button.
	
	Try
	
	
	Catch ex As Exception
	
	 lstoutput.Items.Add(ex.Message)
	
	End Try
	
	Add all subsequent code between the ‘Try’ and ‘Catch’ statements.
	
	Use the following code to create a connection to the example database.
	
	Dim SQLReader As OleDbDataReader
	Dim connection_type As String = "Provider=Microsoft.ACE.OLEDB.12.0;"
	Dim file_location As String = "Data Source=c:\desktop\test.accdb"
	Dim conn As OleDbConnection
	conn = New OleDbConnection(connection_type & file_location)
	conn.Open()
	
	The first line creates an object called SQLReader that is used to read data from the database.
	
	Next, the connection type and the location of the database file are stored as strings.
	
	A new object called conn is used to create the connection to the database.
	
	The conn object is set as a new OleDBConnection, with the parameters stored earlier. Note: a single string is passed into this procedure, as the parameters have been concatenated.
	
	The final line opens the connection to the database.
	
	SQL execution
	The following examples use a simple one-table Access database:
	
	
	
	
	 The database file is called test.accdb

	
	
	 The table is called Customers

	
	
	Screen shots of the table design and contents are shown below.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Example 1 — SELECT and display results
	The following code reads and displays all the data in the example database.
	
	Dim query As String = "Select * FROM [Customers]"
	Dim command As New OleDbCommand(query, conn)
	SQLReader = command.ExecuteReader()
	
	If SQLReader.HasRows Then
	 While SQLReader.Read
	 lstoutput.Items.Add(SQLReader("ID") & " " & SQLReader("Firstname") & " " & SQLReader("Surname"))
	 End While
	Else
	 lstoutput.Items.Add("No Results Returned")
	End If
	
	A simple string object is created to store the SQL query. Note: table names require square brackets.
	
	A new OleDbCommand object called command is created. This object contains the query and the connection data.
	
	The SQLReader object stores the results of the executed query.
	
	Example 2 — INSERT using user inputted values
	The code below uses input boxes to input and store the details of a new customer.
	
	Ask the user to enter the details of a new customer. Note: all the data entered has to be stored as string, regardless of the datatype in the database.
	Add the following code to a new button.
	
	Dim id As String = InputBox("Please enter customer ID")
	Dim firstname As String = InputBox("Please enter customer’s firstname")
	Dim surname As String = InputBox("Please enter customer’s surname")
	
	Convert the stored data into an SQL query, as shown below.
	Dim query As String = "INSERT INTO [customers] VALUES (" & id & " , ' " & firstname & " ', ' " & surname & " ');"
	
	When inserting partial data, field names are required. ID information is not necessary, because ID is an auto number and the database uses the next available number.
	
	Dim query As String = "INSERT INTO [customers] (firstname, surname) VALUES (' " & firstname & " ', ' " & surname & "');"
	
	Note: the above example now specifies the two fields that data is entered into.
	
	Execute the built query, as shown below.
	
	Dim command As New OleDbCommand(query, conn)
	SQLReader = command.ExecuteReader()
	
	Example 3 — counting the number of rows returned by a query
	The code counts the number of times that name appears in the Customer table.
	
	Ask the user to enter the customer’s name.
	
	Dim firstname As String = InputBox("Please enter firstname of person(s) you would like to count")
	
	A counter is required later to count the number of rows returned by the query.
	
	Dim counter As Integer = 0
	
	A SELECT statement is built using the user’s input.
	
	Dim query As String = "SELECT * FROM [customers] WHERE firstname = '" & firstname & "';"
	
	
	To count the rows returned, add two additional lines to the output code used in example 1:
	
	
	
	
	 one line to store the result of a running total for each row

	
	
	 one line to display this result

	
	Dim command As New OleDbCommand(query, conn)
	SQLReader = command.ExecuteReader()
	
	If SQLReader.HasRows Then
	 While SQLReader.Read
	 lstoutput.Items.Add(SQLReader("ID") & " " & SQLReader("Firstname") & " " & SQLReader("Surname"))
	 counter = counter + 1
	 End While
	
	lstoutput.Items.Add(counter & " Results Returned")
	
	Else
	 lstoutput.Items.Add("No Results Returned")
	End If
	
	Java
	Set-up requirements
	The following Java database connection examples require two installations:
	
	
	
	
	 Java SE Development Kit (often referred to as JDK) — this can be downloaded from the Oracle website.
	https://www.oracle.com/technetwork/java/javase/downloads/index.html
	https://www.oracle.com/technetwork/java/javase/downloads/index.html

	
	
	 NetBeans — a popular integrated development environment (IDE) used to develop Java applications.
	https://netbeans.org/features/
	https://netbeans.org/features/

	
	If candidates wish to code in Java at home, they can download and install both examples at no cost.
	
	To connect to a database, Java Database Connectivity (JDBC) is required. JDBC drivers are software libraries that communicate between a Java application and a database. JDBC is already included in NetBeans, so requires no further installation.
	
	If candidates use a different IDE for Java development, they must ensure that it includes the JDBC library, as this is required to create a database connection.
	
	Follow the instructions below to download the JDBC library, if required:
	
	1
	1
	1
	 Open the webpage
	https://dev.mysql.com/downloads/
	https://dev.mysql.com/downloads/

	2
	2
	 Scroll down to MySQL Connectors and click the download link shown below.

	
	
	
	
	3
	3
	3
	 Select ‘Connector/J’ from the list.

	
	
	4
	4
	4
	 Choose ‘Select Operating System: Select platform independent’

	5
	5
	 Download the ZIP or TAR file. Note: it is not necessary to login or sign up — click ‘No thanks, just start my download’.

	6
	6
	 It does not matter where the JDBC library is saved.

	Creating a connection
	Before any coding can be implemented, a new project must be created.
	
	Open NetBeans and create a new project using the following steps:
	
	1
	1
	1
	 File

	2
	2
	 New

	3
	3
	 Java

	4
	4
	 Java Application

	5
	5
	 Name the application — the following example is named ‘School Application’

	
	To create a database connection, the JDBC library must be included in your project.
	
	
	Right click on Libraries and select Add Library.
	
	
	
	
	
	
	
	
	
	
	
	Select MySQL JDBC Driver from the list as shown.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Use the code shown below create a database connection.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Lines 3 to 9 list several libraries that must be included at the top of the code. These contain methods that are called when creating the connection or executing SQL.
	
	Lines 13 to 15 initialise three variables to the database connection parameters. This is similar to PHP but in Java, the server and database names are contained in a single URL.
	
	Line 18 creates the connection using the parameters assigned above.
	
	Place the connection within a ‘try’ statement (lines 18 to 26), to ensure the program does not crash if the connection fails. If the connection is successful, a message stating this is displayed (this message can be used during testing and removed when the successful connection is confirmed).
	
	
	
	
	
	
	If the connection fails, a system error is printed stating the issue that occurred.
	
	
	
	
	
	
	Further code should be contained within the success section of the ‘try’ statement at line 22.
	
	SQL execution
	The following examples use a single table. Set this up using MySQL before any code is executed, ensuring that:
	
	
	
	
	 the database name is ‘StudentData’

	
	
	 the table name is ‘Student’

	
	A data dictionary for the Student table is shown below.
	
	Entity
	Entity
	Entity
	Entity
	Entity

	Attributes
	Attributes

	Type
	Type

	Size
	Size

	Student
	Student
	Student
	Student

	studentid
	studentid

	int
	int

	4
	4

	
	
	

	firstname
	firstname

	VARCHAR
	VARCHAR

	25
	25

	
	
	

	lastname
	lastname

	VARCHAR
	VARCHAR

	25
	25

	
	
	

	address
	address

	VARCHAR
	VARCHAR

	40
	40

	
	
	
	
	
	
	
	
	
	Insert example data for the table before executing the examples.
	
	
	
	
	
	
	
	
	
	Example 1 — SELECT and display results
	The code below displays every row from the Student table.
	
	
	
	
	
	
	
	
	
	
	
	
	Line 24 creates a statement object that allows basic SQL queries to be executed.
	
	Line 25 executes a SELECT query by calling the executeQuery(String) method with the SQL to be used. The results of a query are retrieved through the ResultSet class.
	
	Lines 27 to 33 exemplify one of many solutions that could be used to display the result of the query, now stored in ‘rs’. This solution uses StringBuilder to concatenate each row of the results.
	
	The output from this code is shown below.
	
	
	
	
	
	
	
	
	
	
	
	
	
	Example 2 — INSERT using user inputted values
	The code below uses input boxes to input and store the details of a new student.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Lines 36 to 41 use the JOptionPane library to create four input boxes, one for each item of student data. Note: as each input is stored as a string, it is necessary to convert the student id to an integer (line 41).
	
	Line 43 creates an INSERT statement that contains four markers (?). PreparedStatement then replaces each marker with the student data stored earlier in the id, first, last and address variables.
	
	Line 49 uses the executeUpdate() method to execute the now complete SQL statement.
	
	To directly INSERT values, use the following code.
	
	stmt.executeUpdate("INSERT INTO Student VALUES (1010,'Cameron','Stott','17 Dover Heights')");
	
	Example 3 — counting the number of rows returned by a query
	The code below displays the number of rows returned by an SQL SELECT query.
	
	
	
	
	
	
	Line 52 executes an SQL query to return all the students called Jane. Note: the ResultSet, used at the beginning of the same code earlier is not required, as the ‘rs’ object has already been initialised.
	
	Line 53 uses the last() method to move the cursor to the last row of the result set.
	
	Line 54 displays the current row number using the getRow() method.
	Appendix 9: standard algorithms (SDD)
	The following Advanced Higher standard algorithms are exemplified below in pseudocode and SQA reference language:
	
	
	
	
	 bubble sort

	
	
	 insertion sort

	
	
	 binary search

	
	The two sort algorithms presented both sort into ascending order. With small changes, they are easily adapted to descending order.
	Bubble sort
	A bubble sort continually swaps values in adjacent array elements until the entire list is in the correct order.
	
	
	Pseudocode
	Consider an array that stores the following values:
	
	0
	0
	0
	0
	0

	1
	1

	2
	2

	3
	3

	4
	4

	5
	5

	6
	6

	7
	7

	8
	8

	45
	45
	45
	45

	23
	23

	99
	99

	7
	7

	3
	3

	64
	64

	37
	37

	63
	63

	34
	34

	
	After one pass through the array, the largest value will always ‘bubble’ up to the end of the array.
	
	23
	23
	23
	23
	23

	45
	45

	7
	7

	3
	3

	64
	64

	37
	37

	63
	63

	34
	34

	99
	99

	
	After a second pass, the second-largest number is also sorted.
	
	23
	23
	23
	23
	23

	7
	7

	3
	3

	45
	45

	37
	37

	63
	63

	34
	34

	64
	64

	99
	99

	
	When bubble sorting a list of values, the number of iterations carried out by each nested loop can be reduced by one each pass. This improves the efficiency of the bubble sort algorithm.
	
	Design
	Design
	Design
	Design
	Design

	Commentary
	Commentary

	n equals the length of an array called list
	n equals the length of an array called list
	n equals the length of an array called list
	n equals the length of an array called list

	The length of the array is stored in a variable
	The length of the array is stored in a variable

	set swapped to true
	set swapped to true
	set swapped to true

	
	

	start conditional loop while swapped = true
	start conditional loop while swapped = true
	start conditional loop while swapped = true

	
	
	

	set swapped to false
	set swapped to false
	set swapped to false

	
	
	

	fixed loop i = 0 to n - 2
	fixed loop i = 0 to n - 2
	fixed loop i = 0 to n - 2

	Loop from the first element to the penultimate array element
	Loop from the first element to the penultimate array element

	if list[i] > list[i+1] then
	if list[i] > list[i+1] then
	if list[i] > list[i+1] then

	
	
	

	swap the two values
	swap the two values
	swap the two values

	
	
	

	set swapped to true
	set swapped to true
	set swapped to true

	
	
	

	end if
	end if
	end if

	
	
	

	end fixed loop
	end fixed loop
	end fixed loop

	
	
	

	n = n - 1
	n = n - 1
	n = n - 1

	Each fixed loop reduces the iterations by 1, as one more element is sorted correctly at the end of the array
	Each fixed loop reduces the iterations by 1, as one more element is sorted correctly at the end of the array

	end conditional loop
	end conditional loop
	end conditional loop

	
	

	
	SQA reference language: bubble sort implementation
	
	PROCEDURE bubble_sort(list)
	 DECLARE n INITIALLY length(list)
	 DECLARE swapped INITIALLY TRUE
	 WHILE swapped
	 SET swapped TO False
	 FOR i = 0 to n-2 DO
	 IF list[i] > list[i+1] THEN
	 SET temp TO list[i]
	 SET list[i] TO list[i+1]
	 SET list[i+1] TO temp
	 SET swapped TO TRUE
	 END IF
	 END FOR
	 SET n TO n - 1
	 END WHILE
	END PROCEDURE
	
	Insertion sort
	An insertion sort traverses an array from the second element to the last. Each element is compared to the elements before in turn, working backwards down the list. Values are swapped until the element being compared is placed in order.
	
	The following is a worked example of an insertion sort.
	
	Iteration 1
	Start with element 1 of the list to be sorted. This value is temporarily stored.
	
	0
	0
	0
	0
	0

	1
	1

	2
	2

	3
	3

	4
	4

	5
	5

	6
	6

	7
	7

	8
	8

	
	

	
	

	
	

	
	

	temp
	temp

	45
	45
	45
	45

	23
	23

	99
	99

	7
	7

	8
	8

	64
	64

	37
	37

	63
	63

	34
	34

	
	

	
	

	
	

	
	

	23
	23

	
	If the temporary value (23) is smaller than the value before it (45), then the value before it is copied to the right.
	
	45
	45
	45
	45
	45

	45
	45

	99
	99

	7
	7

	8
	8

	64
	64

	37
	37

	63
	63

	34
	34

	
	

	
	

	
	

	
	

	
	

	
	

	23
	23

	
	Each value, to the left of the element where the temporary value was originally stored, is compared in turn until:
	
	
	
	
	 the value being compared is smaller than the stored temporary value

	or
	
	
	
	 the start of the list has been reached

	
	When either of the previous bullets is true, the temporary value is copied back into the list.
	
	23
	23
	23
	23
	23

	45
	45

	99
	99

	7
	7

	8
	8

	64
	64

	37
	37

	63
	63

	34
	34

	
	

	
	

	
	

	
	

	23
	23

	
	Iteration 2
	When the next element (99) is examined, the element before it (45) is smaller, so no further action is required.
	
	0
	0
	0
	0
	0

	1
	1

	2
	2

	3
	3

	4
	4

	5
	5

	6
	6

	7
	7

	8
	8

	
	

	
	

	
	

	
	

	temp
	temp

	23
	23
	23
	23

	45
	45

	99
	99

	7
	7

	8
	8

	64
	64

	37
	37

	63
	63

	34
	34

	
	

	
	

	
	

	
	

	99
	99

	
	Iteration 3
	When the value in element 3 is compared to every element before it, the result is that the values in indexes 0, 1 and 2 are all copied one element to the right (as 7 is smaller than 23, 45 and 99).
	
	0
	0
	0
	0
	0

	1
	1

	2
	2

	3
	3

	4
	4

	5
	5

	6
	6

	7
	7

	8
	8

	
	

	
	

	
	

	
	

	temp
	temp

	23
	23
	23
	23

	45
	45

	99
	99

	7
	7

	8
	8

	64
	64

	37
	37

	63
	63

	34
	34

	
	

	
	

	
	

	
	

	7
	7

	
	The temporary value is copied into element index 0.
	
	7
	7
	7
	7
	7

	23
	23

	45
	45

	99
	99

	8
	8

	64
	64

	37
	37

	63
	63

	34
	34

	
	

	
	

	
	

	
	

	7
	7

	
	Iteration 4
	When the value in element 4 is compared to the values in indexes 0 to 3, it is smaller than every value, except element 0 (7).
	
	0
	0
	0
	0
	0

	1
	1

	2
	2

	3
	3

	4
	4

	5
	5

	6
	6

	7
	7

	8
	8

	
	

	
	

	
	

	
	

	temp
	temp

	7
	7
	7
	7

	23
	23

	45
	45

	99
	99

	8
	8

	64
	64

	37
	37

	63
	63

	34
	34

	
	

	
	

	
	

	
	

	8
	8

	
	The values 23, 45 and 99 all move right. The temporary value this time is copied into index 1.
	
	7
	7
	7
	7
	7

	8
	8

	23
	23

	45
	45

	99
	99

	64
	64

	37
	37

	63
	63

	34
	34

	
	

	
	

	
	

	
	

	8
	8

	
	By this stage, the algorithm of an insertion sort should be apparent, as follows:
	
	
	
	
	 Each element from 1 to the length of the array is copied into temporary storage and dealt with in turn.

	
	
	 Every larger value to the left is moved up one element.

	
	
	 The temporary value is copied back into the list when the next value is smaller, or when the end of the array is reached.

	
	Pseudocode
	
	Design
	Design
	Design
	Design
	Design

	Commentary
	Commentary

	fixed loop i = 1 to length(list)-1
	fixed loop i = 1 to length(list)-1
	fixed loop i = 1 to length(list)-1
	fixed loop i = 1 to length(list)-1

	Loop from the second element to the last
	Loop from the second element to the last

	store the value at array index i
	store the value at array index i
	store the value at array index i

	Store the current temporary value
	Store the current temporary value

	store the starting position of the inner loop
	store the starting position of the inner loop
	store the starting position of the inner loop

	Store the current position in the array — this will be used as a starting point to count backwards during the comparisons
	Store the current position in the array — this will be used as a starting point to count backwards during the comparisons

	while index > 0 and value < list[index-1]
	while index > 0 and value < list[index-1]
	while index > 0 and value < list[index-1]

	Continue comparing previous values in the list with the temporary value until the start of the array is reached or the two values are in the correct order
	Continue comparing previous values in the list with the temporary value until the start of the array is reached or the two values are in the correct order

	copy the value at index i into index i+1
	copy the value at index i into index i+1
	copy the value at index i into index i+1

	The compared value is copied into the element to the right
	The compared value is copied into the element to the right

	reduce the index by 1
	reduce the index by 1
	reduce the index by 1

	Decrement the element being compared next
	Decrement the element being compared next

	end while
	end while
	end while

	
	

	copy the stored value into index i
	copy the stored value into index i
	copy the stored value into index i

	The temporarily stored value is copied into the correct place
	The temporarily stored value is copied into the correct place

	end fixed loop
	end fixed loop
	end fixed loop

	
	

	
	SQA reference language: insertion sort implementation
	
	PROCEDURE insertion_sort(list)
	 DECLARE value INITIALLY 0
	 DECLARE index INITIALLY 0
	 FOR i = 1 to length(list)-1 DO
	 SET value TO list[i]
	 SET index TO i
	 WHILE (index > 0) AND (value < list[index-1]) DO
	 SET list[index+1] TO list[index]
	 SET index TO index - 1
	 END WHILE
	 SET list[index] TO value
	 END FOR
	END PROCEDURE
	
	Binary search
	A binary search finds a value by continually halving a sorted list until a target is, or is not, found.
	
	The code begins by designating a start (S) point and an end (E) point in the list. These are initially the first and last elements of the array.
	
	From these, the target value positioned in the middle of the sorted list is identified (M=(E-S)/2).
	
	Target = 8
	
	0
	0
	0
	0
	0

	1
	1

	2
	2

	3
	3

	4
	4

	5
	5

	6
	6

	7
	7

	8
	8

	9
	9

	10
	10

	11
	11

	12
	12

	13
	13

	14
	14

	15
	15

	16
	16

	2
	2
	2
	2

	5
	5

	8
	8

	10
	10

	11
	11

	14
	14

	17
	17

	25
	25

	30
	30

	37
	37

	38
	38

	39
	39

	50
	50

	51
	51

	60
	60

	65
	65

	77
	77

	S
	S
	S

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	M
	M

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	E
	E

	
	The algorithm compares the target to the value stored at M and makes one of three decisions:
	
	1
	1
	1
	 If the middle value is larger than the target, then the target must be in the half of the list that contains smaller values.

	2
	2
	 If the middle value is smaller, the target must be in the larger half of the list.

	3
	3
	 If the middle value is equal to the target, then the target has been found and the search ends.

	
	If either bullet points 1 or 2 are true, then the start or end are reassigned as required. The middle point is then calculated for the remaining list and the same decision is made again.
	
	Target = 8
	
	2
	2
	2
	2
	2

	5
	5

	8
	8

	10
	10

	11
	11

	14
	14

	17
	17

	25
	25

	30
	30

	37
	37

	38
	38

	39
	39

	50
	50

	51
	51

	60
	60

	65
	65

	77
	77

	S
	S
	S
	S

	
	

	
	

	
	

	M
	M

	
	

	
	

	E
	E

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	This is carried out again, until a match is found at M.
	
	Target = 8
	
	2
	2
	2
	2
	2

	5
	5

	8
	8

	10
	10

	11
	11

	14
	14

	17
	17

	25
	25

	30
	30

	37
	37

	38
	38

	39
	39

	50
	50

	51
	51

	60
	60

	65
	65

	77
	77

	S
	S
	S
	S

	
	

	M
	M

	E
	E

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	
	Pseudocode
	Note: pseudocode is not a fixed design notation, and candidates may prefer to use more ‘code-like’ pseudocode when designing algorithms. An example of this approach is shown below.
	
	Design
	Design
	Design
	Design
	Design

	Commentary
	Commentary

	low = 0
	low = 0
	low = 0
	low = 0

	The lowest index point (S) is stored
	The lowest index point (S) is stored

	high = length(list)-1
	high = length(list)-1
	high = length(list)-1

	The highest index point (E) is stored
	The highest index point (E) is stored

	found = false
	found = false
	found = false

	Set a flag variable to show that a match has not yet been found
	Set a flag variable to show that a match has not yet been found

	while not found and low <= high
	while not found and low <= high
	while not found and low <= high

	Conditional loop until the target is found or there are no elements left to examine
	Conditional loop until the target is found or there are no elements left to examine

	set mid = (low + high) / 2
	set mid = (low + high) / 2
	set mid = (low + high) / 2

	Find the midpoint (M) as halfway between the lowest and highest index
	Find the midpoint (M) as halfway between the lowest and highest index

	if target = list[mid] then
	if target = list[mid] then
	if target = list[mid] then

	If a match with the target is found…
	If a match with the target is found…

	display "found"
	display "found"
	display "found"

	…display found to user…
	…display found to user…

	set found to true
	set found to true
	set found to true

	...and end the conditional loop using the flag variable
	...and end the conditional loop using the flag variable

	else if target > list[mid]
	else if target > list[mid]
	else if target > list[mid]
	set low = mid + 1
	else
	set high = mid – 1
	end if

	Reset the lowest or highest index depending on whether the target is greater or smaller than the value in the middle index
	Reset the lowest or highest index depending on whether the target is greater or smaller than the value in the middle index

	end while
	end while
	end while

	
	

	If not found then
	If not found then
	If not found then
	display "not found"
	end if

	An optional ‘not found’ may be added to the end of the algorithm, if required
	An optional ‘not found’ may be added to the end of the algorithm, if required

	
	
	SQA reference language: binary search implementation (procedure)
	The procedure below displays the position of the target, if it is found within the passed list.
	
	PROCEDURE binary_search(list,target)
	 DECLARE low INITIALLY 0
	 DECLARE high INITIALLY length(list)-1
	 DECLARE mid INITIALLY 0
	 DECLARE found INITIALLY FALSE
	
	 WHILE NOT found AND low <= high
	 SET mid TO (low+high)/2
	
	 IF target = list[mid] THEN
	 SEND "Found" TO DISPLAY
	 SET found TO TRUE
	 ELSE IF target > list[mid] THEN
	 SET low TO mid+1
	 ELSE
	 SET high TO mid–1
	 END IF
	 END WHILE
	
	 IF NOT found THEN
	 SEND "Not found" TO DISPLAY
	 END IF
	
	END PROCEDURE
	
	
	SQA reference language: binary search implementation (function)
	The function below returns a Boolean value used to store whether the target value is found, or not, in the array. The main program can then use the returned value.
	
	FUNCTION binary_search(list,target) RETURNS BOOLEAN
	
	 DECLARE low INITIALLY 0
	 DECLARE high INITIALLY length(list)-1
	 DECLARE mid INITIALLY 0
	 DECLARE found INITIALLY FALSE
	
	 WHILE NOT found AND low <= high
	 SET mid TO (low+high)/2
	
	 IF target = list[mid] THEN
	
	 SET found TO TRUE
	 ELSE IF target > list[mid] THEN
	 SET low TO mid+1
	 ELSE
	 SET high TO mid–1
	 END IF
	 END WHILE
	
	 RETURN found
	END FUNCTION
	
	#main program
	DECLARE numList AS ARRAY OF INTEGER INITIALLY [3,4,7,10,15,21,36]
	RECEIVE find FROM KEYBOARD
	foundIt = binary_search[numList, find]
	IF foundIt THEN
	 SEND "Target found" TO DISPLAY
	ELSE
	 SEND "Target not found" TO DISPLAY
	
	
	
	
	
	
	
	
	
	
	Appendix 10: SQL operations (DDD)
	Candidates need to implement relational databases using SQL Data Definition Language (DDL) and Data Manipulation Language (DML) in the Advanced Higher course.
	
	DDL
	
	
	
	 CREATE statement — used to create a database and the structure of each table in the database

	
	
	 DROP statement — used to remove individual tables from a database or even the entire database

	
	DML
	
	
	
	 INSERT statement — used to populate a table by adding records (this was introduced at National 5)

	
	
	 UPDATE statement — used to edit values stored in database records (this was introduced at National 5 and extended at Higher)

	
	
	 DELETE statement — used to remove records from a database table (this was introduced at National 5)

	
	In addition, Advanced Higher candidates should be able to describe, exemplify and implement SQL SELECT statements that make use of:
	
	
	
	
	 the HAVING clause

	
	
	 logical operators IN, NOT, ANY, BETWEEN, EXISTS in the WHERE or HAVING clause

	
	
	 a subquery in the WHERE clause

	
	SQL data types
	When using the SQL CREATE statement, SQL data types must be used.
	
	Data type
	Data type
	Data type
	Data type
	Data type

	Sample
	Sample

	SQL implementation
	SQL implementation

	Comment
	Comment

	integer
	integer
	integer
	integer

	32, -846
	32, -846

	int
	int

	using a size parameter is optional; it is used to restrict the maximum display width
	using a size parameter is optional; it is used to restrict the maximum display width

	float
	float
	float

	3.14
	3.14

	float(size, d)
	float(size, d)

	the size parameter specifies the total number of digits displayed, while d specifies the number of digits after the decimal point
	the size parameter specifies the total number of digits displayed, while d specifies the number of digits after the decimal point

	varchar
	varchar
	varchar

	ABC123D
	ABC123D

	varchar(size)
	varchar(size)

	the size parameter is mandatory, to restrict number of characters possible between 0 and 65535
	the size parameter is mandatory, to restrict number of characters possible between 0 and 65535

	date
	date
	date

	2019-05-23
	2019-05-23

	date
	date

	format is YYYY-MM-DD
	format is YYYY-MM-DD

	time
	time
	time

	09:12:47
	09:12:47

	time
	time

	format is hh:mm:ss
	format is hh:mm:ss

	
	Information about each of these data types and examples of SQL statements are on the following pages.
	
	CREATE statement
	A database is defined as being a structured set of data. The first step in building an SQL database is to create the database structure using CREATE DATABASE.
	
	CREATE DATABASE databaseName;
	
	Once a database has been created, the structure for each table in the database needs to be built using CREATE TABLE.
	
	CREATE TABLE tableName (
	 fieldName1 dataType,
	 fieldName2 dataType,
	
);
	
	Validation constraints
	The following can be specified for individual fields:
	
	PRIMARY KEY: uniquely identifies each record in the table
	
	fieldName dataType PRIMARY KEY
	 or
	PRIMARY KEY (fieldName1)
	 or
	PRIMARY KEY (fieldName1, fieldName2, ...)
	
	FOREIGN KEY: links two tables together by referencing the primary key of another table
	
	fieldName dataType FOREIGN KEY REFERENCES tableName (fieldName)
	 or
	FOREIGN KEY(fieldName) REFERENCES tableName (fieldName)
	
	NOT NULL: ensures that a field always contains a value and is not left empty
	
	fieldName dataType NOT NULL
	
	CHECK: ensures that all values in a field satisfy a specific condition
	
	fieldName dataType CHECK(fieldName condition)
	
	AUTO INCREMENT: automatically generates a unique number when a new record is inserted
	
	fieldName dataType AUTO_INCREMENT
	
	Additional notes on constraints
	PRIMARY and FOREIGN KEY constraints
	L
	LI
	Lbl
	 Some dialects of SQL allow the PRIMARY or FOREIGN KEY constraint to be applied in the clause used to identify the data type for the field; other dialects require the PRIMARY or FOREIGN KEY constraint to be applied in a separate clause.

	LI
	Lbl
	 Users should refer to the relevant documentation or reference guide to check the syntax for the version of SQL they are using.

	LI
	Lbl
	 If the primary or foreign key consists of multiple columns, users must specify them in a separate clause at the end of the CREATE TABLE statement.

	
	CHECK constraint
	
	
	
	 Standard SQL provides the CHECK constraint, as described and exemplified in this appendix. However, the CHECK constraint is not provided in all dialects of SQL (for example, MS Access and MySQL do not support the use of CHECK).

	
	
	 In the case of MySQL, the CHECK constraint is ignored and the intended data validation is not carried out. To implement the CHECK constraint in MySQL, triggers or views must be used.

	Note: candidates should implement triggers or views within their project solution, as required; however, these constraints are not assessed in the Advanced Higher Computing Science course.
	L
	LI
	Lbl
	 Users should refer to the relevant documentation or reference guide to check the syntax for the version of SQL they are using.

	
	Applying multiple constraints
	It is possible to apply several constraints to one field, for example:
	
	fieldName dataType NOT NULL PRIMARY KEY
	
	
	DROP statement
	The DROP statement is used to drop or delete a whole database. Be careful when using this statement, as all the tables and data stored in them are removed and cannot be restored. This statement is often exploited by cyber criminals in SQL injections.
	
	The DROP statement can be used to permanently remove an entire database.
	
	DROP DATABASE databaseName;
	
	It can also be used to delete individual tables from a database. Used in this format, the statement results in the complete loss of all data stored in the named table.
	
	DROP TABLE tableName;
	
	Note: The DROP statement is not supported in MS Access.
	
	HAVING clause of a SELECT statement
	The SQL HAVING clause is used in combination with the GROUP BY clause or an aggregate function, to restrict the returned rows to only those where the HAVING condition is true.
	
	HAVING is used to filter records that work on summarised GROUP BY results. It was added to the SQL language because the WHERE clause cannot be used with aggregate functions. The HAVING clause is applied to grouped records, but WHERE is applied to individual records. Only groups that meet the HAVING criteria will be returned.
	
	HAVING can also be used in combination with WHERE and ORDER BY clauses, for example:
	
	
	
	
	 the WHERE clause is used to restrict the rows that are returned from the tables(s)

	
	
	 the ORDER BY clause is used to sequence the rows in the answer table

	
	
	 the HAVING clause is used to filter summarised and/or aggregated data or grouped data

	
	Note: using HAVING requires a GROUP BY clause to be present.
	
	SELECT list of field names FROM list of table names WHERE condition GROUP BY list of field names
	HAVING condition ORDER BY list of field names;
	
	Logical operators
	Logical operators are used, together with the comparison operators =, <, >, <=, >= and LIKE, in the WHERE clause of a SELECT query to form a condition that restricts the rows
	Span
	returned from the tables. At National 5, logical operators AND and OR were introduced. At Advanced Higher, five specialist operators are introduced.

	
	NOT
	NOT
	NOT
	NOT
	NOT

	This returns a record from the underlying tables when the specified condition is not true.
	This returns a record from the underlying tables when the specified condition is not true.
	

	
	
	
	

	SELECT list of field names FROM list of table names WHERE NOT condition;
	SELECT list of field names FROM list of table names WHERE NOT condition;

	
	
	

	
	

	BETWEEN
	BETWEEN
	BETWEEN

	This selects values that fall within a specified range of (inclusive) values.
	This selects values that fall within a specified range of (inclusive) values.
	

	
	
	

	SELECT list of field names FROM list of table names WHERE fieldname BETWEEN value1 AND value2;
	SELECT list of field names FROM list of table names WHERE fieldname BETWEEN value1 AND value2;

	
	
	

	
	

	IN
	IN
	IN

	This allows multiple values to be specified as an alternative to multiple OR conditions.
	This allows multiple values to be specified as an alternative to multiple OR conditions.
	

	
	
	

	SELECT list of field names FROM list of table names WHERE fieldName IN (value1, value2,);
	SELECT list of field names FROM list of table names WHERE fieldName IN (value1, value2,);

	subquery
	subquery
	subquery

	SELECT list of field names FROM list of table names WHERE fieldName IN (SELECT statement);
	SELECT list of field names FROM list of table names WHERE fieldName IN (SELECT statement);

	
	
	

	
	

	ANY
	ANY
	ANY

	This returns true if any of the subquery values meet the condition specified in the main query.
	This returns true if any of the subquery values meet the condition specified in the main query.
	

	subquery
	subquery
	subquery

	SELECT list of field names FROM list of table names WHERE fieldName operator ANY (SELECT statement);
	SELECT list of field names FROM list of table names WHERE fieldName operator ANY (SELECT statement);

	
	
	

	
	

	EXISTS
	EXISTS
	EXISTS

	This tests for the existence of records within the subquery and returns true when the subquery returns one or more records (this is very useful to obtain records that do not meet a certain condition).
	This tests for the existence of records within the subquery and returns true when the subquery returns one or more records (this is very useful to obtain records that do not meet a certain condition).
	

	subquery
	subquery
	subquery

	SELECT list of field names FROM list of table names WHERE EXISTS (SELECT statement);
	SELECT list of field names FROM list of table names WHERE EXISTS (SELECT statement);

	subquery
	subquery
	subquery

	SELECT list of field names FROM list of table names WHERE NOT EXISTS (SELECT statement);
	SELECT list of field names FROM list of table names WHERE NOT EXISTS (SELECT statement);

	
	Additional notes on operators
	ANY operator
	The images below provide pictorial explanations of the SQL ANY operator.
	
	Query 1: using the ANY operator, generates TRUE and so returns data to the main query.
	
	Figure
	
	Query 2: using the ANY operator, generates FALSE and so does not return data to the main query.
	
	
	Figure
	
	Query 3: using the ANY operator, generates TRUE and so returns data to the main query.
	Figure
	
	
	EXISTS operator
	The images below provide pictorial explanations of the SQL EXISTS operator.
	
	Query 4: general format of an SQL query that uses the EXISTS operator.
	
	WHERE EXISTS (subquery);
	
	EXISTS…
	
	
	
	 is a comparison operator

	
	
	 is used in the WHERE clause to validate an ‘it exists’ condition

	
	
	 will tell whether a query returned results

	
	
	 returns a Boolean, (TRUE or FALSE)

	
	
	 returns TRUE if a subquery contains any rows

	
	Query 5: using the EXISTS operator, returns TRUE.
	
	
	The subquery contains more than one row, so it returns TRUE. Data is therefore returned from the main query.
	Query 6: using the EXISTS operator, returns FALSE.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	The subquery contains no rows, so it returns FALSE. No data is therefore returned from the main query.
	
	Subquery in the WHERE clause of a SELECT query
	A subquery is a query embedded within the WHERE clause of another SQL query. A subquery is sometimes referred to as an inner query or a nested query, and an SQL query is sometimes referred to as the outer query or the parent query.
	
	The subquery executes before the main query, so the results can be passed to the main query as a condition to further restrict the data to be retrieved.
	
	There are a few rules that subqueries must follow:
	
	
	
	
	 Subqueries must be enclosed within brackets.

	
	
	 Unless the main query has multiple fields in its SELECT clause, a subquery can have only one field in its SELECT clause.

	
	
	 The BETWEEN operator can be used within a subquery but cannot be applied to the results of a subquery returned to the main query.

	
	
	 Although an ORDER BY clause can be used with the main query, an ORDER BY clause cannot be used in a subquery; if it is needed, the GROUP BY clause can be used to perform the same function as the ORDER BY within a subquery.

	
	
	 Many subqueries return exactly one record (called single-value subqueries); the developer must check that this is the case, because an error will be generated if a subquery returns more results than expected.

	
	
	 Subqueries that return more than one row (called multiple-value subqueries), can only be used with multiple-value operators such as EXISTS, IN and ANY.

	
	SELECT list of field names
	FROM list of table names
	WHERE fieldName OPERATOR
	 (SELECT list of field names
	 FROM list of table names
	 WHERE condition)
	ORDER BY list of field names;
	Example queries: travel agency database
	A travel agency uses a relational database to store details on a booking system.
	
	It stores details of Scottish holiday resorts, hotels in each resort, customers and their bookings. These details are stored in four separate entities.
	
	The attributes stored in each entity are shown below.
	
	Resort
	Resort
	Resort
	Resort
	Resort

	Hotel
	Hotel

	Customer
	Customer

	Booking
	Booking

	resortID
	resortID
	resortID
	resortID
	resortName
	resortType

	hotelRef
	hotelRef
	hotelName
	resortID *
	starRating
	seasonStartDate
	mealPlan
	checkInTime
	pricePersonNight

	customerNo
	customerNo
	firstname
	surname
	address
	town
	postcode

	hotelRef *
	hotelRef *
	customerNo *
	startDate
	numberOfNights
	numberInParty

	
	SQL CREATE statement
	The SQL statements below can be used to build the structure of the travel agency database. The full data dictionary for this database is in appendix 4: data dictionary.
	
	CREATE DATABASE TravelAgency;
	
	
	CREATE TABLE Resort (
	 resortID int NOT NULL PRIMARY KEY,
	 resortName varchar(20) NOT NULL,
	 resortType varchar(20) NOT NULL CHECK (resortType IN('coastal', 'city', 'island', 'country'))
);
	
	
	CREATE TABLE Hotel (
	 hotelRef varchar(4) NOT NULL PRIMARY KEY,
	 hotelName varchar(20) NOT NULL,
	 resortID int NOT NULL,
	 starRating int NOT NULL CHECK(starRating >=1 AND starRating <= 5),
	 seasonStartDate date,
	 mealPlan varchar(17) NOT NULL CHECK(mealPlan IN('Room Only', 'Bed and Breakfast', 'Half Board', 'Full Board')),
	 checkInTime time NOT NULL,
	 pricePersonNight float(6,2) NOT NULL CHECK(pricePersonNight >=50 AND pricePersonNight <= 250),
	 FOREIGN KEY (resortID) REFERENCES Resort(resortID)
);
	
	
	CREATE TABLE Customer (
	 customerNo int AUTO_INCREMENT PRIMARY KEY,
	 firstname varchar(20) NOT NULL,
	 surname varchar(20) NOT NULL,
	 address varchar(40) NOT NULL,
	 town varchar(20) NOT NULL,
	 postcode varchar(8) NOT NULL
);
	
	
	CREATE TABLE Booking (
	 hotelRef varchar(4) NOT NULL,
	 customerNo int NOT NULL,
	 startDate date NOT NULL,
	 numberNights int NOT NULL CHECK(numberNights >=1),
	 numberInParty int NOT NULL CHECK(numberInParty >=1),
	 PRIMARY KEY (customerNo, hotelRef, startDate),
	 FOREIGN KEY (customerNo) REFERENCES Customer(customerNo),
	 FOREIGN KEY (hotelRef) REFERENCES Hotel(hotelRef)
);
	
	The following example queries match the examples in appendix 5: query design.
	Queries making use of the HAVING clause
	
	Query 7: display the resort name and number of hotels in any resort that has at least two hotels.
	SELECT resortName, COUNT(*) AS [Number of Hotels]
	FROM Resort, Hotel
	WHERE Resort.resortID = Hotel.resortID
	GROUP BY resortName
	HAVING COUNT(*) >= 2;
	
	Query 8: display the full name and the total cost of all bookings for each customer. The query should only list details of customers whose total cost exceeds £2000 and should list the details of the biggest spending customer first.
	SELECT firstName, surname, SUM(pricePersonNight * numberNights * numberInParty) AS [Total cost of all Bookings]
	FROM Customer, Booking, Hotel
	WHERE Customer.customerNo = Booking.customerNo
	AND Booking.hotelRef = Hotel.HotelRef
	GROUP BY firstName, surname
	HAVING SUM(pricePersonNight * numberNights * numberInParty) >= 2000
	ORDER BY SUM(pricePersonNight * numberNights * numberInParty) DESC;
	Query 9: display the average price per person, per night for each holiday resort. Display only those resorts with an average price per person, per night that exceeds £100.
	SELECT resortName, ROUND(AVG(pricePersonNight),2) AS [Average Price]
	FROM Resort, Hotel
	WHERE Resort.resortID = Hotel.resortID
	GROUP BY resortName
	HAVING AVG(pricePersonNight) > 100;
	
	Queries using logical operators
	
	Query 10: display the name and type of non-coastal resort, together with the name and meal plan for each hotel that meets these criteria.
	SELECT resortName, resortType, hotelName, mealPlan
	FROM Resort, Hotel
	WHERE Resort.resortID = Hotel.resortID
	AND NOT resortType = "coastal";
	
	Query 11: display the full name and total number of bookings made by each customer who has made between two and four bookings.
	SELECT firstName, surname, COUNT(*) AS [Total Bookings]
	FROM Customer, Booking
	WHERE Customer.customerNo = Booking.customerNo
	GROUP BY surname, firstName
	HAVING COUNT(*) BETWEEN 2 AND 4;
	
	Query 12: display the surname, postcode, and town of customers who live in towns that begin with the letters ‘E’ through to ‘M’. The query should list customers in alphabetical order of town.
	SELECT surname, postcode, town
	FROM Customer
	WHERE town BETWEEN "E" AND "M"
	ORDER BY town;
	
	
	Query 13: display the hotel name and meal plan for hotels that offer room only, half board or full board.
	SELECT hotelName, mealPlan
	FROM Hotel
	WHERE mealPlan IN ("Room Only", "Half Board", "Full Board");
	
	Query 14: display the name and type of resorts that are neither city nor country resorts.
	SELECT resortName, resortType
	FROM Resort
	WHERE NOT resortType IN ("city", "country");
	
	Queries with a subquery in the WHERE clause
	
	Query 15: display the hotel name, star rating, and price per person for the most expensive hotel.
	SELECT hotelName, starRating, pricePersonNight
	FROM Hotel
	WHERE pricePersonNight =
	 (SELECT MAX(pricePersonNight)FROM Hotel);
	
	Query 16: display the resort name, hotel name, and star rating of all hotels that have a below-average star rating.
	SELECT resortName, hotelName, starRating
	FROM Resort, Hotel
	WHERE Resort.resortID = Hotel.resortID
	AND starRating <
	 (SELECT AVG(starRating)FROM Hotel);
	
	Query 17: display the full name and postcode of the customer who booked the same hotel as the customer with ID 111.
	SELECT firstName, surname, postcode
	FROM Customer, Booking
	WHERE Customer.customerNo = Booking.customerNo
	AND NOT Customer.customerNo = 111
	AND hotelRef =
	 (SELECT hotelRef FROM Booking
	 WHERE customerNo = 111);
	
	Query 18: display the name and star rating of all hotels booked by the customer with ID 315.
	SELECT hotelName, starRating
	FROM Hotel
	WHERE hotelName IN
	 (SELECT hotelName FROM Hotel, Booking
	 WHERE Hotel.hotelRef = Booking.hotelRef
	 AND customerNo = 315);
	
	Query 19: display the names and types of resort not booked by the customer with ID 315.
	SELECT resortName, resortType
	FROM Resort
	WHERE resortName NOT IN
	 (SELECT resortName FROM Resort, Hotel, Booking
	 WHERE Resort.resortID = Hotel.resortID
	 AND Hotel.hotelRef = Booking.hotelRef
	 AND customerNo = 315);
	
	Query 20: display the customer number, hotel reference, and booking cost for any booking that costs more than any bookings made by customers with surnames Lowden, Shawfair or Sheriffhall.
	SELECT customerNo, Hotel.hotelRef, pricePersonNight*numberNights*numberInParty AS [Booking Cost]
	FROM Booking, Hotel
	WHERE Booking.hotelRef = Hotel.hotelRef
	AND pricePersonNight*numberNights*numberInParty > ANY
	(SELECT pricePersonNight*numberNights*numberInParty
	 FROM Booking, Hotel, Customer
	 WHERE Booking.hotelRef = Hotel.hotelRef
	 AND Booking.customerNo = Customer.customerNo
	 AND surname IN ("Danderhall", "Lowden", "Shawfair"));
	
	
	Query 21: display the details (hotel name, star rating, meal plan, and resort name) of all 3-star hotel bookings. The query should list the hotels in alphabetical order of meal plan.
	SELECT hotelname, mealPlan, starRating, resortName
	FROM Hotel, Resort
	WHERE Hotel.resortID = Resort.resortID
	AND starRating = 3
	AND EXISTS
	 (SELECT * FROM Booking
	 WHERE Booking.hotelRef = Hotel.hotelRef)
	ORDER BY mealPlan ASC;
	
	Query 22: display the full name and address of customers who have never made a booking.
	SELECT firstName, surname, address
	FROM Customer
	WHERE NOT EXISTS
	 (SELECT * FROM Booking
	 WHERE Customer.customerNo = Booking.customerNo);
	
	Query 23: display the name, star rating, and total of nights booked for hotels that have:
	
	
	
	
	 a total number of customer nights booked that is more than the total number of nights booked by the customer with ID 290 (number of nights booked multiplied by number in party)

	and
	
	
	
	 a star rating which is less than that of the hotel with the highest star rating

	
	The query should list the hotels from lowest star rating to the highest.
	SELECT hotelName, starRating, SUM(numberNights*numberInParty) AS[Nights x Number in Party]
	FROM Hotel, Booking
	WHERE Hotel.hotelRef= Booking.HotelRef
	AND numberNights*numberInParty >(
	 SELECT SUM(numberNights*numberInParty) FROM Booking
	 WHERE customerNo =290)
	AND starRating < (SELECT MAX(starRating) FROM Hotel)
	GROUP BY hotelName, starRating
	ORDER BY starRating;
	Appendix 11: HTML forms (WDD)
	Continuation from Higher
	The Higher Computing Science course defined the use of form elements and input types to include validated input for text, numeric, and restricted-choice entry (select and radio). There are no additional input methods or validation in the Advanced Higher course.
	
	The focus of web content in the Advanced Higher course is the use of PHP to integrate with an SQL database. This includes server-side processing of HTML form code introduced at Higher.
	
	Form action and method attributes
	To process the contents of an HTML form, an action and method must be initiated when the form’s ‘submit’ button is clicked. These are coded as attributes of the <form> element.
	
	
	
	
	The action shown above states the file “registerStudent.php” will be opened when the form is submitted. As this is a PHP file, the web server where it is stored will automatically execute the PHP code contained in the file.
	
	You can submit a form using one of two HTTP methods:
	
	
	
	
	 GET

	
	
	 POST

	
	The submission process for both methods begins the same way, with the browser constructing a form data set.
	
	GET
	If you submit a form with method="GET", the browser constructs a URL by taking the value of the action attribute, appending a ? to it, then appending the form data set. It then processes this URL as if following a link. The browser divides the URL into parts and recognises a host, then sends a GET request to that host, with the rest of the URL as an argument.
	
	
	Advantages of using GET:
	
	
	
	
	 If security is not an issue, the URL can be bookmarked, allowing it to be re-used without having to complete and submit the original form.

	
	
	 If there is a network connection issue when a form is submitted, the browser will automatically resend the form, as it assumes it does not contain sensitive data.

	
	
	 GET submissions can usually be cached. If the same submission is used regularly (for example form data used to generate the same database query), this could have a significant effect on efficiency.

	
	Disadvantages of using GET:
	
	
	
	
	 The form data in the constructed URL is visible and so less secure.

	
	
	 URLs can only contain ASCII codes, which will cause issues if the form data contains non-ASCII characters.

	
	
	 The URL constructed will be stored in the user's web browsing history, making it inappropriate for sensitive data.

	
	
	 URLs have a limited number of characters, which limits the form data submitted.

	
	Recommended use
	GET is usually used when non-sensitive data (like the parameters of a database query) is sent to a server.
	
	POST
	When you submit a form using the POST method, the form data set is encoded within a message that is sent to the server.
	
	Advantages of using POST:
	
	
	
	
	 The submitted form data is not visible and so more secure than GET.

	
	
	 Non-ASCII characters can be submitted within the form data set.

	
	
	 There is no URL character limit, so form data can be much larger.

	
	Disadvantages of using POST:
	
	
	
	
	 The submitted form cannot be bookmarked for later use.

	
	
	 If there is a network issue while the form is being submitted, the browser will ask the user to resubmit the form.

	
	Recommended use
	POST is usually used when sensitive data (like personal information) is sent to a server. A database update would usually be initiated with the POST method.
	
	POST can also be used for non-sensitive data: if the submitted data is likely to contain non-ASCII characters or the length is over the limit of a URL.
	
	Name and value attributes for form element and input types
	The form data set is comprised of key/value pairs, where key is a declared attribute of the form input called name and value is the data entered by the user.
	
	In the case of text and numeric input, the name attribute is defined within the input type. These attributes are used when processing the form and must match the attributes used when the submitted form data is assigned to server-side variables.
	
	
	
	
	
	
	
	
	
	The value can be a number, a character or a string that the user types into the form’s field or one that has been defined in the HTML form.
	
	
	
	
	
	
	
	
	
	In the case of a drop-down menu or a radio button input, both the name and value are defined in the HTML code.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Appendix 12: PHP form processing (WDD)
	The Advanced Higher course requires candidates to execute server-side code to:
	
	
	
	
	 process HTML form data, using PHP

	
	
	 store submitted form data within a database table, using SQL and PHP

	
	
	 query a database, using SQL and PHP

	
	
	 display the results of a query within HTML table elements, using PHP

	
	Database and web servers
	To execute PHP files, you need a database server (connected to a database to store or retrieve data) and a web server. Although we usually think of a server as hardware, a web and/or database server setup is a collection of software technologies that may be:
	
	
	
	
	 installed on and run from a local PC or hardware server

	
	
	 installed on and run from a USB flash drive

	
	
	 installed on and run from an external PC or hardware server across the World Wide Web

	
	There are many ways to install the required software. These range from builds of individual components (which requires knowledge, expertise and time), to prebuilt, simple installations that require a single install such as XAMPP, WampServer or EasyPHP.
	
	Executing PHP files
	You must have the following to execute .php files:
	
	
	
	
	 web server software installed and running

	
	
	 .php files saved to a specific folder within the installed server folders

	
	
	The following examples demonstrate this for an XAMPP setup.
	
	XAMPP control panel showing both Apache (web server) and MySQL (database server) applications running
	XAMPP folder htdocs where .php files are located
	
	
	
	What is a PHP file?
	PHP files are text files that can contain HTML, CSS, JavaScript, and PHP code.
	
	When a .php file is executed on a server, the PHP code it contains can:
	
	
	
	
	 collect form data

	
	
	 add, delete and modify data in your database

	
	
	 generate dynamic page content

	
	When a .php file is executed, the results are returned to the browser as a plain HTML file.
	
	The following examples use code taken from the Advanced Higher example website. You can download the example website from .
	SQA’s secure site
	SQA’s secure site

	
	
	HTML forms
	The Drama page on the Advanced Higher example website contains the following form.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	To process a form, the server requires the following:
	
	
	
	
	 action=""

	This contains the name of the file to be executed when the form is submitted. This can be the current file or a different file.
	
	
	
	 method=""

	The method used to submit the form can be GET or POST:
	—
	—
	—
	 GET — the submitted data is visible to the user and therefore not secure

	—
	—
	 POST — the submitted data is hidden from the user (forms are almost always submitted using the POST method)

	
	
	 name="" and value=""

	When the data in the form is submitted to the server, it is converted into an array of key/value pairs (where key is the name of the form controls and value is the data entered by the user).
	
	Note: with <select> and radio input, the values are defined in the form code.
	PHP form processing
	When the form on the Drama web page is submitted, the following file is executed:
	registerStudent.php
	
	A .php file may contain HTML, CSS and JavaScript, so you must identify any PHP code by placing it inside a PHP script.
	
	<?php
	// PHP code goes here
	?>
	
	Assign form data to server-side variables
	The values in the array passed from the submitted form are assigned to separate variables in the lines below. Each of these lines uses the $_POST[" "] method to extract values from matching variables first declared in the form.
	
	if ($_SERVER["REQUEST_METHOD"] == "POST") {
	$forename = $_POST["firstname"];
	 $surname = $_POST["lastname"];
	 $play = $_POST["play"];
	 $tickets = $_POST["tickets"];
	 $age = $_POST["age"];
	 $requirements = $_POST["message"];
	}
	
	Note: these assignments are placed within a conditional statement, which checks that the form has been submitted:
	
	If a form is submitted using the $_GET method, POST would be changed to GET as shown below.
	
	if ($_SERVER["REQUEST_METHOD"] == "GET") {
	$forename = $_GET["firstname"];
	 $surname = $_GET["lastname"];
	 $play = $_GET["play"];
	 $tickets = $_GET["tickets"];
	 $age = $_GET["age"];
	 $requirements = $_GET["message"];
	}
	
	Open and close connection to database
	To connect to a database, you need to define the following parameters. You can enter these directly into the connection function or store them in variables, as shown below.
	
	
	
	
	
	
	Line 3 defines the host name of the server. Line 4 defines the username used to connect to the server. "root" is a default value that is usually set with administration rights for the server.
	
	For security purposes, server access is usually password protected (for example $password="hsd56XC89"). For teaching purposes, the password string can be left empty as shown in line 5. The name of the database the script will connect to is stored in line 6.
	
	The function mysqli_connect()is used to connect to the server:
	
	
	
	
	or to connect to a database stored on the server:
	
	
	
	
	This function returns a Boolean True if the connection is successful. You can use the Boolean value to:
	
	
	
	
	 ensure the script only proceeds when a proper connection is made

	
	
	 return an error message if the function returns false

	
	
	 kill the script using die() if a connection is not made, as shown below

	
	
	
	
	
	
	
	
	
	$conn stores a single instance of a connection.
	
	Connections should be closed using the function mysqli_close()at the end of a script.
	
	
	
	
	
	Executing an SQL query to insert submitted form data into a database table
	After the submitted form data has been assigned to PHP variables and a connection to the database has been established, you can use SQL to add the form data to a database table.
	
	The function mysqli_query() is used to execute an SQL statement, as shown below.
	
	
	
	
	
	
	
	
	The function requires two parameters:
	
	
	
	
	 the connection ($conn) used to identify the connection to the database being used

	
	
	 the SQL statement including the PHP variables, that now store the form data

	
	Line 67 shows the use of echo to output a message. The echo statement is often used in PHP coding to output HTML code, which is then interpreted by the browser and displayed.
	
	echo "<p>Hello world</p>";
	
	Additional notes:
	
	1
	1
	1
	 You can write the SQL statement directly into the function, but it is common practice to assign the SQL statement to a variable, which is then used in the function. This makes the code more readable.

	2
	2
	 For an SQL INSERT statement, the function returns a Boolean value (True = success, False = failed). This can then be used to return messages.

	3
	3
	 The example above uses a JavaScript alert to inform the user that their drama trip details have been successfully added to the database. This is not a requirement of the Advanced Higher course, but may be a useful tool to visually demonstrate the success of the mysqli_query() function, without using echo.

	
	
	Executing an SQL query and displaying formatted results using PHP
	The staff page on the Advanced Higher example website includes two further examples of web and database integration.
	
	Check ticket purchases
	This example uses a simple form to input the name of a play. The web page outputs a list of students, with the number of tickets each student has purchased.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	When the ‘Generate List’ button is clicked, the page is reloaded, with the query output displayed in a table.
	
	
	The results of an SQL SELECT statement returns output in the form of an array. The following code was used to display the returned data.
	
	
	When the ‘Generate List’ button is clicked, line 63 assigns the selected play to the PHP variable $play.
	
	An SQL statement is used with mysqli_query() to query the database for students who have tickets for the selected play.
	
	SELECT forename, surname, tickets FROM studentData WHERE play = '$play'
	
	The PHP function mysqli_num_rows() is used in line 71, to display the number of rows returned by the query — which is the number of students found.
	
	Lines 75 to 81 use PHP to display an HTML table. This output is built in three stages:
	
	
	
	
	 the static top part of the table

	
	
	 the dynamic middle part of the table, where the number of rows displayed will depend on the query result

	
	
	 the static bottom part of the table

	
	A while loop on line 78 uses the function mysqli_fetch_array() to extract each row returned by the SQL select statement in turn. Each extracted row is stored as an associative array. The contents of the array are concatenated with the HTML table elements; this is required to create a single row of a three-column table.
	
	<tr> <td></td> <td></td> <td></td> </tr>
	
	Note: the first row of the table is displayed as a header row using <th> in place of <td>. Also, mysqli_num_rows()is used to ensure the table is only displayed when >0 rows are returned by the query (line 73). If zero rows are returned, "0 results" is displayed instead of the table.
	
	Check if places are available
	In addition to the name of the play, this form also includes numerical input. The web page counts the total number of tickets purchased for the selected play and calculates the number of places remaining.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	This is achieved using the code below.
	
	
	
	
	
	
	
	
	
	
	
	
	Note: the first element of the array returned by mysqli_fetch_array() stores the numeric, aggregate result of the query.
	
	$countArray[0]
	
	
	Building web pages generated by PHP code
	You can generate the HTML returned to a browser by a .php file in the following ways:
	
	
	
	 If the PHP script is contained within the same page as a submitted form, then the entire page will be reloaded when the GET or POST script is executed. Any output produced by the script will be included according to the position of the script within the HTML. This is the simplest solution if you wish to stay on the same web page when a form is submitted.

	
	
	 If you want to generate a completely different page, then the form should load a different .php file. In this case, the PHP file will have to contain all the HTML elements required to build the new page.

	
	The PHP include function
	This is not a requirement of the Advanced Higher course, but is an efficient way to build pages without repeating lots of code.
	
	The Advanced Higher example website separates out the <header>, <nav> and <footer> elements of each page, storing them in separate HTML files.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	You can include these elements in each page using the PHP function include.
	
	
	
	
	
	
	
	
	In addition to substantially reducing the amount of code in each page, this also makes maintenance of these three elements easier, as their contents are stored in a single location and not repeated across every page of the website.
	
	Appendix 13: PHP sessions (WDD)
	Definition and use
	When a browser loads a new web page, it forgets all the information from the previous page. A PHP session is a way of storing information within a website, so that it can be retained and used across multiple pages.
	
	Sessions work in a similar way to a program. The website code opens (starts) the session. Information is generated, stored and sometimes changed. The website code then closes (destroys) the session to end it.
	
	Examples of session use are:
	
	
	
	
	 retaining selected items in a shopping cart, as the user navigates from page to page

	
	
	 displaying a user’s id on multiple pages, following a successful login

	
	
	 retaining values, such as a user’s quiz Score, when each new question page loads

	
	Starting a session
	The following PHP function is used to start a session. This should be placed at the top of a page, before any HTML code. If data is being passed between multiple pages, each page that requires access to the session should contain the PHP code below.
	
	<?php
	// Start a new session
	 session_start();
	?>
	
	<!DOCTYPE html>
	<html>
	<head>
	
	When a new session starts, a user key is stored on the user’s computer. The session_start() function looks to see if a user key exists. If it does, the current session is continued. If no user key exists, a new session is started.
	
	Session variables
	Session variables are assigned values, as shown below.
	
	$_SESSION['staffLogin']="False";
	
	A PHP file that contains session_start()has access to any session variables previously created.
	Ending a session
	The PHP function session_destroy() is used to end a session. On the Advanced Higher example website, clicking the ‘Log Out’ button calls the file logout.php. The code below destroys the session and then reloads the staff page.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Note: this page must also include session_start(), as the current session must be continued before it can be destroyed.
	
	Worked example
	The following examples use code taken from the Advanced Higher example website. You can download the example website from .
	SQA’s secure site
	SQA’s secure site

	
	To view the staff page, a password is required. The original page content remains hidden until the correct password is entered. On the example website, the staff password is ‘password’ and has been implemented using session variables.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	The page initially hides the content, and instead displays a simple form. The form calls the PHP file login.php when the ‘staff password’ button is clicked.
	
	<div>
	<h2>Staff Page</h2>
	<p>You need to enter the staff password to view this area.</p>
	<form action="login.php" method="POST">
	<input class="signInGap" type="text" name="staffpass" value="">
	<input class="signButton" type="submit" value="Staff Password">
	</form>
	</div>
	
	When executed, the login.php file:
	
	1
	1
	1
	 connects to the current session

	2
	2
	 compares the user’s password (from the form) with the string "password"

	3
	3
	 sets the session variable staffLogin to True , if the user’s input and the string match

	4
	4
	 uses the PHP function include 'staff.php' to display the staff page

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	The above code contains alternative outcomes if the user’s password field is empty or the password is incorrect.
	
	Note: the empty() function used in this example is not a requirement of the Advanced Higher course.
	This example could be extended to retrieve users’ names and passwords stored within a database. PHP and SQL could be used to retrieve and then compare a stored password to the user’s login attempt.
	
	When the staff.php file is reloaded, the session variable staffLogin now stores True , indicating the user has successfully logged in. The staff page uses the value stored in the session variable to determine if the login form or the page content is displayed.
	
	if ($_SESSION['staffLogin']=="True") {
	
	displays the page content
	
	} elseif ($_SESSION['staffLogin']=="False") {
	
	 displays the login form
	}
	
	The full code can be viewed using the Advanced Higher example website. You can download the example website from .
	SQA’s secure site
	SQA’s secure site

	
	
	Appendix 14: media queries (WDD)
	The function of media queries
	The @media rule is used to define alternative CSS rules that are only implemented when certain defined expressions are true.
	
	For example, alternative CSS rules could be declared if the width of the viewport (usually a browser window or screen) is less than a maximum of 600 pixels (px).
	
	
	
	
	Screen width greater than or equal to 600px Screen width less than 600px — original CSS applied — media query CSS applied
	
	
	
	
	
	
	
	
	
	
	
	Media query syntax and code structure
	A media query is formatted as:
	
	@media not|only mediatype and (expressions) {
	 CSS Code;
	}
	
	Three media types are in the Advanced Higher course: all, screen and print.
	
	Only one media feature has been defined in the Advanced Higher course: max-width. This limits using media query expressions to checking the width of the viewport.
	
	If candidates wish to explore media queries further, a complete list of media types and features are available using the following resource:
	
	
	https://www.w3schools.com/cssref/css3_pr_mediaquery.asp
	https://www.w3schools.com/cssref/css3_pr_mediaquery.asp

	
	Within the CSS, default values are written first, with media queries defined underneath.
	
	When coding media queries, only the changes are styled. All the original styles are still applied to the page elements when the media query is triggered, so they do not need to be repeated within the @media rule.
	
	The following example uses the Advanced Higher example website to demonstrate how a media query could be used within a candidate’s project. You can download the example website from .
	SQA’s secure site
	SQA’s secure site

	
	Note: only the media query declaration itself is included in the Advanced Higher course.
	
	
	body{margin:auto;background-color:LightBlue}
	
	body{width:800px}
	header {height:80px}
	footer {height:60px}
	nav {height:35px}
	
	nav ul {list-style-type:none}
	nav ul li {float:left;width:80px;text-align:center}
	nav ul li a {display:block;padding:8px}
	nav ul li a:hover {background-color:#000;color:White}
	…
	
	
	@media screen and (max-width:600px) {
	
	/*Alternative Body Styles */
	body {background-color:red;width:300px}
	
	/* Alternative Navigation Styles */
	nav {height:125px}
	nav ul li {width:100%;height:20px;font-size:8pt}
	
	…
	
	}
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	When the screen width is reduced below the maximum 600px, the above media query is triggered. Any declarations within the @media rule then become active, overriding the original declarations in the code.
	
	When the screen width is greater than 600px, the trigger is no longer active and the original declarations once again become active.
	Media queries and design
	Implementing interactive layouts should be based on multiple wireframe designs.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Media query examples
	The following examples use code taken from the Advanced Higher example website. You can download the example website from .
	SQA’s
	SQA’s
	secure site

	
	Example 1 — general page structure
	The wireframes show that when the media query is triggered, some general changes are applied to the page styles.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	This changes the heights and widths of the general page structure.
	A decision has been made to hide the news articles on smaller screen sizes, this is done by styling the id of the <section> that contains both the news icon and text as display:none.
	
	Example 2 — navigation bar
	The horizontal navigation is not appropriate for smaller screen sizes. When the media query is triggered, the CSS of the <nav> element is styled to create a vertical layout.
	
	
	
	
	
	
	Note: only some of the <nav> styles need to be changed to achieve the different layout.
	
	A height is added to each list item () to control the vertical spacing. This is not required in the default rules, as the height of the <nav> element limits the height of each link.
	
	Example 3a — alternative layouts
	The Drama web page was previously styled to position the <section> elements containing the <form> and the Drama Opportunities information side by side. Reducing the width of the screen automatically forces the form section to appear below the paragraph.
	
	Some styling is still required to control the width of the Drama Opportunities section (which was previously wider than the new body width) and the margins of the form section.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Example 3b — alternative layouts
	The study page previously had three graphics with onclick JavaScript events that were used to reveal text. In the narrower layout, these were changed to simple text links.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	This was achieved by creating two matching <section> elements within the HTML file. One section includes three elements (with JavaScript code) and the other includes three <h3> elements (with JavaScript code). The original styles and the media query styles alternately hide or show one of these two <section> elements.
	Original styles Media query styles
	
	
	
	Appendix 15: integrative testing (SDD, DDD and WDD)
	Integrative testing is the second level of testing used in any development and takes place after component testing has been carried out. Component testing takes place during the development of the solution, when individual functions or modules are created.
	
	Integrative testing is needed for projects that require integration of separate components. Testing is carried out to verify interaction between components and to detect interface defects. These tests determine whether independently developed units of software work correctly when connected to each other.
	
	Due to the nature of integrative testing, some of the test cases needed require temporary code. This code can generate results not explicitly mentioned in the requirements specification. Once these tests are proved successful, any temporary code is removed.
	
	In the examples that follow, test cases that require temporary code are marked with an asterisk*.
	
	Example 1: a project that combines SDD and DDD
	A program is being developed to act as a personal diary app. The program will:
	
	
	
	
	 allow the user to add new diary entries with a date, title, and description

	
	
	 search diary entries by date

	
	
	 list diary entries with the most recent entry first

	
	
	 delete any diary entries that have expired

	
	
	 allow a maximum of three images to be associated with each diary entry

	
	
	 store details of all diary entries in a secure database server

	
	This development meets the requirements of the Advanced Higher project, because:
	
	
	
	
	 it is based on the SDD content of the course:

	—
	—
	 details of diary entries are stored and processed in an array of records

	—
	—
	 a sort algorithm is used to display diary entries with the most recent entry first

	
	
	 it integrates with the DDD content of the course:

	—
	—
	 details of diary entries are stored in a database table

	—
	—
	 a connection with the database server is used to execute SQL queries

	—
	—
	 SQL queries are used to add and delete diary entries

	—
	—
	 an SQL query is used to search for diary entries using date entered by the user

	—
	—
	 an SQL query is used to select all diary entries, to enable processing to take place

	
	
	On-going testing is used throughout the development to test each component as it is created. Integrative testing is needed, as the development integrates SDD and DDD content. The following three examples describe integrative tests for this development.
	
	Test case ID
	Test case ID
	Test case ID
	Test case ID
	Test case ID

	Test case objective
	Test case objective

	Test case description
	Test case description

	Expected result
	Expected result

	1
	1
	1
	1

	Check communication from the program to the secure database server*
	Check communication from the program to the secure database server*

	Use program code to connect to the secure database server
	Use program code to connect to the secure database server

	Message is displayed confirming a successful connection with the database server
	Message is displayed confirming a successful connection with the database server

	2
	2
	2

	Check that all diary entries are selected from the database and stored in the array of records*
	Check that all diary entries are selected from the database and stored in the array of records*

	Use program code to execute the SQL query, store the query results in the array of records, and then display the contents
	Use program code to execute the SQL query, store the query results in the array of records, and then display the contents

	Details of all diary entries in the database are stored in the array of records and are displayed successfully
	Details of all diary entries in the database are stored in the array of records and are displayed successfully

	3
	3
	3

	Check the details of a new diary entry have been added to the database
	Check the details of a new diary entry have been added to the database

	Enter details of a new diary entry, use program code to execute the SQL query to store the details in a new record of the database table
	Enter details of a new diary entry, use program code to execute the SQL query to store the details in a new record of the database table

	A new record has been added to the database table to store the new diary entry (check contents of the database table)
	A new record has been added to the database table to store the new diary entry (check contents of the database table)

	Example 2: a project that combines SDD and WDD
	An object-oriented program is being developed to act as a recipe manager. The program will:
	
	
	
	
	 use a recipe class to define the data types and methods associated with a recipe

	
	
	 store recipe details in an array of objects for processing

	
	
	 allow the user to add new recipes

	
	
	 save recipe details to a sequential file

	
	
	 allow the user to search for recipes by ingredient or category (starter, main course or dessert)

	
	
	 display recipe details in alphabetical order of recipe title

	
	This development meets the requirements of the Advanced Higher project, because:
	
	
	
	
	 it is based on the SDD content of the course:

	—
	—
	 a recipe class is defined

	—
	—
	 an array of objects is used to store and process recipe details

	—
	—
	 the linear search algorithm is used to search the recipe details

	—
	—
	 a sort algorithm is used to arrange the search results, in alphabetical order of recipe title

	
	
	 it integrates with the WDD content of the course. A web page is used to:

	—
	—
	 present the user with output

	—
	—
	 allow the user to enter details of a new recipe and indicate search criteria

	—
	—
	 display the search results

	On-going testing is used throughout the development to test each component as it is created. Integrative testing is needed, as the development integrates SDD and WDD content. The following three examples describe integrative tests for this development.
	
	Test case ID
	Test case ID
	Test case ID
	Test case ID
	Test case ID

	Test case objective
	Test case objective

	Test case description
	Test case description

	Expected result
	Expected result

	1
	1
	1
	1

	Check communication between the program code and the web page*
	Check communication between the program code and the web page*

	Use a HTML textbox to enter the recipe title, then use Java code to display the title entered
	Use a HTML textbox to enter the recipe title, then use Java code to display the title entered

	Message is displayed on the web page showing the recipe title entered
	Message is displayed on the web page showing the recipe title entered

	2
	2
	2

	Check that all recipe details are stored in the array of objects*
	Check that all recipe details are stored in the array of objects*

	Use Java code to import recipe details, store in the array of objects, and then display the array contents
	Use Java code to import recipe details, store in the array of objects, and then display the array contents

	Details of all recipes in the array of objects are displayed correctly on the web page
	Details of all recipes in the array of objects are displayed correctly on the web page

	3
	3
	3

	Check the recipes are displayed in alphabetical order of title
	Check the recipes are displayed in alphabetical order of title

	Use Java code to sort contents of the array of objects in alphabetical order of recipe title, and display the results
	Use Java code to sort contents of the array of objects in alphabetical order of recipe title, and display the results

	Recipe details are displayed on the web page in alphabetical order of recipe title
	Recipe details are displayed on the web page in alphabetical order of recipe title

	Example 3: a project that combines DDD and SDD
	A movie review database is being developed. The database will:
	
	
	
	
	 store details of movies, actors, reviews, and reviewers in five linked tables of a relational database

	
	
	 allow users to search for details of individual movies

	
	
	 allow users to add details of new movies to the database

	
	
	 allow users to add a review and rating for any movie

	
	
	 use forms to create an interface for all SQL functionality

	
	
	 use subqueries to display details of the highest rated movie(s) and details of any movie that has at least five reviews

	
	
	 use a query to display details of any movie that was not made in the UK

	
	This development meets the requirements of the Advanced Higher project, because:
	
	
	
	
	 it is based on the DDD content of the course:

	—
	—
	 details of movies, actors, reviews, and reviewers are stored in five linked tables of a relational database

	—
	—
	 subqueries are used to extract details from the database

	—
	—
	 queries make use of logical operators to search for required details

	—
	—
	 queries and subqueries make use of at least three database tables

	
	
	 it integrates with the SDD content of the course:

	—
	—
	 forms created using toolbox controls provided within the integrated development environment provide an interface for all SQL functionality

	—
	—
	 the program forms a connection with the secure database server to execute SQL queries

	—
	—
	 the program is used to format and display query results

	On-going testing is used throughout the development to test each component as it is created. Integrative testing is needed, as the development integrates DDD and SDD content. The following three examples describe integrative tests for this development.
	
	Test case ID
	Test case ID
	Test case ID
	Test case ID
	Test case ID

	Test case objective
	Test case objective

	Test case description
	Test case description

	Expected result
	Expected result

	1
	1
	1
	1

	Check communication between the program form used to enter details of a new review and the secure database server*
	Check communication between the program form used to enter details of a new review and the secure database server*

	Use program code to connect to the secure database server
	Use program code to connect to the secure database server

	Message is displayed confirming a successful connection with the database server
	Message is displayed confirming a successful connection with the database server

	2
	2
	2

	Check that the query selected by the user has executed correctly*
	Check that the query selected by the user has executed correctly*

	Use program code to generate the query required, execute the query and display a query confirmation message
	Use program code to generate the query required, execute the query and display a query confirmation message

	Message is displayed to confirm a successful execution of the query
	Message is displayed to confirm a successful execution of the query

	3
	3
	3

	Check the details of the highest rated movie(s) have been displayed correctly
	Check the details of the highest rated movie(s) have been displayed correctly

	Use program code to execute the SQL query required and then display the results
	Use program code to execute the SQL query required and then display the results

	Details of the highest rated movie(s) are formatted and displayed
	Details of the highest rated movie(s) are formatted and displayed

	Example 4: a project that combines DDD and WDD
	A music albums database is being developed. The database will:
	
	
	
	
	 store details of albums, artists, and tracks in five linked tables of a relational database

	
	
	 allow the user to search for details of individual albums, artists, and tracks

	
	
	 allow details of new albums to be added to the database and stored in the relevant tables

	
	
	 use web pages to create an interface for all SQL functionality

	
	
	 use subqueries to display details of the most popular albums, artists, and tracks

	
	
	 use a subquery to display details of the tracks in any album, that has at least ten tracks

	
	This development meets the requirements of the Advanced Higher project, because:
	
	
	
	
	 it is based on the DDD content of the course:

	—
	—
	 details of albums, artists, and tracks are stored in five linked tables of a relational database

	—
	—
	 subqueries are used to extract required album, artist and track details

	—
	—
	 queries and subqueries use at least three database tables

	
	
	 it integrates with the WDD content of the course:

	—
	—
	 web pages provide an interface to display results of SQL queries

	—
	—
	 online forms are used to enter query search criteria

	—
	—
	 online forms are used to gather details of new albums

	—
	—
	 PHP code is used to form a connection with the secure database server and to execute SQL queries

	—
	—
	 PHP is used to format and display the results returned by SQL queries

	On-going testing is used throughout the development to test each component as it is created. Integrative testing is needed, as the development integrates DDD and WDD content. The following three examples describe integrative tests for this development.
	
	Test case ID
	Test case ID
	Test case ID
	Test case ID
	Test case ID

	Test case objective
	Test case objective

	Test case description
	Test case description

	Expected result
	Expected result

	1
	1
	1
	1

	Check communication between the online form used to enter details and the secure database server*
	Check communication between the online form used to enter details and the secure database server*

	Enter the title of a new album, then use PHP code to connect to the database server
	Enter the title of a new album, then use PHP code to connect to the database server

	Message is displayed confirming a successful connection with the database server
	Message is displayed confirming a successful connection with the database server

	2
	2
	2

	Check that the query selected by user has been formed correctly and has executed successfully*
	Check that the query selected by user has been formed correctly and has executed successfully*

	Search for details of all albums by the band Genesis, use PHP code to generate the SQL query required. Use an ‘echo’ statement to display the syntax of the query formed, then execute the query and display the query confirmation message
	Search for details of all albums by the band Genesis, use PHP code to generate the SQL query required. Use an ‘echo’ statement to display the syntax of the query formed, then execute the query and display the query confirmation message

	The ‘echo’ statement is used to display the correct SQL query and a message is displayed on the web page confirming successful execution of the query
	The ‘echo’ statement is used to display the correct SQL query and a message is displayed on the web page confirming successful execution of the query

	3
	3
	3

	Check the details of the most popular artist are displayed correctly
	Check the details of the most popular artist are displayed correctly

	Use PHP code to generate the SQL query required, to execute the query and display the results
	Use PHP code to generate the SQL query required, to execute the query and display the results

	Details of the most popular artist are formatted and displayed on the web page
	Details of the most popular artist are formatted and displayed on the web page

	
	Example 5: a project that combines WDD and SDD
	A website is being developed to allow the user to play a game of ‘Connect Counters’.
	
	This is a 2-player game played on a 5 x 5 grid. Users take it in turns to either position a coloured counter in the grid to form a continuous sequence of counters (horizontally, vertically or diagonally), or block their opponent’s sequence. Once the grid is full, the player who has the longest sequence of counters gets a point (in the event of a draw, both players receive points).
	
	The software will:
	
	
	
	
	 allow each player’s name to be entered at the start of the game, together with the number of rounds being played (the maximum number of rounds is three)

	
	
	 allow players to take it in turn to indicate the position of their coloured counter in the grid

	
	
	 control the game play and award points

	
	
	 display the name of the winner(s) and points awarded at the end of each round

	
	
	 display the name of the overall winner, once all rounds of the game have been played

	
	This development meets the requirements of the Advanced Higher project, because:
	
	
	
	
	 it is based on the WDD content of the course:

	—
	—
	 an online form is used to gather and submit details at the start of the game

	—
	—
	 players use an online form of submit buttons to indicate the grid position they want to use on the ‘Game Play’ page

	—
	—
	 PHP is used to assign variables and process the form data

	—
	—
	 session variables are used to store details entered by the players for the duration of the game

	—
	—
	 external CSS is used to format the layout of all web pages in the website

	—
	—
	 a media query is used to create multiple layouts

	
	
	 it integrates with the SDD content of the course:

	—
	—
	 a 2-D array is used to represent the position of the players’ counters

	
	On-going testing is used throughout the development to test each component as it is created. Integrative testing is needed, as the development integrates WDD and SDD content. The following three examples describe integrative tests for this development.
	
	
	Test case ID
	Test case ID
	Test case ID
	Test case ID
	Test case ID

	Test case objective
	Test case objective

	Test case description
	Test case description

	Expected result
	Expected result

	1
	1
	1
	1

	Check that the number of rounds entered by the user is passed to the game code successfully*
	Check that the number of rounds entered by the user is passed to the game code successfully*

	Enter the number of rounds = 2, assign to a PHP session variable and use this to control a fixed loop displaying the round number being played
	Enter the number of rounds = 2, assign to a PHP session variable and use this to control a fixed loop displaying the round number being played

	Messages ‘Round 1 being played’
	Messages ‘Round 1 being played’
	‘Round 2 being played’
	are displayed successfully on the ‘Game Play’ page of the website

	2
	2
	2

	Check that the grid position selected by player 1 is updated correctly in the 2-D array*
	Check that the grid position selected by player 1 is updated correctly in the 2-D array*

	Once the game starts, the first grid position selected by player 1 is (2,4), a value of 1 should be assigned to position (1,3) of the 2-D array and the full contents of the array displayed
	Once the game starts, the first grid position selected by player 1 is (2,4), a value of 1 should be assigned to position (1,3) of the 2-D array and the full contents of the array displayed

	Contents of 2-D array are displayed correctly on the ‘Game Play’ page of the website
	Contents of 2-D array are displayed correctly on the ‘Game Play’ page of the website
	0 0 0 0 0
	0 0 0 1 0
	0 0 0 0 0
	0 0 0 0 0
	0 0 0 0 0

	3
	3
	3

	Check that players’ names entered at the start are displayed correctly at the end of each round
	Check that players’ names entered at the start are displayed correctly at the end of each round

	Enter players’ names and number of rounds = 2 at the start of the game, play the game for two rounds, and player details displayed at the end of each round
	Enter players’ names and number of rounds = 2 at the start of the game, play the game for two rounds, and player details displayed at the end of each round

	At the end of rounds 1 and 2, a message is displayed showing the correct player names and both scores on the ‘Game Play’ page of the website
	At the end of rounds 1 and 2, a message is displayed showing the correct player names and both scores on the ‘Game Play’ page of the website

	
	Example 6: a project that combines WDD and DDD
	A photo gallery website is being developed. The website will:
	
	
	
	
	 allow all users to view thumbnails of all publicly available images

	
	
	 allow new users to create an account for the website

	
	
	 allow registered users to login and view thumbnails of images that they have stored and have marked as ‘private’

	
	
	 allow all users to click a thumbnail image and display a full-sized image

	
	
	 allow registered users to add details of new images to the database, indicating whether access to the images is ‘public’ or ‘private’

	
	
	 use web pages to create an interface for all SQL functionality

	
	This development meets the requirements of the Advanced Higher project, because:
	
	
	
	
	 it is based on the WDD content of the course:

	—
	—
	 users login to the website using an online form

	—
	—
	 PHP is used to assign variables and process the form data

	—
	—
	 session variables are used to store a user’s login details while they are logged in to the website

	—
	—
	 external CSS is used to format the layout of all web pages in the website

	—
	—
	 media query is used to create multiple layouts

	
	
	 it integrates with the DDD content of the course:

	—
	—
	 details of uploaded images are stored in a database table

	—
	—
	 a separate database table is used to store users’ login details

	—
	—
	 a connection with the database server is used to execute SQL queries

	—
	—
	 an SQL query is used to check a user’s login credentials

	—
	—
	 SQL queries are used to select the images to be displayed

	
	On-going testing is used throughout the development to test each component as it is created. Integrative testing is needed, as the development integrates WDD and DDD content. The following three examples describe integrative tests for this development.
	
	
	Test case ID
	Test case ID
	Test case ID
	Test case ID
	Test case ID

	Test case objective
	Test case objective

	Test case description
	Test case description

	Expected result
	Expected result

	1
	1
	1
	1

	Check communication between the online form used to login to the website and the secure database server*
	Check communication between the online form used to login to the website and the secure database server*

	Login to the website with any username and password, then use PHP code to connect to the database server
	Login to the website with any username and password, then use PHP code to connect to the database server

	Message is displayed confirming successful connection with the database server
	Message is displayed confirming successful connection with the database server

	2
	2
	2

	Check that the user is successfully logged into the website and their login details have been passed to a new page*
	Check that the user is successfully logged into the website and their login details have been passed to a new page*

	Login to the website with a stored username and password, execute the SQL query to check the login details, assign details to the session variables. Display a personalised confirmation message on a separate page
	Login to the website with a stored username and password, execute the SQL query to check the login details, assign details to the session variables. Display a personalised confirmation message on a separate page

	Personalised message is displayed on the ‘User Gallery’ page of the website, confirming successful login to the website
	Personalised message is displayed on the ‘User Gallery’ page of the website, confirming successful login to the website

	3
	3
	3

	Check that only thumbnails of images marked ‘public’ are displayed on the ‘Public Gallery’ page of the website
	Check that only thumbnails of images marked ‘public’ are displayed on the ‘Public Gallery’ page of the website

	Click the link to load the ‘Public Gallery’ page, execute the SQL query to identify the images marked ‘public’, then only display thumbnails of these images
	Click the link to load the ‘Public Gallery’ page, execute the SQL query to identify the images marked ‘public’, then only display thumbnails of these images

	Only thumbnails of the images marked ‘public’ are displayed on the ‘Public Gallery’ page of the website. (compare with the details stored in the Photos database table)
	Only thumbnails of the images marked ‘public’ are displayed on the ‘Public Gallery’ page of the website. (compare with the details stored in the Photos database table)

	
	
	Appendix 16: fitness for purpose (SDD, DDD and WDD)
	Functional requirements and fitness for purpose
	During the analysis stage of the development cycle, candidates identify the functional requirements when creating a requirements specification. The functional requirements are the inputs, processes, and outputs that must be included in the design and implementation of any solution to a problem.
	
	A solution is fit for purpose if (following design, implementation and testing) it meets all the functional requirements. In the evaluation stage of the Advanced Higher project, candidates discuss if their solution is fit for purpose.
	
	The following examples use functional requirements identified in appendix 1. Both examples assume that a program, website, and database are designed, implemented, and tested.
	
	Example of an evaluation of a solution that is fit for purpose (SDD)
	Functional requirements (from appendix 1)
	The functional requirements are defined in terms of the inputs, processes, and outputs listed below.
	
	All inputs are imported from a sequential file and all outputs are displayed on the screen. The program is activated by double clicking on the file icon and then selecting ‘Run’ from the menu. Each process should be a separate procedure or function that is ‘called’ from the main program.
	
	Inputs:
	
	
	
	
	 itemID

	
	
	 price

	
	
	 number in stock

	
	Processes:
	
	
	
	
	 read in data from external file to a 2-D array

	
	
	 sort the data in order of itemID, from low to high

	
	
	 search a 2-D array, based on end-user input, for the required itemID

	
	Output:
	
	
	
	
	 If a match is found, the data (itemID, price, number in stock) corresponds to the end-user input.

	
	
	 If no match is found, a suitable message informs the end-user.

	
	
	Fitness for purpose
	Following comprehensive testing, the program is fit for purpose.
	
	The solution:
	
	
	
	
	 reads data from an external stock file, splits the data and allocates it to a 2-D array

	
	
	 sorts the data in numerical order using the itemID

	
	
	 allows the user to display a stock item by selecting an itemID

	
	
	 searches the data in the 2-D array for the itemID selected and returns the result

	
	
	 displays formatted output, showing the itemID, price, and number in stock for the selected items

	
	
	 displays a message ‘sorry your item has not been found’ if the stock item is not found in the 2-D array

	
	Example of an evaluation of a solution that is NOT fit for purpose (DDD)
	Functional requirements (from appendix 1)
	The functional requirements are defined in terms of the inputs, processes, and outputs detailed below.
	
	Inputs (customer):
	
	
	
	
	 register: user email, password, password re-entered, firstName, lastName, address, postcode, email

	
	
	 search details: category

	
	
	 search details: itemName

	
	
	 sort details: Field (price or rating) and order required (ascending or descending)

	
	Input (administrator):
	
	
	
	
	 edit item details: itemID, price

	
	
	 edit customer details: customerID, address, postcode, email

	
	
	 add item details: itemID, itemName, description, category, price

	
	
	 delete item details: itemID

	
	
	 delete customer details: customerID

	
	
	 monthly orders: month

	
	Processes:
	
	
	
	
	 auto generate the customerID when a new customer registers

	
	
	 queries to insert records into the Customer and Item tables

	
	
	 queries to sort the item details in order of price and rating

	
	
	 queries to delete specific customer and item records from the database

	
	
	 queries to edit records in the Customer and Item tables

	
	
	 queries to search Item table

	
	
	 queries to display details of all orders placed in a particular month

	Output:
	
	
	
	
	 confirmation of successful insertions

	
	
	 confirmation of successful deletions

	
	
	 confirmation of successful edits

	
	
	 answer tables showing details of sorted items (sorts)

	
	
	 answer tables showing details of required items (searches)

	
	Fitness for purpose
	Following comprehensive testing, the database-driven website and its user interface are not fit for purpose.
	
	Although the solution successfully implements all insertions, deletions, and edits of the back-end database table data, it does not:
	
	
	
	
	 provide confirmation of these actions

	
	
	 allow the customer to sort the results of a stock item search

	
	The solution does successfully:
	
	
	
	
	 store the required information for each new customer (including an auto-generated customerID) when they register

	
	
	 allow a customer’s address, postcode, and email to be edited and deleted by an administrator

	
	
	 store the required information for each new stock item

	
	
	 allow stock item details to be edited and deleted by an administrator

	
	
	 display stock items (descriptions, categories and prices) following a customer search for stock items by either name or category

	
	
	 display all the orders for a month selected by an administrator

	
	
	Copyright acknowledgements
	
	Appendix 10: all images copyright SQA
	
	Appendix 13 and 14: all images Shutterstock:
	School activities banner — 553188940
	
	Appendix 14: Footballers lifting trophy — 370092275
	Table tennis — 87611998
	Karate — 740133061
	Drama opportunities — 329907647
	
	Administrative information
	
	
	Published: September 2024 (version 3.2)
	
	
	History of changes
	
	Version
	Version
	Version
	Version
	Version

	Description of change
	Description of change

	Date
	Date

	2.0
	2.0
	2.0
	2.0

	Course support notes added as appendix — it includes the ‘Resources to support the Advanced Higher Computing Science course’ appendices.
	Course support notes added as appendix — it includes the ‘Resources to support the Advanced Higher Computing Science course’ appendices.
	
	Diagram in appendix 1 altered to move actors outside system process box.
	
	Amended ‘entries’ to ‘entities’ in the ‘Skills, knowledge and understanding for course assessment’ section.

	August 2019
	August 2019

	3.0
	3.0
	3.0

	Amendments to the ‘Course overview’ section, ‘Course content’ section, ‘Course Assessment’ section and ‘Course support notes’. This provides information on the structure of the question paper, the scope for integration in each optional section, and reflects changes to the marks and duration.
	Amendments to the ‘Course overview’ section, ‘Course content’ section, ‘Course Assessment’ section and ‘Course support notes’. This provides information on the structure of the question paper, the scope for integration in each optional section, and reflects changes to the marks and duration.
	
	Appendix 3: amendments to exemplification of mandatory/optional relationships
	
	Appendices 12 and 13: deletions of additional HTML/PHP functions.
	
	Appendices 17, 18 and 19: deleted.

	May 2023
	May 2023

	3.1
	3.1
	3.1

	Appendix 3: text changed to remove reference to ‘dotted line’, to match diagrams.
	Appendix 3: text changed to remove reference to ‘dotted line’, to match diagrams.

	September 2023
	September 2023

	3.2
	3.2
	3.2

	Additional guidance on time and volume for project component
	Additional guidance on time and volume for project component
	
	Appendix 3: amended to provide greater clarity on strong/weak entities.
	
	Appendix 9: amended to ensure consistency across pseudocode design and SQA Reference Language examples of standard algorithms.
	

	September 2024
	September 2024

	
	
	Note: please check SQA’s website to ensure you are using the most up-to-date version of this document.
	
	
	
	
	
	© Scottish Qualifications Authority 2014, 2019, 2023, 2024

