

Next Generation Higher National Unit
Grading Pack

Higher National Diploma Software
Development

Qualification code: GV22 48

This qualification is available in a restricted
delivery model from academic session 2025

This grading pack provides information about the process of grading the Higher

National Diploma (HND) Software Development. It is for lecturers and assessors,

and contains all the mandatory information you need to grade the HND.

You must read it alongside the Educator Guide.

Published: October 2025 (version 1.0)

© Scottish Qualifications Authority 2025

Contents

Approach to grading .. 1

Whole-qualification grade outcomes .. 1

Whole-qualification grade descriptors .. 1

What the whole-qualification grade descriptors do and how they are used 2

Using the grading matrix ... 4

Meta-skills .. 5

Learning for Sustainability .. 5

Grading matrix .. 6

Additional grading guidance ... 35

Grading model .. 35

Worked example of grading model ... 39

Administrative information .. 41

History of changes.. 41

1

Approach to grading

Grading in Next Generation: Higher National (NextGen: HN) Qualifications produces

a valid and reliable record of a learner’s level of achievement across the breadth of

the qualification content.

As well as grading the whole qualification, you assess individual units on a pass or

fail basis. Each unit has evidence requirements that learners must achieve before

you can consider them for whole-qualification grading.

Whole-qualification grade outcomes

Learners who pass NextGen: HN Qualifications receive one of the following grade

outcomes for the qualification as a whole:

• Achieved with Distinction

• Achieved with Merit

• Achieved

To determine a learner’s whole-qualification grade, you use the grading matrix to

assess and judge their performance across the key aspects of the HND. You must

align your judgements with the following whole-qualification grade descriptors.

Whole-qualification grade descriptors

Achieved with Distinction

The learner has achieved an excellent standard across the course content, going

significantly beyond meeting the qualification requirements. They showed a

comprehensive knowledge and understanding of course concepts and principles,

and consistently used them to apply skills to complete high-quality work. They

engaged significantly with the process of developing their meta-skills in the context

of their HN Qualification.

2

Achieved with Merit

The learner has achieved a very good standard across the course content, going

beyond meeting the qualification requirements. They showed a very good knowledge

and understanding of course concepts and principles, and consistently used them to

apply skills to complete work of a standard above that expected for an Achieved

grade. They actively engaged with the process of developing their meta-skills in the

context of their HN Qualification.

Achieved

The learner has achieved a good standard across the course content, credibly

meeting the qualification requirements. They showed a good knowledge and

understanding of course concepts and principles, and used them to apply skills to

complete work of the required standard. They engaged with the process of

developing their meta-skills in the context of their HN Qualification.

What the whole-qualification grade descriptors do and how
they are used

The whole-qualification grade descriptors outline the skills, knowledge and

understanding a learner needs to show across the whole qualification to achieve that

specific grade. They align with the Scottish Credit and Qualifications Framework

(SCQF) level descriptors.

NextGen: HND qualifications are at SCQF level 8. Learners who complete a

NextGen: HND can:

• convey an insightful understanding of the subject’s core theories, concepts and

principles, along with its scope and defining features

• apply skills, knowledge and understanding of the subject in relevant practical and

professional contexts, showing some specialist knowledge and using a range of

relevant techniques and materials

• describe and explain significant topical issues and specific areas of interest

3

• exercise autonomy and initiative in carrying out activities, and have developed

their professional practice and behaviours relevant to the context of the

qualification

• formulate and critically evaluate evidence-based responses to issues in the

context of the subject area, appropriately applying research and academic

processes

Please use this information, as well as the whole-qualification grade descriptors, to

help you understand the standard at which learners should be assessed and graded.

Higher education institutes (HEIs) can use the grade descriptors to set admissions

requirements, and employers can use them to help make decisions during a

recruitment process.

SQA’s quality assurance teams use the grade descriptors and the grading matrix to

ensure that grades awarded in a particular NextGen: HN Qualification are at a

consistent national standard, regardless of the setting in which they are achieved.

Successful learners receive their grade, along with the grade descriptor, on their

certificate.

4

Using the grading matrix

You must use the grading matrix to judge the learner’s whole-qualification grade.

You can use the grading matrix at any time, but you only make a whole-qualification

grading judgement when you are confident the learner has met all the evidence

requirements of all the required units.

The criteria in the grading matrix reflect the knowledge, skills and qualities HEIs and

employers can expect of a learner who has completed the qualification. These

criteria align with the overall purpose of the qualification, and remain the same for its

duration.

Each criterion has sector-specific descriptors of a typical learner’s performance

standard, aligned to the whole-qualification grade outcomes of Achieved, Achieved

with Merit and Achieved with Distinction. These descriptors describe the standard a

learner of that whole-qualification grade is expected to show.

The guidance accompanying each criterion can include, but is not limited to,

information on:

• relevant types of assessment that may produce useful or meaningful evidence for

judging that criterion

• mapping to content that is particularly relevant to that criterion

• mapping to meta-skills

This guidance may be updated over time.

When you make your final grading judgement, you must use a ‘best fit’ approach

based on the learner’s achievement across the grading matrix. This may be

straightforward — for example, if the learner’s evidence shows a consistent standard

across the grading matrix criteria. If it is not straightforward, you must make a ‘best

fit’ judgement — for example, if a learner shows a mix of standards across the

grading matrix criteria, with no clear pattern. The criteria may not always have equal

value. You can decide some are more important to the final grade than others.

5

Meta-skills

Meta-skills are a key part of NextGen: HN Qualifications and learners can develop

them throughout the qualification. A learner’s engagement with developing their own

meta-skills contributes to their qualification grade. You do not assess or grade

competence or progress in individual meta-skills — for example, by judging the

quality of a learner’s feeling or creativity. Instead, you look at the process of

development learners go through. This means learners need to provide evidence of

planning, developing and reflecting on their meta-skills.

If qualification content also contributes to meta-skills development, it contributes to a

learner’s whole-qualification grading through the grading matrix approach.

Learning for Sustainability

Learning for Sustainability does not contribute to a learner’s whole qualification

grade.

The exception is where Learning for Sustainability content is part of the qualification

content. In which case the Learning for Sustainability content will contribute to a

learner's whole-qualification grade through the grading matrix.

6

Grading matrix

Criterion 1 descriptors

Criterion 1 Achieved Merit Distinction

Demonstrate knowledge of
concepts relating to software
development

The learner:
• provides a basic

explanation of
object-oriented design
(OOD) and
object-oriented
programming (OOP)
concepts

• provides a basic
description of
programming techniques,
such as decomposition,
abstraction and modularity

• demonstrates adequate
knowledge of the syntax,
semantics and constructs
of a programming
language

The learner:
• provides a clear

explanation of OOD and
OOP concepts and
outlines their benefits over
other designs

• provides a clear
description of
programming techniques
such as decomposition,
abstraction and modularity

• demonstrates sound
knowledge of the syntax,
semantics and constructs
of a programming
language

The learner:
• provides a detailed and

clear explanation of OOD
and OOP concepts and
fully describes their
benefits over other
designs

• provides a detailed and
clear description of
programming techniques
such as decomposition,
abstraction and modularity
and explains their benefits

• demonstrates sound
knowledge of the syntax,
semantics and constructs
of more than one
programming language
and describes the use
case of each language

7

Criterion 1 Achieved Merit Distinction

Demonstrate knowledge of
concepts relating to software
development (continued)

The learner:
• demonstrates adequate

knowledge of software
development frameworks
and methods

• demonstrates adequate
knowledge of
programming standards,
such as code style and
security

• demonstrates adequate
knowledge of algorithms
and their use cases

• selects and uses
appropriate data
structures in creating
software solutions

• provides an adequate
explanation of the goals
and principles of test-
driven development

• provides an adequate
explanation of version
control and its benefits to
software development

The learner:
• demonstrates sound

knowledge of software
development frameworks
and methods and
compares the benefits of
more than one software
development method

• demonstrates a sound
understanding of
programming standards
such as code style,
security and quality

• demonstrates sound
knowledge of algorithms
by outlining how they work
and their use cases

• selects, justifies and uses
appropriate data
structures in creating
software solutions

• provides a clear
explanation of the goals
and principles of
test-driven development

The learner:
• demonstrates a clear and

detailed understanding of
a software development
method and compares
and contrasts the risks
and benefits of more than
one software development
method

• demonstrates a clear and
detailed understanding of
programming standards
such as code style,
security and quality, and
explains their benefits

• demonstrates detailed
knowledge of algorithms
by describing how they
work, their use cases and
their complexity measure

8

Criterion 1 Achieved Merit Distinction

Demonstrate knowledge of
concepts relating to software
development (continued)

 The learner:
• provides a clear

explanation of version
control and its benefits to
software development

The learner:
• selects, justifies and

efficiently uses highly
appropriate data
structures in creating
software solutions

• provides a detailed clear
explanation of the goals
and principles of
test-driven development
and compares levels of
testing

• provides a detailed and
clear explanation of
version control, the risks
of not doing it, and its
benefits to software
development

Criterion 1 guidance

This criterion requires learners to demonstrate their understanding of foundational programming concepts. The rubrics benchmark

learners’ ability to articulate, analyse, and apply their conceptual understanding through description, discussion, justification, and

critical evaluation of the programming fundamentals they need to develop software solutions.

9

The criterion reflects the requirement for methodical and systematic approaches to software development through modern and

traditional models for managing the development cycle. This competence can be evidenced in the following units:

Software Development (J7D9 48)

• Coding a software application using OOP concepts provides evidence of OOD and OOP concepts and their benefits over other

designs.

• Using UML to visualise software design provides evidence of abstraction and modularity in software design.

• Using standard object libraries and modular coding provides evidence of programming constructs, decomposition, and

modularity.

• Using appropriate data structures and algorithms provides evidence of selecting, justifying and using data structures, and

understanding algorithm use cases.

• Creating and executing test plans provides evidence of understanding the goals and principles of test-driven development.

• Using version control tools provides evidence of understanding of version control and its benefits.

Software Engineering Methods (J7EF 48)

• Creating and justifying use of architectural and design patterns provides evidence of OOD and OOP design benefits.

• Describing and comparing software development lifecycle models provides evidence of comparing the benefits of different

software development methods.

• Creating UML models of system components provides evidence of abstraction and modular system design.

• Applying structured testing strategies provides evidence of understanding the principles of test-driven development.

10

Professional Practice in Software Development (J7EE 48)

• Creating a working software solution using a full project lifecycle provides evidence of knowledge of the syntax, semantics, and

constructs of a programming language.

• Producing and maintaining code with version control provides evidence of understanding version control and its benefits.

• Designing, developing, testing and documenting a team software project provides evidence of knowledge of development

frameworks and methods.

• Reflecting on individual contributions and standards provides evidence of understanding of code quality, security, and

professional standards.

Code Security (J7EB 48)

• Coding an application using secure coding practices provides evidence of understanding programming standards, including

security and quality.

• Using version control tools for secure software development provides evidence of understanding version control and its benefits.

• Creating and applying a threat model and mitigation testing provides evidence of testing principles and quality control aligned

with secure development.

Programming for Data (J7EG 48)

• Writing modular, reusable, well-documented code provides evidence of sound knowledge of syntax, semantics, code quality and

standards.

11

• Selecting and implementing appropriate data structures and performing algorithmic data cleaning provide evidence of selecting

and using appropriate data structures, and understanding algorithms.

• Testing and debugging data processing programs provides evidence of understanding the goals and principles of

test-driven development.

Event-Driven Programming (J7EC 48)

• Designing and coding a modular, event-driven application provides evidence of understanding programming constructs, syntax,

and modularity.

• Using exception handling and parameter passing in app logic provides evidence of understanding of programming constructs

and security practices.

• Creating and applying a test plan provides evidence of understanding of test-driven development principles.

Database Design Fundamentals (J8FK 47)

• Demonstrating understanding of data types, normalisation, data modelling, and integrity provides evidence of abstraction and

modularity, and proper structuring of information.

• Applying or implementing security measures to protect a database provides evidence of competence in understanding security

and quality standards.

• Use of structured query language (SQL) and understanding of relational concepts shows understanding of syntax and

semantics, and logic flow in programming.

12

DevOps Principles in Practice (J897 48)

• Detailed coverage of version control (Git), repositories, and branching strategies helps to provide evidence of DevOps

principles.

• Knowledge and implementation of software development methods, including comparison with Waterfall, contributes to evidence

of comparing frameworks and understanding benefits.

• Emphasis on test automation, continuous integration and continuous deployment (CI/CD), and infrastructure as code (IaC)

provides evidence of understanding of test-driven development and quality assurance principles.

• Use of modern modular tools, containerisation, automation, and iteration provides evidence of understanding of principles of

modularity and modern software development standards.

Database Design and Development (J7DV 48)

• In-depth use of SQL, query construction, joins, transactions, and user-defined functions evidence advanced knowledge of

syntax, semantics, and logic constructs.

• Working with both relational and not only SQL (NoSQL) databases provides evidence of selection and justification of different

data structures.

• Developing entity relationship diagrams (ERDs), normalisation, and referential integrity provides evidence of abstraction,

decomposition, and modular data design.

13

Criterion 2 descriptors

Criterion 2 Achieved Merit Distinction

Design and develop software The learner:
• creates a software

requirements specification
that adequately identifies
the problem to be solved

• selects and implements an
appropriate methodology
to guide the development
process

• creates a software design
document that describes
the architecture of the
solution and its data
structures

• writes source code that
correctly implements a
software design and
demonstrates good coding
practices

• selects and uses software
development tools for
coding and debugging

The learner:
• creates a software

requirements specification
that identifies the problem
to be solved and specifies
the requirements for the
solution

• selects, justifies and
implements an appropriate
methodology to guide the
development process

• creates a software design
document that clearly
describes the architecture
of the solution and its data
structures

• writes source code that
correctly and efficiently
implements a software
design and demonstrates
competence in coding
practice

The learner:
• creates a software

requirements specification
that identifies the problem
to be solved, specifies the
requirements for the
solution and identifies the
constraints on the solution

• selects, justifies and
demonstrates competence
in implementing a highly
appropriate methodology
to guide the development
process

• creates a detailed, clear
software design document
that fully describes the
architecture of the
solution, its data
structures and the user
interface

14

Criterion 2 Achieved Merit Distinction

Design and develop software
(continued)

The learner:
• creates a project plan and

meets some milestones in
its execution

The learner:
• selects, justifies and

efficiently uses software
development tools for
coding and debugging

• creates a clear project
plan and adheres to it,
meeting most milestones

The learner:
• writes source code that

correctly and efficiently
implements a software
design and demonstrates
a high level of
competence in coding
practice

• selects, justifies and
efficiently uses an
appropriate range of
software development
tools for coding and
debugging

• creates a clear and
detailed project plan and
successfully executes it,
with all milestones met

15

Criterion 2 guidance

This criterion reflects the software development activities and processes necessary for the establishment of the client (end-user)

requirements, documenting them and developing use cases to guide solution development. The requirements must be validated.

This competence can be evidenced in the following units:

Software Development (J7D9 48)

• Creating a user requirements specification and clarifying assumptions provide evidence of creating a software requirements

specification that identifies the problem and specifies requirements.

• Applying agile methodologies and documenting the development lifecycle provide evidence of selecting, justifying and

implementing an appropriate methodology.

• Using UML diagrams and rewriting a software specification provide evidence of creating a software design document describing

architecture and data structures.

• Writing secure, modular, maintainable code with standard libraries provides evidence of writing source code that implements the

design and demonstrates competence in coding.

• Using an IDE and version control to develop and debug code provides evidence of efficient use of software development tools

for coding and debugging.

• Managing time and meeting project milestones provides evidence of creating a clear project plan and meeting milestones.

16

Software Engineering Methods (J7EF 48)

• Discovering and documenting system requirements and use cases provides evidence of creating a software requirements

specification.

• Applying and justifying lifecycle models such as Waterfall, Agile, and Scrum provides evidence of selecting and justifying a

methodology.

• Designing and documenting UML models and architectural patterns provides evidence of creating a software design document.

• Illustrating and applying software testing and quality assurance provides evidence of competence in coding practice and

validation of implementation.

Professional Practice in Software Development (J7EE 48)

• Creating a detailed project plan with a timeline, diary and evidence of project meetings provides evidence of creating a clear

project plan and adhering to it.

• Using a range of tools for planning, design, coding and testing provides evidence of selecting and using software development

tools.

• Producing individual and team documentation for requirements, design, testing and code provides evidence of creating

requirements and design documentation.

• Coding and testing a working application from a design provides evidence of writing source code that correctly implements a

software design.

17

Code Security (J7EB 48)

• Creating a secure software design from a scenario provides evidence of creating a software design document that describes

architecture and security-related structures.

• Writing secure code and applying threat mitigation provide evidence of writing source code that demonstrates competence in

secure coding practice.

• Using development tools to prevent vulnerabilities and manage code provides evidence of using development tools for secure

coding and debugging.

Application Development for Web (J7E1 48)

• Building a secure full-stack web app from a design brief provides evidence of writing source code that implements a design and

shows coding competence.

• Using version control and collaboration tools to manage code provides evidence of efficient use of development tools.

• Working from a given design specification to build and deploy a solution provides evidence of following a software design

document.

Event-Driven Programming (J7EC 48)

• Creating a requirements specification for an event-driven application provides evidence of creating a software requirements

specification.

• Implementing a design using an event-driven programming framework provides evidence of writing source code that implements

a software design.

• Using modular code and test planning provide evidence of competent coding practice and tool use for testing and debugging.

18

Programming for Data (J7EG 48)

• Selecting and applying data structures and tools for efficient coding provides evidence of writing efficient source code using

appropriate tools.

• Producing documentation and debugging tested programs provide evidence of competent use of tools for coding and

debugging.

Database Design Fundamentals (J8FK 47)

• Creating entity-relationship diagrams, relational models, and normalised tables helps to evidence production of software and

data structure design documentation.

• Creating secure and functional database schemas from user need helps to evidence identifying

data-related requirements.

DevOps Principles in Practice (J897 48)

• Using development methodologies, including traditional (Waterfall) versus DevOps, helps to evidence methodology selection

and justification.

• Configuring tools including Git, CI/CD pipelines, containers, automation and version control help to evidence tool selection for

coding, deployment and debugging.

• Demonstrating understanding of build, test and release processes, iterative improvement and feedback helps to evidence

process planning and milestone delivery.

19

Database Design and Development (J7DV 48)

• SQL programming, including functions, transactions and joins helps to evidence coding skills within a defined domain (SQL).

20

Criterion 3 descriptors

Criterion 3 Achieved Merit Distinction

Test, deploy and document
software

The learner:
• creates and implements a

test plan that confirms that
the solution satisfies the
software requirement
specification

• creates and executes a
plan that outlines the
steps to deploy the
software to a target
system

• demonstrates security
practices through
authentication and
authorisation

• creates technical and user
documentation to an
adequate standard

The learner:
• creates, justifies and

implements a test plan
that confirms that the
solution satisfies the
software requirement
specification

• creates, documents and
executes a clear plan for
deployment of the
software to a target
system

• demonstrates good
security practices to
protect data through code
inspection, encryption,
authentication and
authorisation

• creates technical and user
documentation that is
clear, concise and easy to
understand

The learner:
• creates, justifies and

implements a
comprehensive test plan
that verifies that the
solution correctly satisfies
the software requirement
specification

• creates a detailed, clear
plan for deployment that
includes instructions for
installing and configuring
the software on a target
system and executes it

• demonstrates
comprehensive security
practices to protect data
through code inspection
and analysis, encryption,
authentication and
authorisation

• creates technical and user
documentation that is
comprehensive, clear and
easy to understand

21

Criterion 3 guidance

This criterion reflects the essential technical, academic, and professional competences required for effective and responsible

software development. This competence can be evidenced in the following units:

Software Development (J7D9 48)

• Creating and executing a test plan with documentation of test logs and errors provides evidence of creating, justifying and

implementing a test plan to confirm the solution meets the specification.

• Providing evidence of software deployment and executables provides evidence of creating, documenting and executing a

deployment plan.

• Producing technical documentation and an application user guide provides evidence of creating technical and user

documentation that is clear and concise.

• Using secure coding practices and documenting test runs indirectly supports demonstrating good security practices through

inspection and testing.

Professional Practice in Software Development (J7EE 48)

• Creating a test plan and reporting on test outcomes for a software application provides evidence of creating and implementing a

test plan aligned with the requirements specification.

• Deploying a software application and producing user and technical documentation provide evidence of executing a deployment

plan and producing clear documentation.

• Including ethical and security considerations in reflection supports evidence of demonstrating good security practices, including

awareness of protection needs.

22

Code Security (J7EB 48)

• Performing security testing and applying mitigation solutions provide evidence of implementing a test plan with a focus on data

protection and security.

• Using encryption, authentication, and secure coding provides evidence of demonstrating good security practices through

encryption and authorisation.

• Creating documentation including threat models and security-focused design provides evidence of clear technical

documentation relating to security and code inspection.

Application Development for Web (J7E1 48)

• Carrying out and documenting stringent testing of front-end and back-end provides evidence of creating and executing a test

plan to validate specification compliance.

• Deploying a full-stack web app to a cloud platform provides evidence of executing a deployment plan for a target environment.

• Ensuring code meets secure development standards provides evidence of good security practices, including authentication and

secure coding.

• Documenting results of testing and providing user documentation provide evidence of producing clear, concise technical and

user documentation.

Event-Driven Programming (J7EC 48)

• Developing a test plan and documenting test results provide evidence of creating and implementing a test plan.

23

• Deploying a front-end app and evaluating user feedback provide evidence of executing a deployment plan and assessing

outcomes.

• Including accessibility and security in UX evaluation supports evidence of security practices through awareness and testing.

• Preparing technical and user documentation provides evidence of producing clear documentation for users and developers.

Programming for Data (J7EG 48)

• Testing and debugging programs and revising code accordingly provides evidence of implementing and refining a test plan.

• Producing technical and user documentation for the program provides evidence of creating clear and understandable

documentation.

• Including secure handling of data in program development provides evidence of good security practices through code inspection

and data protection.

Database Design Fundamentals (J8FK 47)

• Database security operations, including authentication, provide evidence of security practices (authentication and authorisation).

• Explaining database structure and use helps to evidence production of technical documentation.

DevOps Principles in Practice (J897 48)

• Using CI/CD pipelines and automated build and test tools provides evidence of test planning and execution in a DevOps

context.

24

• Deploying applications using containers, IaC, and repo-based automation provides evidence of deployment planning and

execution.

• Monitoring, verification, and telemetry provide evidence of validation and iteration post-deployment.

• Producing documentation (for example for infrastructure and tools) provides evidence of producing technical documentation.

25

Criterion 4 descriptors

Criterion 4 Achieved Merit Distinction

Collaborate and communicate
in a team context

The learner:
• communicates adequately

with team members, using
appropriate channels,
tools, and language

• collaborates with team
members by giving and
receiving feedback, and
contributing to solutions

• contributes actively to the
team's tasks and
decisions, by sharing
ideas, knowledge, and
skills

• reflects on their own and
their team's performance,
strengths and
weaknesses, and
identifies areas for
improvement

The learner:
• communicates effectively

and respectfully with team
members, using
appropriate channels,
tools, and language

• collaborates creatively
with team members by
giving, receiving feedback
and generating solutions

• contributes actively and
constructively to the
team's tasks, goals, and
decisions, freely sharing
ideas, knowledge, and
skills

• reflects on their own and
their team's performance,
strengths, and
weaknesses, and
identifies actions for
improvement

The learner:
• communicates very

effectively and respectfully
with their team members,
using appropriate
channels, tools, and
language

• collaborates creatively and
critically with team
members by giving and
receiving feedback,
resolving conflicts, and
generating solutions

• demonstrates leadership
in contributing actively and
constructively to the
team's tasks, goals, and
decisions, by sharing
ideas, knowledge, and
skills

• reflects critically on their
own and their team's
performance, strengths,
and weaknesses, and
identifies and initiates
actions for improvement

26

Criterion 4 guidance

This criterion reflects the professional attitudes and behaviours that we expect of a software developer, including a commitment to

adhering to best practice, planning and managing work schedules, and seeking continuous improvement. It also relates to software

development being a team process, requiring collaboration and communication skills. We expect collaboration between individuals,

professionals and groups, but you should also consider other forms of collaboration. This competence can be evidenced in the

following units:

Professional Practice in Software Development (J7EE 48)

• Participating in a team-based project, with each learner taking a lead role in at least one stage, provides evidence of

collaborating creatively and contributing actively to team tasks and goals.

• Producing a project diary, meeting evidence, and recordings of project meetings provides evidence of communicating effectively

and respectfully using appropriate tools and channels.

• Presenting a software solution as a team to a client audience provides evidence of sharing ideas and communicating

respectfully in a team context.

• Writing an individual evaluation of personal contribution and team experience provides evidence of reflecting on team and

individual strengths and identifying actions for improvement.

Software Engineering Methods (J7EF 48)

• Gathering requirements from client consultation and document use cases provides evidence of communicating effectively with

others in a professional context.

27

• Designing solutions based on team-derived inputs and analysis provides evidence of collaborating to generate and agree

solutions.

• Performing validation and verification tasks collaboratively supports contributing constructively to team decisions.

Application Development for Web (J7E1 48)

• Using collaborative version control and code-sharing tools provides evidence of communicating effectively using appropriate

tools and sharing ideas and knowledge.

• Working to a client brief using team-based communication and collaboration tools provides evidence of collaborating and

contributing to team goals and outputs.

DevOps Principles in Practice (J897 48)

• Collaboration between development and operations teams provides evidence of teamwork, collaboration, and shared problem-

solving.

• Using tools (for example Git, repositories, boards, sprints) provides evidence of using communication channels and

collaborative tools.

• Feedback loops, continuous improvement, and iterative development provide evidence of reflective practice and solution-

oriented collaboration.

28

Criterion 5 descriptors

Criterion 5 Achieved Merit Distinction

Demonstrate regard for legal
requirements and
consideration of ethical and
sustainability issues

The learner:
• demonstrates awareness

of the ethical implications
of professional activities

• identifies and complies
with the relevant laws,
regulations and standards,
such as data protection,
intellectual property, and
cyber security

• respects the rights,
interests, and
perspectives of different
stakeholders, such as
college staff, peers and
other learners, and seeks
to balance them in a fair
and inclusive manner

• reflects on the ethical and
social implications of their
actions and decisions, and
considers the potential
benefits and harms for
themselves, others, and
the environment

The learner:
• evaluates the ethical

implications of
professional activities

• identifies and complies
with the relevant laws,
regulations and standards,
such as data protection,
intellectual property, and
cyber security

• recognises and respects
the rights, interests, and
perspectives of different
stakeholders, such as
college staff, peers and
other learners, and seeks
to balance them

• evaluates and reflects on
the ethical and social
implications of their
actions and decisions, and
considers the potential
benefits and harms for
themselves, others, and
the environment

The learner:
• evaluates the ethical

implications of
professional activities and
promotes ethical
behaviour

• identifies and complies
with the relevant laws,
regulations and standards
that apply to their field of
software development

• recognises and fully
respects the rights,
interests, and
perspectives of all
stakeholders and seeks to
balance them in a fair and
inclusive manner

29

Criterion 5 Achieved Merit Distinction

Demonstrate regard for legal
requirements and
consideration of ethical and
sustainability issues
(continued)

The learner:
• applies the basic

principles and practices of
sustainability in their work,
reducing waste through
efficient development
processes

The learner:
• applies the principles and

range of practices of
sustainability in their work,
including reducing waste
through efficient
development processes
and saving energy

The learner:
• evaluates and critically

reflects on the ethical and
social implications of the
actions and decisions
taken by themselves and
the team, and considers
the potential benefits and
harms for themselves,
others, and the
environment

• effectively applies the
principles and range of
practices of sustainability
in their work, including
reducing waste through
Lean processes, saving
energy, and promoting
innovation

30

Criterion 5 guidance

This criterion relates to learners understanding that they should not develop ethically unsound software applications, such as those

that promote discriminatory practices or enable unlawful activity. Software should also operate within the bounds of applicable

legislation, such as the legal requirement for data protection and accessibility. Learners should understand the impact of software

systems and applications on the environment and other aspects of sustainability, and take specific action. This competence can be

evidenced in the following units:

Professional Practice in Software Development (J7EE 48)

• Evaluating ethical considerations in the team project reflection provides evidence of evaluating the ethical implications of

professional activities.

• Reflecting on individual and team contributions, including social and professional impacts, provides evidence of evaluating the

ethical and social implications of actions and decisions.

• Documenting and presenting ethical and sustainability considerations during a final presentation provides evidence of

considering potential benefits and harms to self, others, and the environment.

• Developing sustainability knowledge and applying it in a vocational context provides evidence of applying principles and

practices of sustainability in development processes.

• Understanding and complying with professional standards supports identifying and complying with relevant laws, regulations,

and standards.

31

Code Security (J7EB 48)

• Using secure coding practices and threat mitigation techniques provides evidence of complying with cybersecurity standards

and data protection.

• Identifying and replacing vulnerable components and logging audit data provide evidence of complying with regulations and

ensuring ethical handling of code and data.

• Understanding OWASP and legal responsibilities in security provides evidence of identifying and complying with cybersecurity

and legal standards.

Software Engineering Methods (J7EF 48)

• Performing validation and design reviews with stakeholder input provides evidence of respecting stakeholder perspectives and

balancing interests.

• Modelling system behaviours and assessing usability, reliability and maintainability supports evidence of considering ethical

implications and sustainability in design choices.

Database Design Fundamentals (J8FK 47)

• Data protection and database security, including authentication, provide evidence of following standards on data protection and

cybersecurity.

• Integrity constraints, data access control, and responsible handling of data provide evidence of ethical handling of user data and

system access.

32

DevOps Principles in Practice (J897 48)

• Secure coding, dependency checks, pipeline integrity, and infrastructure security provide evidence of cybersecurity standards

and responsible software practices.

• Process efficiency through automation, CI/CD, and containerisation provides evidence of sustainability through efficient

resource use and reduced redundancy.

Database Design and Development (J7DV 48)

• Implementation of user permissions, data integrity, and referential control provides evidence of legal and ethical compliance in

data management.

• Management of user accounts and privileges provides evidence of data protection and responsible access control.

33

Criterion 6 descriptors

Criterion 6 Achieved Merit Distinction

Develop meta-skills The learner adequately
engages with the process of
meta-skills development in
the context of the qualification
by:
• carrying out a

self-assessment of
meta-skills, giving reasons
for ratings or judgements
made

• setting clear and
measurable goals, plus
action strategies to
develop meta-skills in all
three categories

• using reflective practice
strategies to track
progress and analyse the
links between course
activities, experiences,
and meta-skills
development

The learner demonstrates a
clear commitment to the
process of meta-skills
development in the context of
the qualification by:
• carrying out a

self-assessment of
meta-skills, giving some
insightful reasons for
ratings or judgements
made

• setting clear and
measurable goals, plus
action strategies to
develop meta-skills in all
three categories

• using reflective practice
strategies to track
progress and demonstrate
some insight into the
impact of their course
activities and experiences
on their meta-skills
development

The learner demonstrates a
strong commitment to the
process of meta-skills
development in the context of
the qualification by:
• carrying out a

self-assessment of
meta-skills, giving some
insightful reasons for
ratings or judgements
made

• setting clear and
measurable goals, plus
action strategies to
develop meta-skills in all
three categories, and
updating these as required

• using reflective practice
strategies effectively to
track progress and
demonstrate insight into
the impact of their course
activities and experiences
on their meta-skills
development

34

Criterion 6 guidance

You must refer to the meta-skills assessment guidance when grading meta-skills. You can find meta-skills teaching, learning and

assessment resources on SQA’s meta-skills web page.

Competence in individual meta-skills is not being judged here, for example the quality of a learner’s feeling or creativity. Rather, it is

the process of development the learner goes through — planning, developing, and reflecting — that should be evidenced and

assessed.

Although a meta-skills outcome is located in one unit, evidence of meta-skills development can be gathered from any activity at any

time during the course. For meaningful reflection to take place, the process of meta-skills development should happen continually

throughout the course. The range of contexts in which this can happen is very wide, and dependent on the sector, as well as

individual preferences. Each unit signposts opportunities for meta-skills development.

https://www.sqa.org.uk/sqa/100584.html

35

Additional grading guidance

Grading model

The competence criteria reflect the academic, technical, and professional skills and

behaviours learners should demonstrate in their performance in this qualification.

The competence criteria are described in generic terms, so you can apply them

regardless of which optional units a learner completes. This allows you to use

evidence from any mandatory or optional unit when evaluating the competencies, as

indicated in the grading matrix.

Each criterion has a grading matrix entry with performance statements at three levels

in the form of a rubric that will help you evaluate and grade consistently. There is

separate guidance on grading the meta-skills competence criterion in

Meta-skills — assessment and grading information for centres.

When grading an individual criterion, you should refer to the grading matrix, which

identifies where you are most likely to find relevant evidence across the course units.

You should determine which rubric statement best reflects the quality and depth of

the learner’s submitted evidence for each contributing unit. Where multiple units

contribute to a single criterion (for example ‘Test, deploy and document software’),

you should use the highest level of performance demonstrated in any unit to inform

the grade. For instance, if the evidence for Unit A indicates that the learner ‘creates

technical and user documentation to an adequate standard’ while the evidence for

Unit B shows that the learner ‘creates technical and user documentation that is clear,

concise and easy to understand’, then the evidence from Unit B should be applied in

forming a grade judgement for this criterion. We have provided a more complete

example for the criterion below. For this example, you would assign a grade of Merit

to the criterion:

https://www.sqa.org.uk/sqa/110308.html

36

Criterion 3 Achieved Merit Distinction

Test, deploy and document
software

The learner:
• creates and implements a

test plan that confirms that
the solution satisfies the
software requirement
specification
[Unit A]

• creates and executes a
plan that outlines the
steps to deploy the
software to a target
system
[Unit A]

• demonstrates security
practices through
authentication and
authorisation
[Unit B]

• creates technical and user
documentation to an
adequate standard
[Unit A]

The learner:
• creates, justifies and

implements a test plan
that confirms that the
solution satisfies the
software requirement
specification
[Unit B]

• creates, documents and
executes a clear plan for
deployment of the
software to a target
system
[Unit B and Unit C]

• demonstrates good
security practices to
protect data through code
inspection, encryption,
authentication and
authorisation

• creates technical and user
documentation that is
clear, concise and easy to
understand
[Unit B]

The learner:
• creates, justifies and

implements a
comprehensive test plan
that verifies that the
solution correctly satisfies
the software requirement
specification
[Unit C]

• creates a detailed, clear
plan for deployment that
includes instructions for
installing and configuring
the software on a target
system and executes it

• demonstrates
comprehensive security
practices to protect data
through code inspection
and analysis, encryption,
authentication and
authorisation

• creates technical and user
documentation that is
comprehensive, clear and
easy to understand

37

In the example above, you would discount the evidence from Unit A, as for each

rubric there is evidence at a higher level of performance from either Unit A or Unit B.

While Unit C provides evidence for one rubric at Distinction, in the main the learner

performance is evidenced at Merit.

The tables below illustrate the process of moving from the evidence of performance

level as described in the individual rubrics to an assigned grade for each criterion.

These examples are for illustrative purposes only.

The process requires the exercise of your professional judgement, taking into

account the relative contributions that each rubric makes to the key competence

expressed in the criterion.

Criterion 1

Achieved Merit Distinction

Rubric 1 Achieved Rubric 1 Merit Rubric 1 Distinction

Rubric 2 Achieved Rubric 2 Merit Rubric 2 Distinction

Rubric 3 Achieved Rubric 3 Merit Rubric 3 Distinction

Assigned grade: Merit

Criterion 2

Achieved Merit Distinction

Rubric 1 Achieved Rubric 1 Merit Rubric 1 Distinction

Rubric 2 Achieved Rubric 2 Merit Rubric 2 Distinction

Rubric 3 Achieved Rubric 3 Merit Rubric 3 Distinction

Rubric 4 Achieved Rubric 4 Merit Rubric 4 Distinction

Assigned grade: Merit

38

Criterion 3

Achieved Merit Distinction

Rubric 1 Achieved Rubric 1 Merit Rubric 1 Distinction

Rubric 2 Achieved Rubric 2 Merit Rubric 2 Distinction

Rubric 3 Achieved Rubric 3 Merit Rubric 3 Distinction

Assigned grade: Achieved

Criterion 4

Achieved Merit Distinction

Rubric 1 Achieved Rubric 1 Merit Rubric 1 Distinction

Rubric 2 Achieved Rubric 2 Merit Rubric 2 Distinction

Rubric 3 Achieved Rubric 3 Merit Rubric 3 Distinction

Assigned grade: Achieved

Criterion 5

Achieved Merit Distinction

Rubric 1 Achieved Rubric 1 Merit Rubric 1 Distinction

Rubric 2 Achieved Rubric 2 Merit Rubric 2 Distinction

Rubric 3 Achieved Rubric 3 Merit Rubric 3 Distinction

Rubric 4 Achieved Rubric 4 Merit Rubric 4 Distinction

Assigned grade: Distinction

39

Criterion 6

Achieved Merit Distinction

Rubric 1 Achieved Rubric 1 Merit Rubric 1 Distinction

Rubric 2 Achieved Rubric 2 Merit Rubric 2 Distinction

Rubric 3 Achieved Rubric 3 Merit Rubric 3 Distinction

Assigned grade: Achieved

After completing the grading matrix for a learner using available evidence, you

assign the whole qualification grade holistically. You must consider the relative

contribution of each criterion to the overall aims of the qualification. The first two

criteria in the grading matrix encapsulate the learner’s knowledge and understanding

of software development concepts and their skills in applying them to designing and

developing software solutions. The remaining four criteria can be considered as

having similar relative importance in grading.

The final grade must reflect how well the learner has demonstrated the expected

academic, technical, and professional knowledge, skills and behaviours over the

course of their studies and in the work submitted as evidence.

Worked example of grading model

The table below illustrates the process of arriving at a final grade for a learner,

adopting a holistic approach to judgement.

Criterion Achieved Merit Distinction

1. Demonstrate knowledge of concepts
relating to software development

 Merit

2. Design and develop software Merit

3. Test, deploy and document software Merit

40

Criterion Achieved Merit Distinction

4. Collaborate and communicate in a team
context

Achieved

5. Demonstrate regard for legal
requirements and consideration of ethical
and sustainability issues

Achieved

6. Develop meta-skills Distinction

In arriving at a final grade of Merit for this learner, you would note that the learner

does not reach Merit level in demonstrating regard for legal requirements and

consideration of ethical and sustainability issues, nor in their contribution to

teamwork. However, the learner’s strengths in designing and developing software,

testing and deploying software solutions and demonstrating knowledge and

understanding of software development concepts are vital competences for a

software developer and support the decision to award a Merit grade.

41

Administrative information

Published: October 2025 (version 1.0)

History of changes

Version Description of change Date

Please check SQA’s website to ensure you are using the most up-to-date version of

this guide.

If a unit is revised:

• no new centres can be approved to offer the previous version of the unit

• centres should only enter learners for the previous version of the unit if they can

complete it before its finish date

For more information on NextGen: HN Qualifications please visit the NextGen: HN

web page.

The information in this grading pack may be reproduced in support of SQA

qualifications only on a non-commercial basis. If it is reproduced, SQA must be

clearly acknowledged as the source. If it is to be reproduced for any other purpose,

written permission must be obtained from permissions@sqa.org.uk.

© Scottish Qualifications Authority 2025

https://www.sqa.org.uk/sqa/105607.11499.html
https://www.sqa.org.uk/sqa/105607.11499.html
mailto:permissions@sqa.org.uk

	Administrative information
	History of changes

	gv22-48-hnd-software-development-grading-pack.pdf
	Next Generation Higher National Unit Grading Pack
	Higher National Diploma Software Development
	Approach to grading
	Whole-qualification grade outcomes
	Whole-qualification grade descriptors
	Achieved with Distinction
	Achieved with Merit
	Achieved

	What the whole-qualification grade descriptors do and how they are used

	Using the grading matrix
	Meta-skills
	Learning for Sustainability
	Grading matrix
	Criterion 1 descriptors
	Criterion 1 guidance
	Software Development (J7D9 48)
	Software Engineering Methods (J7EF 48)
	Professional Practice in Software Development (J7EE 48)
	Code Security (J7EB 48)
	Programming for Data (J7EG 48)
	Event-Driven Programming (J7EC 48)
	Database Design Fundamentals (J8FK 47)
	DevOps Principles in Practice (J897 48)
	Database Design and Development (J7DV 48)

	Criterion 2 descriptors
	Criterion 2 guidance
	Software Development (J7D9 48)
	Software Engineering Methods (J7EF 48)
	Professional Practice in Software Development (J7EE 48)
	Code Security (J7EB 48)
	Application Development for Web (J7E1 48)
	Event-Driven Programming (J7EC 48)
	Programming for Data (J7EG 48)
	Database Design Fundamentals (J8FK 47)
	DevOps Principles in Practice (J897 48)
	Database Design and Development (J7DV 48)

	Criterion 3 descriptors
	Criterion 3 guidance
	Software Development (J7D9 48)
	Professional Practice in Software Development (J7EE 48)
	Code Security (J7EB 48)
	Application Development for Web (J7E1 48)
	Event-Driven Programming (J7EC 48)
	Programming for Data (J7EG 48)
	Database Design Fundamentals (J8FK 47)
	DevOps Principles in Practice (J897 48)

	Criterion 4 descriptors
	Criterion 4 guidance
	Professional Practice in Software Development (J7EE 48)
	Software Engineering Methods (J7EF 48)
	Application Development for Web (J7E1 48)
	DevOps Principles in Practice (J897 48)

	Criterion 5 descriptors
	Criterion 5 guidance
	Professional Practice in Software Development (J7EE 48)
	Code Security (J7EB 48)
	Software Engineering Methods (J7EF 48)
	Database Design Fundamentals (J8FK 47)
	DevOps Principles in Practice (J897 48)
	Database Design and Development (J7DV 48)

	Criterion 6 descriptors
	Criterion 6 guidance

	Additional grading guidance
	Grading model
	Criterion 1
	Criterion 2
	Criterion 3
	Criterion 4
	Criterion 5
	Criterion 6

	Worked example of grading model

	Administrative information
	History of changes

