

Higher Computing Science

Course code: C816 76

Course assessment code: X816 76

SCQF: level 6 (24 SCQF credit points)

Valid from: session 2023–24

This document provides detailed information about the course and course assessment to

ensure consistent and transparent assessment year on year. It describes the structure of

the course and the course assessment in terms of the skills, knowledge and understanding

that are assessed.

This document is for teachers and lecturers and contains all the mandatory information you

need to deliver the course.

The information in this publication may be reproduced in support of SQA qualifications only

on a non-commercial basis. If it is reproduced, SQA must be clearly acknowledged as the

source. If it is to be reproduced for any other purpose, written permission must be obtained

from permissions@sqa.org.uk.

Where this publication includes materials from sources other than SQA (secondary

copyright) this material must only be reproduced for the purposes of instruction in an

educational establishment. If it is to be reproduced for any other purpose, it is the user’s

responsibility to obtain the necessary copyright clearance. The acknowledgements page lists

sources of copyright items that are not owned by SQA.

This edition: May 2023 (version 3.0)

© Scottish Qualifications Authority 2018, 2020, 2021, 2023

mailto:permissions@sqa.org.uk

Contents

Course overview 1

Course rationale 2

Purpose and aims 2

Who is this course for? 2

Course content 3

Skills, knowledge and understanding 4

Skills for learning, skills for life and skills for work 13

Course assessment 14

Course assessment structure: question paper 14

Course assessment structure: assignment 17

Grading 19

Equality and inclusion 20

Further information 21

Appendix: course support notes 22

Introduction 22

Developing skills, knowledge and understanding 22

Approaches to learning and teaching 22

Preparing for course assessment 45

Developing skills for learning, skills for life and skills for work 50

Resources to support the Higher Computing Science course 51

Appendix 1: development methodologies (SDD) 65

Appendix 2: analysis (SDD) 67

Appendix 3: design techniques (SDD) 69

Appendix 4: evaluation (SDD) 72

Appendix 5: floating-point representation (CS) 74

Appendix 6: computer structure (CS) 76

Appendix 7: environmental impact (CS) 78

Appendix 8: analysis (DDD) 79

Appendix 9: design (DDD) 82

Appendix 10: design of solution to database queries (DDD) 91

Appendix 11: SQL (DDD) 96

Appendix 12: design (WDD) 105

Appendix 13: Cascading Style Sheets (CSS) — controlling appearance and positioning

(WDD) 110

Appendix 14: Cascading Style Sheets (CSS) — horizontal navigation bar (WDD) 118

Appendix 15: HTML — page layout (WDD) 121

Appendix 16: HTML — forms (WDD) 125

Appendix 17: JavaScript (WDD) 131

Appendix 18: testing (WDD) 138

Copyright acknowledgements 140

Version 3.0 1

Course overview

The course consists of 24 SCQF credit points which includes time for preparation for course

assessment. The notional length of time for candidates to complete the course is 160 hours.

The course assessment has two components.

Component Marks Duration

Question paper 80 2 hours

Assignment 40 see ‘Course assessment’ section

Recommended entry Progression

Entry to this course is at the discretion of

the centre.

Candidates should have achieved the

National 5 Computing Science course or

equivalent qualifications and/or experience

prior to starting this course.

 other qualifications in computing science

or related areas

 further study, employment and/or

training

Conditions of award

The grade awarded is based on the total marks achieved across all course assessment

components.

Version 3.0 2

Course rationale
National Courses reflect Curriculum for Excellence values, purposes and principles. They

offer flexibility, provide time for learning, focus on skills and applying learning, and provide

scope for personalisation and choice.

Every course provides opportunities for candidates to develop breadth, challenge and

application. The focus and balance of assessment is tailored to each subject area.

This course highlights the central role of computing professionals as problem-solvers and

designers, and the far-reaching impact of information technology on our environment and

society.

It provides candidates with an understanding of the technologies and develops a wide range

of practical skills that underpin our modern, digital world. The course also builds awareness

of the importance of computing in meeting our needs today and for the future, in many fields

including science, education, business and industry.

Purpose and aims
The course introduces candidates to an advanced range of computational processes, where

they learn to apply a rigorous approach to the design and development process across a

variety of contemporary contexts. They also gain an awareness of the important role that

computing professionals play in meeting the needs of society today and for the future.

The course enables candidates to:

 develop and apply aspects of computational thinking in a range of contemporary contexts

 apply knowledge and understanding of advanced concepts and processes in computing

science

 apply skills and knowledge in analysis, design, implementation, testing and evaluation to

a range of digital solutions with some complex aspects

 communicate advanced computing concepts and explain computational behaviour clearly

and concisely, using appropriate terminology

 develop awareness of current trends in computing technologies and their impact in

transforming and influencing our environment and society

Who is this course for?
The course is suitable for candidates interested in exploring the role and impact of

contemporary computing technologies. It provides an insight into the challenge, excitement

and rewards found in these areas.

Version 3.0 3

Course content

The course has four areas of study:

Software design and development

Candidates develop knowledge and understanding of advanced concepts and practical

problem-solving skills in software design and development. They do this by using appropriate

modular software development environments. Candidates develop modular programming

and computational-thinking skills by analysing, designing, implementing, testing, and

evaluating practical solutions and explaining how these programs work. They use their

knowledge of data types and constructs to create efficient programs to solve advanced

problems.

Computer systems

Candidates develop their understanding of how data and instructions are stored in binary

form and factors affecting system performance. They gain an awareness of the

environmental impact of intelligent systems, as well as the security risks, precautions and

laws that can protect computer systems.

Database design and development

Candidates develop knowledge, understanding and advanced practical problem-solving skills

in database design and development. They do this through a range of practical tasks, using a

minimum of three linked tables and implemented in SQL. Candidates apply computational-

thinking skills to analyse, design, implement, test, and evaluate practical solutions, using a

range of development tools. Candidates apply interpretation skills to tasks involving some

complex features in both familiar and new contexts.

Web design and development

Candidates develop knowledge, understanding and advanced practical problem-solving skills

in web design and development. They do this through a range of practical and investigative

tasks. Candidates apply computational-thinking skills to analyse, design, implement, test,

and evaluate practical solutions to web-based problems, using a range of development tools

including HTML, Cascading Style Sheets (CSS) and JavaScript. Candidates apply

interpretation skills to tasks involving some complex features in both familiar and new

contexts.

Version 3.0 4

Skills, knowledge and understanding

Skills, knowledge and understanding for the course

The following provides a broad overview of the subject skills, knowledge and understanding

developed in the course:

 applying computational thinking to understand problems across a range of contexts

 analysing problems with some complex aspects within computing science across a range

of contemporary contexts

 designing, implementing, testing and evaluating digital solutions (including computer

programs) to problems with some complex aspects across a range of contemporary

contexts

 developing skills in computer programming and the ability to communicate how a

program works by being able to read and interpret code

 communicating understanding of advanced concepts related to software design and

development, and information system design and development, clearly and concisely,

using appropriate terminology

 understanding and evaluating the legal and environmental impact of contemporary

computing technologies

 applying computing science concepts and techniques to create solutions across a range

of contexts

Skills, knowledge and understanding for the course assessment

The following provides details of skills, knowledge and understanding sampled in the course

assessment:

Software design and development

Development

methodologies

Describe and compare the development methodologies:

 iterative development process

 agile methodologies

Analysis Identify the:

 purpose

 scope

 boundaries

 functional requirements

of a problem that relates to the design and implementation at this level,

in terms of:

 inputs

 processes

 outputs

Version 3.0 5

Software design and development

Design Identify the data types and structures required for a problem that

relates to the implementation at this level.

Read and understand designs of solutions to problems at this level,

using the following design techniques:

 structure diagrams

 pseudocode

Exemplify and implement efficient design solutions to a problem, using

a recognised design technique, showing:

 top level design

 the data flow

 refinements

Describe, exemplify and implement user-interface design, in terms of

input and output, using a wireframe.

Implementation

(data types and

structures)

Describe, exemplify and implement appropriately the following

structures:

 parallel 1D arrays

 records

 arrays of records

Implementation

(computational

constructs)

Describe, exemplify and implement the appropriate constructs in a

procedural high-level (textual) language:

 parameter passing (formal and actual)

 the scope of local and global variables

 sub-programs/routines, defined by their name and arguments

(inputs and outputs):

— functions

— procedures

 pre-defined functions (with parameters):

— to create substrings

— to convert from character to ASCII and vice versa

— to convert floating-point numbers to integers

— modulus

 file handling:

— sequential CSV and txt files (open, create, read, write, close)

Read and explain code that makes use of the above constructs.

Version 3.0 6

Software design and development

Implementation

(algorithm

specification)

Describe, exemplify and implement standard algorithms using 1D

arrays or arrays of records:

 linear search

 find minimum and maximum

 count occurrences

Testing Describe, exemplify and implement a comprehensive final test plan to

show that the functional requirements are met.

Identify syntax, execution, and logic errors at this level.

Describe and exemplify debugging techniques:

 dry runs

 trace tables/tools

 breakpoints

 watchpoints

Evaluation Describe, identify and exemplify the evaluation of a solution in terms of:

 fitness for purpose

 efficient use of coding constructs

 usability

 maintainability

 robustness

Version 3.0 7

Computer systems

Data

representation

Describe and exemplify the use of binary to represent positive and

negative integers using two’s complement, including the range of

numbers that can be represented using a fixed number of bits.

Conversion of two’s complement numbers from binary to denary and

vice versa.

Describe and exemplify floating-point representation of positive and

negative real numbers, using the terms mantissa and exponent.

Describe the relationship between the number of bits assigned to the

mantissa/exponent, and the range and precision of floating-point

numbers.

Describe Unicode used to represent characters and its advantage over

extended ASCII code (8-bit) in terms of numbers of characters.

Describe the relative advantages and disadvantages of bit-mapped

graphics versus vector graphics.

Computer

structure

Describe the concept of the fetch-execute cycle.

Describe the factors affecting computer system performance:

 number of processors (cores)

 width of data bus

 cache memory

 clock speed

Environmental

impact

Describe the environmental impact of intelligent systems:

 heating systems

 traffic control

 car management systems

Security risks

and precautions

Describe and identify the implications for individuals and businesses of

the Computer Misuse Act 1990:

 unauthorised access to computer material

 unauthorised access with intent to commit a further offence

 unauthorised modification of programs or data on a computer

Describe and identify the security risks of:

 tracking cookies

 DOS (Denial of Service) attacks:

— symptoms

o slow performance, inability to access

Version 3.0 8

Computer systems

— effects

o disruption to users and businesses

— costs

o lost revenue, labour in rectifying fault

— type of fault

o bandwidth consumption, resource starvation, Domain
Name Service (DNS)

— reasons

o financial, political, personal

Describe how encryption is used to secure transmission of data:

 use of public and private keys

 digital certificates

 digital signatures

Version 3.0 9

Database design and development

Analysis Identify the end-user and functional requirements of a database

problem that relates to the implementation at this level.

Design Describe and exemplify entity-relationship diagrams with three or more

entities, indicating:

 entity name

 attributes

 name of relationship

 cardinality of relationship (one-to-one, one-to-many, many-to-many)

Describe and exemplify an instance using an entity-occurrence

diagram.

Describe and exemplify a compound key.

Describe and exemplify a data dictionary with three or more entities:

 entity name

 attribute name

 primary and foreign key

 attribute type:

— text

— number

— date

— time

— Boolean

 attribute size

 validation:

— presence check

— restricted choice

— field length

— range

Exemplify a design of a solution to a query:

 tables and queries

 fields

 search criteria

 sort order

 calculations

 grouping

Version 3.0 10

Database design and development

Implementation Describe, exemplify and use SQL operations for pre-populated

relational databases, with three or more linked tables:

 UPDATE, SELECT, DELETE, INSERT statements making use of:

— wildcards

— aggregate functions (MIN, MAX, AVG, SUM, COUNT)

— computed values, alias

— GROUP BY

— ORDER BY

— WHERE

Read and explain code that makes use of the above SQL.

Testing Describe and exemplify testing:

 SQL operations work correctly at this level

Evaluation Evaluate solution at this level in terms of:

 fitness for purpose

 accuracy of output

Version 3.0 11

Web design and development

Analysis Identify the end-user and functional requirements of a website problem

that relates to the design and implementation at this level.

Design Describe and exemplify the website structure of a multi-level website

with a home page and two additional levels, with no more than four

pages per level.

Describe, exemplify and implement, taking into account end-user

requirements and device type, an effective user-interface design

(visual layout and readability) using wire-framing:

 horizontal navigational bar

 relative horizontal and vertical positioning of the media

 form inputs

 file formats of the media (text, graphics, video, and audio)

Describe, exemplify and implement prototyping (low fidelity) from

wireframe design at this level.

Implementation

(CSS)

Describe, exemplify and implement efficient inline, internal and external

Cascading Style Sheets (CSS) using grouping and descendant

selectors to:

 control appearance and positioning:

— display (block, inline, none)

— float (left, right)

— clear (both)

— margins/padding

— sizes (height, width)

 create horizontal navigation bars:

— list-style-type:none

— hover

Read and explain code that makes use of the above CSS.

Implementation

(HTML)

Describe, exemplify and implement HTML code:

 nav

 header

 footer

 section

 main

 form

 id attribute

Version 3.0 12

Web design and development

Describe, exemplify and implement form elements:

 form element: input

— text

— number

— textarea

— radio

— submit

 form element: select

Describe, exemplify and implement form data validation:

 length

 presence

 range

Read and explain code that makes use of the above HTML.

Implementation

(JavaScript)

Describe, exemplify and implement coding of JavaScript functions

related to mouse events:

 onmouseover

 onmouseout

 onclick

Testing Describe, exemplify and implement usability testing using personas,

test cases and scenarios based on low-fidelity prototypes.

Describe and exemplify testing:

 input validation

 navigational bar works

 media content displays correctly

Describe and exemplify compatibility testing:

 device type:

— tablet, smartphone, desktop

 browser

Evaluation Evaluate solution at this level in terms of:

 fitness for purpose

 usability

Version 3.0 13

Skills, knowledge and understanding included in the course are appropriate to the SCQF

level of the course. The SCQF level descriptors give further information on characteristics

and expected performance at each SCQF level, and can be found on the SCQF website.

Skills for learning, skills for life and skills for work
This course helps candidates to develop broad, generic skills. These skills are based on

SQA’s Skills Framework: Skills for Learning, Skills for Life and Skills for Work and draw from

the following main skills areas:

2 Numeracy

2.1 Number processes
2.3 Information handling

4 Employability, enterprise and citizenship

4.2 Information and communication technology (ICT)

5 Thinking skills

5.3 Applying
5.4 Analysing and evaluating

You must build these skills into the course at an appropriate level, where there are suitable

opportunities.

http://www.sqa.org.uk/sqa/63101.html

Version 3.0 14

Course assessment

Course assessment is based on the information provided in this document.

The course assessment meets the key purposes and aims of the course by addressing:

 breadth — drawing on knowledge and skills from across the course

 challenge — requiring greater depth or extension of knowledge and/or skills

 application — requiring application of knowledge and/or skills in practical or theoretical

contexts as appropriate

This enables candidates to apply knowledge and skills developed through the course to:

 solve appropriately challenging, practical computing science problems

 answer appropriately challenging questions in computing science contexts

Course assessment structure: question paper

Question paper 80 marks

The question paper gives candidates the opportunity to demonstrate their ability to:

 apply computational thinking to understand problems, across a range of contexts

 analyse computing science problems with some complex aspects, across a range of

contemporary contexts

 design, implement, test and evaluate digital solutions (including computer programs) to

problems, across a range of contemporary contexts

 communicate how a program works in technical detail

 communicate understanding of advanced concepts related to computing science clearly

and concisely, using appropriate terminology

 understand the legal and environmental impact of contemporary computing technologies

 apply computing science concepts and techniques to create solutions, across a range of

contexts

The question paper has 80 marks, which is 67% of the overall marks for the course

assessment (120 marks).

Version 3.0 15

The question paper has three sections. Section 1 is mandatory, and candidates have the

option to complete either section 2 or section 3.

 Section 1: Software design and development, and Computer systems — 55 marks

 Section 2: Database design and development — 25 marks

 Section 3: Web design and development — 25 marks

Each section begins with a number of short, stand-alone questions. These are predominantly

‘C’ mark questions, presented in a clear and concise way, in a simple and/or familiar context.

This is followed by more challenging, context-based questions with multiple parts. These

require a range of responses including restricted and extended response, designing solutions

and writing code, and feature both ‘C’ mark and ‘A’ mark questions. Some questions are

designed to be more challenging and will require candidates to integrate skills, knowledge

and understanding, provide detailed descriptions or explanations, and/or analyse, compare,

and evaluate.

The questions will:

 assess application of understanding, with very few questions requiring direct recall of

knowledge

 sample across the course in a balanced way

 consist of questions set in meaningful contexts, that require candidates to provide some

descriptions and explanations

Note: see the 'Preparing for course assessment' section on p45 in the ‘Course support notes’

for the full range of marks against each area of content and skills.

SQA’s standardised reference language

Questions assessing understanding and application of programming skills are expressed

using SQA’s standardised reference language. Further information can be found in the

document Reference language for Computing Science question papers which can be

downloaded from the Higher Computing Science subject page on SQA’s website.

Where candidates need to answer by writing code, answers may be expressed using any

programming language. Candidates are not expected to write code in SQA’s standardised

reference language. Marks are awarded for demonstrating understanding, not for the correct

use of syntax.

Setting, conducting and marking the question paper

The question paper is set and marked by SQA, and conducted in centres under conditions

specified for external examinations by SQA.

Candidates have 2 hours to complete the question paper.

Version 3.0 16

Specimen question papers for Higher courses are published on SQA’s website. These

illustrate the standard, structure and requirements of the question papers candidates sit. The

specimen papers also include marking instructions.

Version 3.0 17

Course assessment structure: assignment

Assignment 40 marks

The assignment gives candidates an opportunity to demonstrate their ability to:

 apply aspects of computational thinking across a range of contexts

 analyse problems within computing science across a range of contemporary contexts

 design, implement, test and evaluate digital solutions (including computer programs) to

problems across a range of contemporary contexts

 demonstrate skills in computer programming

 apply computing science concepts and techniques to create solutions across a range of

contexts

The assignment has 40 marks, which is 33% of the overall marks for the course assessment

(120 marks).

The assignment has three tasks. Task 1 is mandatory, and candidates have the option to

complete either task 2 or task 3.

 Task 1: Software design and development — 25 marks

 Task 2: Database design and development — 15 marks

 Task 3: Web design and development — 15 marks

A proportion of marks are available for the more challenging aspects of each task, where

candidates are required to demonstrate problem-solving skills.

Note: see the 'Preparing for course assessment' section on p45 in the ‘Course support notes’

for the full range of marks against each area of content and skills.

Setting, conducting and marking the assignment

The assignment is:

 set by SQA, on an annual basis

 conducted under a high degree of supervision and control

 submitted to SQA for external marking

All marking is quality assured by SQA.

The specimen assessment for the course is published on SQA’s website. This illustrates the

standard, structure and requirements of the assessment task candidates complete. The

specimen assessment task also includes marking instructions.

Version 3.0 18

Assessment conditions

Time

The assignment must be carried out within 6 hours, starting at an appropriate point in the

course and once all content has been delivered. It is not anticipated that this is a continuous

6-hour session but conducted over several shorter sessions.

Supervision, control and authentication

The assignment is supervised to ensure that the work presented is the candidate’s own work.

At the end of each session, and upon completion of the assignment, teachers and lecturers

must ensure that candidate evidence is stored securely.

Resources

Each candidate must have access to a computer system with a high-level (textual)

programming language and software that can create, edit and run SQL, HTML and CSS.

The assignment is conducted under open-book conditions, which means candidates are

permitted to access resources such as programming manuals, class notes, textbooks and

programs they have written throughout the course.

Reasonable assistance

The assignment consists of three independent tasks. They are designed in a way that does

not require teachers or lecturers to provide support to candidates, other than to ensure that

they have access to the necessary resources within the centre.

Once the assignment is complete, it must not be returned to the candidate for further work to

improve their mark.

Evidence to be gathered

Candidate evidence includes program listings, screenshots or similar, as appropriate.

Volume

There is no word count.

Version 3.0 19

Grading
Candidates’ overall grades are determined by their performance across the course

assessment. The course assessment is graded A–D on the basis of the total mark for all

course assessment components.

Grade description for C

For the award of grade C, candidates will typically have demonstrated successful

performance in relation to the skills, knowledge and understanding for the course.

Grade description for A

For the award of grade A, candidates will typically have demonstrated a consistently high

level of performance in relation to the skills, knowledge and understanding for the course.

Version 3.0 20

Equality and inclusion

This course is designed to be as fair and as accessible as possible with no unnecessary

barriers to learning or assessment.

For guidance on assessment arrangements for disabled candidates and/or those with

additional support needs, please follow the link to the assessment arrangements web page:

www.sqa.org.uk/assessmentarrangements.

http://www.sqa.org.uk/assessmentarrangements

Version 3.0 21

Further information

The following reference documents provide useful information and background.

 Higher Computing Science subject page

 Assessment arrangements web page

 Building the Curriculum 3–5

 Guidance on conditions of assessment for coursework

 SQA Skills Framework: Skills for Learning, Skills for Life and Skills for Work

 Educational Research Reports

 SQA e-assessment web page

The SCQF framework, level descriptors and handbook are available on the SCQF website.

http://www.sqa.org.uk/sqa/56924.html
http://www.sqa.org.uk/assessmentarrangements
https://education.gov.scot/education-scotland/scottish-education-system/policy-for-scottish-education/policy-drivers/cfe-building-from-the-statement-appendix-incl-btc1-5/building-the-curriculum/
https://education.gov.scot/education-scotland/scottish-education-system/policy-for-scottish-education/policy-drivers/cfe-building-from-the-statement-appendix-incl-btc1-5/building-the-curriculum/
http://www.sqa.org.uk/sqa/files_ccc/Guidance_on_conditions_of_assessment_for_coursework.pdf
http://www.sqa.org.uk/sqa/63101.html
http://www.sqa.org.uk/sqa/35847.958.html
http://www.sqa.org.uk/sqa/68750.html

Version 3.0 22

Appendix: course support notes

Introduction
These support notes are not mandatory. They provide advice and guidance to teachers and

lecturers on approaches to delivering the course. You should read these in conjunction with

this course specification and the specimen question paper and coursework.

Developing skills, knowledge and understanding
This section provides further advice and guidance about skills, knowledge and understanding

that you could include in the course. You have considerable flexibility to select contexts that

will stimulate and challenge candidates, offering both breadth and depth.

The ‘Approaches to learning and teaching’ section provides suggested experiences and

activities that you can build into your delivery, to develop the skills, knowledge and

understanding of the course.

Approaches to learning and teaching
The Computing Science course reflects Curriculum for Excellence values, purposes and

principles, so the approaches to learning and teaching developed by individual centres

should reflect these too. You should encourage candidates to participate fully in active

learning and practical activities by working together, analysing, investigating, debating and

evaluating topics, problems and solutions while you act increasingly as a facilitator.

You should use an appropriate balance of teaching methodologies when delivering the

course. A variety of active learning approaches is encouraged, including the following:

Activity-based learning

You should balance whole-class, direct teaching opportunities with activity-based learning

using practical tasks. An investigatory approach is encouraged, with candidates actively

involved in developing their skills, knowledge and understanding by investigating a range of

real-life and relevant problems and solutions related to areas of study. You should support

learning with appropriate practical activities, so that skills are developed simultaneously with

knowledge and understanding.

Group work

Practical activities and investigations lend themselves to group work, and you should

encourage this. Candidates engaged in collaborative group working strategies can capitalise

on one another’s knowledge, resources and skills by questioning, investigating, evaluating

and presenting ideas to the group. Working as a team is a fundamental aspect of working in

the IT and related industries and so should be encouraged and developed.

Problem-based learning

Problem-based learning (PBL) is another approach that can support candidates to progress

through this course. This method may be best utilised at the end of a topic, where additional

Version 3.0 23

challenge is required to ensure candidates are secure in their knowledge and understanding

and to develop the ability to apply knowledge and skills in less familiar contexts. Learning

through PBL develops skills in problem solving, decision making, investigation, creative

thinking, team working and evaluation.

Computational thinking

Computational thinking is recognised as a key skill set for all 21st century candidates —

whether they intend to continue with computing science or not. It involves a set of problem-

solving skills and techniques used by software developers to write programs.

There are various ways of defining computational thinking. One useful structure is to group

these problem-solving skills and techniques under five broad headings (concepts):

 Abstraction: seeing a problem and its solution at many levels of detail and generalising

the necessary information. Abstraction allows us to represent an idea or a process in

general terms (for example variables) and use it to solve other problems that are similar

in nature.

 Algorithms: the ability to develop a step-by-step strategy for solving a problem.

Algorithm design is often based on the decomposition of a problem and the identification

of patterns that help to solve the problem. In computing science as well as in

mathematics, algorithms are often written abstractly, utilising variables in place of specific

numbers.

 Decomposition: breaking down a task so that we can clearly explain a process to

another person — or to a computer. Decomposing a problem frequently leads to pattern

recognition and generalisation/abstraction, and ultimately the ability to design an

algorithm.

 Pattern recognition: the ability to notice similarities or common differences that will help

us make predictions or lead us to shortcuts. Pattern recognition is frequently the basis for

solving problems and designing algorithms.

 Generalisation: realising that we can use a solution to one problem to solve a whole

range of related problems.

Underpinning all of these concepts is the idea that computers are deterministic: they do

exactly what we tell them to do and so can be understood.

Computational thinking can be a component of many subjects; computing science delivers

this particularly well. You are encouraged to emphasise, exemplify and make these aspects

of computational thinking explicit (at an appropriate level) wherever there are opportunities to

do so throughout the teaching and learning of this course.

Using online and outside resources

Stimulating interest and curiosity should be a prime objective when teaching this course.

Engaging with outside agencies or industry professionals can greatly enhance the learning

process. Online resources can provide a valuable addition to teaching and learning activities,

encouraging research, collation and storage of information and evaluation of these materials.

Using interactive multimedia learning resources, online quizzes, and web-based software

can also support teacher-led approaches.

Version 3.0 24

Blending assessment activities with learning activities throughout the course can support

learning, for example:

 sharing learning intentions/success criteria

 using assessment information to set learning targets and next steps

 adapting teaching and learning activities based on assessment information

 boosting confidence by providing supportive feedback

Where appropriate, self-assessment and peer-assessment techniques should be

encouraged.

Meeting the needs of all candidates

Within any class, each candidate has individual strengths and areas for improvement. If there

are candidates capable of achieving a higher level in some aspects of the course, you should

give them the opportunity to do so, where possible.

Where there are candidates who are struggling to achieve Higher level in some aspects of

the course, you should provide opportunities for additional or peer support. You can do this

by allowing a more able candidate to take on a tutor-type role and assisting other candidates

to develop and reinforce their understanding of a particular topic.

When delivering this course to a group of candidates where some are working towards

National 5 and others Higher, you may find it useful to identify activities covering common

knowledge and skills for all candidates, and then provide additional activities for Higher

candidates.

Where Higher candidates have studied National 5 in a previous year, it is important that you

provide them with new and different contexts for learning to avoid demotivation. For example,

candidates could work in a different type of development environment or language at Higher

than they did for National 5.

Advice on distribution of time

The notional length of time for candidates to complete the course is 160 hours, although they

may need to contribute some of their own time in addition to the programmed learning time.

You can decide how to distribute the time, depending on the prior learning of your

candidates. You should allocate time for preparation for the question paper and 6 hours for

the course assignment.

Version 3.0 25

Suggested learning activities

You can decide the sequence of delivery for the four areas of study:

Software design and development

You are encouraged to use an investigatory approach, with candidates actively involved in

developing their skills, knowledge and understanding of a range of software development

problems and solutions.

 Development methodologies:

— Working in groups, candidates could discuss how to carry out software projects using

an agile methodology, compared to an iterative development process.

 Analysis:

— Working in groups, candidates could analyse a number of problems and decide

purpose, scope, boundaries and functional requirements.

 Design:

— You could present candidates with a variety of completed top level designs, and ask

them to complete the data flow and the refinements.

— Ask candidates to solve complex problems using their chosen design technique,

discuss the differences and decide which solutions are more efficient.

— Candidates could then design user interfaces using wireframes.

 Implementation:

— You could provide candidates with working programs that demonstrate sub-programs,

user-defined functions, parameter passing, sequential file operations and scope, local

and global variables.

— Ask candidates to identify and explain sections of code from within these programs.

— Using the pre-defined functions stated in the course content, candidates could tackle

a number of problems.

— Using programs created in National 5, ask candidates to think how they could use

their knowledge of parallel 1D-arrays, records and arrays of records to implement

them using the new data structures.

— Working in groups, ask candidates to write code from designs provided in

pseudocode or structure diagrams. This would help them implement the data flow

design using procedures and parameter passing.

— Using a range of working programs that use a variety of standard algorithms, ask

candidates to interpret and explain what is happening in the code. This would help

them develop their own modular programs that make use of these constructs and

standard algorithms.

 Testing:

— Using a variety of programs, ask candidates to create comprehensive final test plans

to show that the functional requirements were met and to test them to check whether

they work. It would be useful to use a number of programs that had logic and syntax

errors, to show the benefits of testing.

— You could demonstrate debugging techniques, for example dry runs, trace tables,

breakpoints and watchpoints, to show how they can help programmers find errors

within their code.

Version 3.0 26

 Evaluation:

— In groups, ask candidates to evaluate completed programs in terms of efficient use of

coding constructs, fitness for purpose, usability, maintainability and robustness. A

mixture of efficient and non-efficient programs would help demonstrate the benefits of

evaluation.

Computer systems

 Data representation:

— You could describe how computers store negative integers using two’s complement.

— Ask candidates to complete exercises to convert two’s complement numbers from

binary to denary and vice versa, and the range of numbers that can be represented

using a fixed number of bits.

— Using different exercises, candidates could demonstrate understanding of the

advantages of Unicode over ASCII, and the advantages and disadvantages of

bit-mapped versus vector graphics.

 Computer structure:

— Candidates could research ways to improve computer performance and discuss the

main points with the class.

— You could discuss the fetch-execute cycle and relate it to the programs the

candidates have been writing.

 Environmental impact:

— Working in groups, candidates could investigate the environmental impact of

intelligent systems in heating systems, traffic control and car management systems

and then present their findings to the class.

 Security risks and precautions:

— Candidates could research instances when the Computer Misuse Act (1990) was

breached and identify the implications for individuals and businesses.

— Working in teams, candidates could research tracking cookies and Denial of Service

(DOS) attacks and present their findings to the class.

— You could explain the many ways that encryption can be used to securely transmit

data and discuss how to ensure communications are secure.

Database design and development

 Analysis:

— Working in groups (with some candidates being database developers and others

being clients), the developers could interview the clients and create the end-user and

functional requirements for the database problem.

 Design:

— You could demonstrate a completed database with three or more tables, showing

how the tables are connected using entity-relationship diagrams.

— Then you could explain a data dictionary, including primary keys, foreign keys,

compound keys, attribute types and size, and the different types of validation.

— Candidates could complete different types of exercises to create a data dictionary

from given data.

Version 3.0 27

— Candidates could look at various websites to see how validation is used to stop

incorrect data from being entered.

 Implementation:

— You could demonstrate SQL operations using aggregate functions, computed values

and aliases.

— Candidates could then complete a number of exercises to solve problems relating to

using the appropriate SQL operations.

— Using SQL code and databases, ask candidates to explain what the output of the

code would be.

 Testing and evaluation:

— Using SQL code, candidates could test it and evaluate its fitness for purpose and

accuracy of output.

— Using an incorrect SQL operation, along with correct expected output, ask candidates

to identify how to correct the SQL statement in order to produce the expected output.

Web design and development

 Analysis:

— Working in groups (with some being web developers and others being clients), the

developers could interview the clients and create the end-user and functional

requirements for the problem.

 Design:

— Candidates could use wire-framing design techniques to design website structures

and pages relating to multi-level websites. These could involve horizontal navigation

bars and forms.

— Using the completed website designs, candidates could create low-fidelity prototypes

to test their effectiveness.

 Implementation:

— Using HTML, Cascading Style Sheets (CSS) and JavaScript code with the web

pages, candidates could explain which parts of the code relate to the web page.

— Using completed HTML and CSS files, ask candidates to edit the CSS code to create

different appearances and positioning.

— Using some form design, ask candidates to implement using HTML.

 Testing and evaluation:

— Candidates could create test tables to check the usability and fitness for purpose of a

number of websites.

— Candidates could create personas, test cases and scenarios, and implement usability

testing on low-fidelity prototypes produced by others.

— Ask candidates to discuss the types of compatibility testing that website creators have

to carry out before making their websites live.

Version 3.0 28

Resources

The following is a summary of suggested resources:

 internet-enabled computers and a digital projector

 access to a high-level (textual) programming language

 access to a database that supports execution of SQL statements

 web development tools (script enabled browsers)

You should find that existing hardware and software within the computing science classroom

provide all that is required to deliver the course.

Some suggested specific online resources:

[date accessed May 2018]

 Software design and development

www.java.com

www.python.org

www.codeacademy.com

www.programiz.com/python-programming

www.livecode.com

www.draw.io

 Computer systems

www.bbc.co.uk/education/subjects

 Database design and development

www.w3schools.com

www.codeacademy.com

www.tutorialspoint.com/sql

www.sqlcourse.com

Apex.oracle.com/en

 Web design and development

www.w3schools.com

www.codeacademy.com

html.net/tutorials

www.khanacademy.org

pencil.evolus.vn

balsamiq.com

resources.infosecinstitute.com/prototyping

Goggles.mozilla.org

http://hackasaurus.toolness.org

http://www.java.com/
http://www.python.org/
http://www.codeacademy.com/
http://www.programiz.com/python-programming
http://www.livecode.com/
http://www.draw.io/
http://www.bbc.co.uk/education/subjects
http://www.w3schools.com/
http://www.codeacademy.com/
http://www.tutorialspoint.com/sql
http://www.sqlcourse.com/
https://sqanow.sharepoint.com/sites/nqsubjects/computingandinformationscience/Higher/RNQ/Archive/Apex.oracle.com/en
http://www.w3schools.com/
http://www.codeacademy.com/
http://html.net/tutorials/
http://html.net/tutorials/
https://www.khanacademy.org/
http://pencil.evolus.vn/
https://balsamiq.com/
http://resources.infosecinstitute.com/prototyping/
https://sqanow.sharepoint.com/sites/nqsubjects/computingandinformationscience/Higher/RNQ/Archive/Goggles.mozilla.org
http://hackasaurus.toolness.org/

Version 3.0 29

Some suggested software development environments

For this course, you can use any software development environment. You should base your

decision on the suitability of the chosen environment to support the delivery of the mandatory

content of the course.

Possible examples of software development environments that might be suitable:

 Python

 Live Code

 Visual Basic

 True Basic

 Java

 Xojo (formerly real basic)

Version 3.0 30

Comparison of National 5 and Higher

The following table shows the relationship between the mandatory National 5 and Higher knowledge and understanding. You may find it useful

for:

 designing and planning learning activities for multi-level National 5/Higher classes

 ensuring seamless progression between levels

 identifying important prior learning for candidates at Higher

Software design and development

National 5 Higher

Development

methodologies

Describe and implement the phases of an

iterative development process: analysis,

design, implementation, testing,

documentation, and evaluation, within general

programming problem solving.

Describe and compare the development methodologies:

 iterative development process

 agile methodologies

Analysis Identify the purpose and functional

requirements of a problem that relates to the

design and implementation at this level, in

terms of:

 inputs

 processes

 outputs

Identify the:

 purpose

 scope

 boundaries

 functional requirements

of a problem that relates to the design and implementation at this level, in

terms of:

 inputs

 processes

 outputs

Version 3.0 31

Software design and development

National 5 Higher

Design Identify the data types and structures required

for a problem that relates to the

implementation at this level, as listed below.

Describe, identify, and be able to read and

understand:

 structure diagrams

 flowcharts

 pseudocode

Exemplify and implement one of the above

design techniques to design efficient solutions

to a problem.

Describe, exemplify, and implement user-

interface design, in terms of input and output,

using a wireframe.

Identify the data types and structures required for a problem that relates

to the implementation at this level.

Read and understand designs of solutions to problems at this level, using

the following design techniques:

 structure diagrams

 pseudocode

Exemplify and implement efficient design solutions to a problem, using a

recognised design technique, showing:

 top level design

 the data flow

 refinements

Describe, exemplify, and implement user-interface design, in terms of

input and output, using a wireframe.

Implementation

(data types and

structures)

Describe, exemplify, and implement

appropriately the following data types and

structures:

 character

 string

 numeric (integer and real)

 Boolean

 1D arrays

Describe, exemplify and implement appropriately the following structures:

 parallel 1D arrays

 records

 arrays of records

Version 3.0 32

Software design and development

National 5 Higher

Implementation

(computational

constructs)

Describe, exemplify, and implement the

appropriate constructs in a high-level (textual)

language:

 expressions to assign values

 expressions to return values using

arithmetic operations (addition,

subtraction, multiplication, division, and

exponentiation)

 expressions to concatenate strings

 selection constructs using simple

conditional statements with <, >, ≤, ≥, =, ≠

operators

 selection constructs using complex

conditional statements

 logical operators (AND, OR, NOT)

 iteration and repetition using fixed and

conditional loops

 pre-defined functions (with parameters):

— random

— round

— length

Read and explain code that makes use of the

above constructs.

Describe, exemplify and implement the appropriate constructs in a

procedural high-level (textual) language:

 parameter passing (formal and actual)

 the scope of local and global variables

 sub-programs/routines, defined by their name and arguments (inputs

and outputs):

— functions

— procedures

 pre-defined functions (with parameters):

— to create substrings

— to convert from character to ASCII and vice versa

— to convert floating-point numbers to integers

— modulus

 file handling:

— sequential CSV and txt files (open, create, read, write, close)

Read and explain code that makes use of the above constructs.

Version 3.0 33

Software design and development

National 5 Higher

Implementation

(algorithm

specification)

Describe, exemplify, and implement standard

algorithms:

 input validation

 running total within loop

 traversing a 1-D array

Describe, exemplify and implement standard algorithms using 1D arrays

or arrays of records:

 linear search

 find minimum and maximum

 count occurrences

Testing Describe, identify, exemplify, and implement

normal, extreme, and exceptional test data for

a specific problem, using a test table.

Describe and identify syntax, execution, and

logic errors.

Describe, exemplify and implement a comprehensive final test plan to

show that the functional requirements are met.

Identify syntax, execution, and logic errors at this level.

Describe and exemplify debugging techniques:

 dry runs

 trace tables/tools

 breakpoints

 watchpoints

Evaluation Describe, identify, and exemplify the

evaluation of a solution in terms of:

 fitness for purpose

 efficient use of coding constructs

 robustness

 readability:

— internal commentary

— meaningful identifiers

— indentation

— white space

Describe, identify and exemplify the evaluation of a solution in terms of:

 fitness for purpose

 efficient use of coding constructs

 usability

 maintainability

 robustness

Version 3.0 34

Computer systems

 National 5 Higher

Data

representation

Describe and exemplify the use of binary to

represent positive integers.

Describe floating-point representation of

positive real numbers using the terms

mantissa and exponent.

Convert from binary to denary and vice versa.

Describe extended ASCII code (8-bit) used to

represent characters.

Describe the vector graphics method of

graphic representation for common objects:

 rectangle

 ellipse

 line

 polygon

with attributes:

 co-ordinates

 fill colour

 line colour

Describe the bit-mapped method of graphics

representation.

Describe and exemplify the use of binary to represent positive and

negative integers using two’s complement, including the range of

numbers that can be represented using a fixed number of bits.

Conversion of two’s complement numbers from binary to denary and

vice versa.

Describe and exemplify floating-point representation of positive and

negative real numbers, using the terms mantissa and exponent.

Describe the relationship between the number of bits assigned to the

mantissa/exponent, and the range and precision of floating-point

numbers.

Describe Unicode used to represent characters and its advantage over

extended ASCII code (8-bit) in terms of numbers of characters.

Describe the relative advantages and disadvantages of bit-mapped

graphics versus vector graphics.

Version 3.0 35

Computer systems

 National 5 Higher

Computer

structure

Describe the purpose of the basic computer

architecture components and how they are

linked together:

 processor (registers, ALU, control unit)

 memory locations with unique addresses

 buses (data and address)

Explain the need for interpreters and

compilers to translate high-level program

code to binary (machine code instructions).

Describe the concept of the fetch-execute cycle.

Describe the factors affecting computer system performance:

 number of processors (cores)

 width of data bus

 cache memory

 clock speed

Environmental

impact

Describe the energy use of computer

systems, the implications on the environment

and how these could be reduced through:

 settings on monitors

 power down settings

 leaving computers on stand-by

Describe the environmental impact of intelligent systems:

 heating systems

 traffic control

 car management systems

Version 3.0 36

Computer systems

 National 5 Higher

Security risks

and precautions

Describe the role of firewalls.

Describe the use made of encryption in

electronic communications.

Describe and identify the implications for individuals and businesses of

the Computer Misuse Act 1990:

 unauthorised access to computer material

 unauthorised access with intent to commit a further offence

 unauthorised modification of programs or data on a computer

Describe and identify the security risks of:

 tracking cookies

 DOS (Denial of Service) attacks:

— symptoms

o slow performance, inability to access

— effects

o disruption to users and business

— costs

o lost revenue, labour in rectifying fault

— type of fault

o bandwidth consumption, resource starvation, Domain Name
Service(DNS)

— reasons

o financial, political, personal

Describe how encryption is used to secure transmission of data:

 use of public and private keys

 digital certificates

 digital signatures

Version 3.0 37

Database design and development

National 5 Higher

Analysis Identify the end-user and functional

requirements of a database problem that

relates to the implementation at this level.

Identify the end-user and functional requirements of a database

problem that relates to the implementation at this level.

Design Describe and identify the implications for

individuals and businesses of the UK General

Data Protection Regulation (UK GDPR) that

data must be:

 processed lawfully, fairly and in a

transparent manner in relation to

individuals

 used for the declared purpose only

 limited to the data needed for the

declared purpose

 accurate

 not kept for longer than necessary

 held securely

Describe and exemplify entity-relationship
diagrams with two entities indicating:

 entity name

 attributes

 relationship (one-to-many)

Describe and exemplify entity-relationship diagrams with three or more

entities, indicating:

 entity name

 attributes

 name of relationship

 cardinality of relationship (one-to-one, one-to-many, many-to-many)

Describe and exemplify an instance using an entity-occurrence

diagram.

Describe and exemplify a compound key.

Describe and exemplify a data dictionary with three or more entities:

 entity name

 attribute name

 primary and foreign key

 attribute type:

— text

— number

— date

— time

— Boolean

Version 3.0 38

Database design and development

National 5 Higher

 Describe and exemplify a data dictionary:

 entity name

 attribute name

 primary and foreign key

 attribute type:

— text

— number

— date

— time

— Boolean

 attribute size

 validation:

— presence check

— restricted choice

— field length

— range

Exemplify a design of a solution to the query:

 multiple tables

 fields

 search criteria

 sort order

 attribute size

 validation:

— presence check

— restricted choice

— field length

— range

Exemplify a design of a solution to a query:

 tables and queries

 fields

 search criteria

 sort order

 calculations

 grouping

Version 3.0 39

Database design and development

National 5 Higher

Implementation Implement relational databases with two

linked tables, to match the design with

referential integrity.

Describe, exemplify and implement SQL
operations for pre-populated relational
databases, with a maximum of two linked
tables:

 SELECT:

— from

— where:

o AND, OR, <, >, =
o order by with a maximum of two

fields

 INSERT

 UPDATE

 DELETE

 equi-join between tables

Read and explain code that makes use of the

above SQL.

Describe, exemplify and use SQL operations for pre-populated

relational databases, with three or more linked tables:

 UPDATE, SELECT, DELETE, INSERT statements making use of:

— wildcards

— aggregate functions (MIN, MAX, AVG, SUM, COUNT)

— computed values, alias

— GROUP BY

— ORDER BY

— WHERE

Read and explain code that makes use of the above SQL.

Testing Describe and exemplify testing:

 SQL operations work correctly at this level

Describe and exemplify testing:

 SQL operations work correctly at this level

Evaluation Evaluate solution in terms of:

 fitness for purpose

 accuracy of output

Evaluate solution at this level in terms of:

 fitness for purpose

 accuracy of output

Version 3.0 40

Web design and development

 National 5 Higher

Analysis Identify the end-user and functional

requirements of a website problem that

relates to the design and implementation at

this level.

Identify the end-user and functional requirements of a website problem

that relates to the design and implementation at this level.

Design Describe and exemplify the website

structure with a home page, a maximum of

four linked multimedia pages, and any

necessary external links.

Describe, exemplify and implement, taking

into account end-user requirements,

effective user-interface design (visual layout

and readability) using wire-framing:

 navigational links

 consistency across multiple pages

 relative vertical positioning of the media

displayed

 file formats of the media (text, graphics,

video, and audio)

Describe and identify the implications for

individuals and businesses of the Copyright,

Designs and Patents Act 1988 relating to:

 web content (text, graphics, video, and

audio)

Describe and exemplify the website structure of a multi-level website with

a home page and two additional levels, with no more than four pages per

level.

Describe, exemplify and implement, taking into account end-user

requirements and device type, an effective user-interface design (visual

layout and readability) using wire-framing:

 horizontal navigational bar

 relative horizontal and vertical positioning of the media

 form inputs

 file formats of the media (text, graphics, video, and audio)

Describe, exemplify and implement prototyping (low fidelity) from

wireframe design at this level.

Version 3.0 41

Web design and development

 National 5 Higher

Compare a range of standard file formats:

 audio standard file formats WAV and

MP3 in terms of compression, quality,

and file size

 bit-mapped graphic standard file formats

JPEG, GIF, and PNG in terms of

compression, animation, transparency,

and colour depth

Describe the factors affecting file size and

quality, relating to resolution, colour depth,

and sampling rate.

Describe the need for compression.

Describe, exemplify and implement

prototyping (low fidelity) from wireframe

design at this level.

Implementation

(CSS)

Describe, exemplify and implement internal
and external Cascading Style Sheets (CSS):

 selectors, classes and IDs

 properties

— text:

o font (family, size)

o color

Describe, exemplify and implement efficient inline, internal and external

Cascading Style Sheets (CSS) using grouping and descendant selectors

to:

 control appearance and positioning:

— display (block, inline, none)

— float (left, right)

— clear (both)

Version 3.0 42

Web design and development

 National 5 Higher

o alignment

— background colour

Read and explain code that makes use of

the above CSS.

— margins/padding

— sizes (height, width)

 create horizontal navigation bars:

— list-style-type:none

— hover

Read and explain code that makes use of the above CSS.

Implementation

(HTML)

Describe, exemplify and implement HTML

code:

 HTML

 head

 title

 body

 heading

 paragraph

 DIV

 link

 anchor

 IMG

 audio

 video

 lists — ol, ul and li

Describe, exemplify and implement HTML code:

 nav

 header

 footer

 section

 main

 form

 id attribute

Describe, exemplify and implement form elements:

 form element: input

— text

— number

— textarea

— radio

Version 3.0 43

Web design and development

 National 5 Higher

Describe and implement hyperlinks (internal

and external), relative and absolute

addressing.

Read and explain code that makes use of

the above HTML.

— submit

 form element: select

Describe, exemplify and implement form data validation:

 length

 presence

 range

Read and explain code that makes use of the above HTML.

Implementation

(JavaScript)

Describe and identify JavaScript coding

related to mouse events:

 onmouseover

 onmouseout

Describe, exemplify and implement coding of JavaScript functions related

to mouse events:

 onmouseover

 onmouseout

 onclick

Testing Describe and exemplify testing:

 matches user-interface design

 links and navigation work correctly

 media (such as text, graphics, and

video) display correctly

 consistency

Describe, exemplify and implement usability testing using personas, test

cases and scenarios based on low-fidelity prototypes.

Describe and exemplify testing:

 input validation

 navigational bar works

 media content displays correctly

Version 3.0 44

Web design and development

 National 5 Higher

Describe and exemplify compatibility testing:

 device type:

— tablet, smartphone, desktop

 browser

Evaluation Evaluate solution in terms of:

 fitness for purpose

Evaluate solution at this level in terms of:

 fitness for purpose

 usability

Version 3.0 45

Preparing for course assessment
The course assessment focuses on breadth, challenge and application. Candidates should

apply the skills, knowledge and understanding they have gained during the course.

In preparation, you should give candidates the opportunity to practise activities similar to

those expected in the course assessment. For example, you could develop questions and

tasks similar to those in the specimen question paper and specimen coursework.

You may find the following information useful:

 course assessment overview

 question paper brief

 assignment brief

Version 3.0 46

Course assessment overview

Marks: 120

The course assessment has two components:

 question paper: 80 marks

 assignment: 40 marks

Proportion of ‘A’ and ‘C’ type marks:

 approximately 30% of marks ‘A’ type

 approximately 50% of marks ‘C’ type

The course assessment (question paper and assignment) is designed using the following

ranges of marks against each area of content and skills.

 % of course

assessment

Number

of marks
Overall Assignment

Question

paper

Analysis 5 6 3-11 3-6 0-5

Design 30 36 28-44 2-7 20-40

Implementation 40 48 40-56 22-24 16-34

Testing 10 12 8-16 3-6 5-10

Evaluation 5 6 3-11 3-6 0-5

Systems 10 12 10-14 n/a 10-14

Note: The skills, knowledge and understanding across the DDD and WDD areas of study are

not directly comparable. For example, there is more assessable content for design in DDD

than WDD, but more for implementation in WDD than DDD.

As a result, the mark breakdown across analysis, design, implementation, testing and

evaluation will not be identical across the options, however, there will be a balance of ‘A’ type

and ‘C’ type marks across the options in both the question paper and the assignment to

ensure a comparable level of demand.

Version 3.0 47

Question paper brief

Marks: 80

Duration: 2 hours

The question paper has three sections. Section 1 is mandatory, and candidates have the

option to complete either section 2 or section 3

 Section 1: Software design and development, and Computer systems — 55 marks

 Section 2: Database design and development — 25 marks

 Section 3: Web design and development — 25 marks

Each section begins with a number of short, stand-alone questions. These are predominantly

‘C’ mark questions, presented in a clear and concise way, in a simple and/or familiar context.

This is followed by more challenging, context-based questions with multiple parts. These

require a range of responses including restricted and extended response, designing solutions

and writing code, and feature both ‘C’ mark and ‘A’ mark questions.

Proportion of ‘A’ and ‘C’ type questions:

 approximately 30% of marks ‘A’ type (primarily in the context-based questions)

 approximately 50% of marks ‘C’ type

The question paper (QP) is designed using the following ranges of marks, against each area

of content and skills.

Content Range of marks

SDD 41-45

CS 10-14

WDD 25

DDD 25

Version 3.0 48

Skills Range of marks

Analysis 0-5

Design 20-40

Implementation 16-34

Testing 5-10

Evaluation 0-5

Systems 10-14

Note: the marks for skills in the above table are based on the question paper (80 marks).

Either combination of SDD/CS and DDD or SDD/CS and WDD falls within these ranges.

The marks for each skill is not identical across the options, for example Implementation for

the DDD option may have 28 marks, while the WDD option may have 32 marks.

However, there will be a balance of ‘A’ type and ‘C’ type marks across both options to ensure

there is a comparable level of demand.

Version 3.0 49

Assignment brief

Marks: 40

Duration: 6 hours

The assignment has three tasks. Task 1 is mandatory, and candidates have the option to

complete either task 2 or task 3.

 Task 1: Software design and development — 25 marks

 Task 2: Database design and development — 15 marks

 Task 3: Web design and development — 15 marks

Proportion of ‘A’ and ‘C’ type questions:

 approximately 30% of marks ‘A’ type

 approximately 50% of marks ‘C’ type

Analysis Design Implementation Testing Evaluation Total

SDD 0-5 0-5 15 0-5 0-5 25

DDD 0-5 0-5 7-9 0-5 0-5 15

WDD 0-5 0-5 7-9 0-5 0-5 15

Total 3-6 2-7 22-24 3-6 3-6 40

Note: the marks for skills in the above table are based on the assignment (40 marks). Either

combination of SDD and DDD task or SDD and WDD falls within these ranges.

The marks for each skill is not identical across the options, however, there will be a balance

of ‘A’ type and ‘C’ type marks across both options to ensure there is a comparable level of

demand.

Version 3.0 50

Developing skills for learning, skills for life and skills
for work
You should identify opportunities throughout the course for candidates to develop skills for

learning, skills for life and skills for work.

Candidates should be aware of the skills they are developing and you can provide advice on

opportunities to practise and improve them.

SQA does not formally assess skills for learning, skills for life and skills for work.

There may also be opportunities to develop additional skills depending on approaches being

used to deliver the course in each centre. This is for individual teachers and lecturers to

manage.

Skill How to develop

Numeracy

2.1 Number processing Give candidates opportunities to develop their number

processing skills by practising problem solving in

numeric-based contexts involving, for example,

multiplication, division or calculating percentages.

Set problem-solving contexts where software would take

decisions and vary the output based on the results of

calculations.

2.3 Information handling Develop information-handling skills by setting problem-

solving contexts where candidates use data set out in

tables or a graphical format as the basis for input to their

programs, processing the data to produce the required

output.

Employability, enterprise and citizenship

4.2 Information and

communication technology

(ICT)

Throughout the course, candidates will be continually

interacting with the technology around them. This should

provide plenty of opportunities to extend their ICT skills.

Thinking skills

5.3 Applying Give candidates opportunities to analyse a wide range of

problems, apply the knowledge and skills they have

acquired and then test and review their solutions.

5.4 Analysing and evaluating Develop skills in analysing and evaluating through the

process of creating computer programs to solve

problems and testing them.

Version 3.0 51

Resources to support the Higher Computing Science course
Note: some of these resources are available on external websites that require you to log in or create a user account.

All teaching materials and videos are available on ‘Glow’, in the folder called ‘Revised Higher Computing Science’ within ‘Computing Science

Documents’. You can access this from the following link:

glowscotland.sharepoint.com/sites/PLC/technologies/SitePages/Computing%20Science.aspx

Software design and development (SDD)

Skills, knowledge and understanding
Exemplification/learning and

teaching activities and resources

Development

methodologies

Describe and compare the development methodologies:

 iterative development process

 agile methodologies

See appendix 1 — development

methodologies

Analysis Identify the:

 purpose

 scope

 boundaries

 functional requirements

of a problem that relates to the design and implementation at this level, in terms

of:

 inputs

 processes

See appendix 2 — software analysis

https://glowscotland.sharepoint.com/sites/PLC/technologies/SitePages/Computing%20Science.aspx?RootFolder=%2Fsites%2FPLC%2Ftechnologies%2FComputing%20Science%20Documents%2FRevised%20National%205%20Computing%20Science&FolderCTID=0x012000213545AEF39A73418F1D515DF78F2434&View=%7BAE2F858E%2D3273%2D4436%2DA255%2DB3C8AE6270CD%7D
https://glowscotland.sharepoint.com/sites/PLC/technologies/SitePages/Computing%20Science.aspx?RootFolder=%2Fsites%2FPLC%2Ftechnologies%2FComputing%20Science%20Documents%2FRevised%20National%205%20Computing%20Science&FolderCTID=0x012000213545AEF39A73418F1D515DF78F2434&View=%7BAE2F858E%2D3273%2D4436%2DA255%2DB3C8AE6270CD%7D

Version 3.0 52

Software design and development (SDD)

Skills, knowledge and understanding
Exemplification/learning and

teaching activities and resources

 outputs

Design Identify the data types and structures required for a problem that relates to the

implementation at this level.

Read and understand designs of solutions to problems at this level, using the

following design techniques:

 structure diagrams

 pseudocode

Exemplify and implement efficient design solutions to a problem, using a

recognised design technique showing:

 top level design

 the data flow

 refinements

Describe, exemplify, and implement user-interface design, in terms of input and

output, using a wireframe.

See appendix 3 — software design

techniques

Software design teaching materials

Implementation

(data types and

structures)

Describe, exemplify and implement appropriately the following structures:

 parallel 1D arrays

 records

 arrays of records

Version 3.0 53

Software design and development (SDD)

Skills, knowledge and understanding
Exemplification/learning and

teaching activities and resources

Implementation

(computational

constructs)

Describe, exemplify, and implement the appropriate constructs in a procedural

high-level (textual) language:

 parameter passing (formal and actual)

 the scope of local and global variables

 sub-programs/routines, defined by their name and arguments (inputs and

outputs):

— functions

— procedures

 pre-defined functions (with parameters) to:

— create substrings

— convert from character to ASCII and vice versa

— modulus

— convert floating-point numbers to integers

 file handling

— sequential CSV and txt files (open, create, read, write, close)

Read and explain code that makes use of the above constructs.

Python teaching materials

Implementation

(algorithm

specification)

Describe, exemplify, and implement standard algorithms using 1D arrays or

arrays of records:

 linear search

 find minimum and maximum

 count occurrences

Version 3.0 54

Software design and development (SDD)

Skills, knowledge and understanding
Exemplification/learning and

teaching activities and resources

Testing Describe, exemplify and implement a comprehensive final test plan to show that

the functional requirements are met.

Identify syntax, execution, and logic errors at this level.

Describe and exemplify debugging techniques:

 dry runs

 trace tables/tools

 breakpoints

 watchpoints

Evaluation Describe, identify, and exemplify the evaluation of a solution in terms of:

 fitness for purpose

 efficient use of coding constructs

 usability

 maintainability

 robustness

See appendix 4 — software

evaluation

Software design

and

development

Overview Homework and formative classroom

assessment

Version 3.0 55

Computer systems (CS)

Skills, knowledge and understanding
Exemplification/learning and

teaching activities and resources

Data

representation

Describe and exemplify the use of binary to represent positive and negative

integers using two’s complement, including the range of numbers that can be

represented using a fixed number of bits.

Conversion of two’s complement numbers from binary to denary and vice versa.

Describe and exemplify floating-point representation of positive and negative real

numbers, using the terms mantissa and exponent.

Describe the relationship between the number of bits assigned to the

mantissa/exponent, and the range and precision of floating-point numbers.

Describe Unicode used to represent characters and its advantage over extended

ASCII code (8-bit) in terms of numbers of characters.

Describe the relative advantages and disadvantages of bit-mapped graphics

versus vector graphics.

See appendix 5 — floating-point

representation

Computer

structure

Describe the concept of the fetch-execute cycle.

Describe the factors affecting computer system performance:

 number of processors (cores)

 width of data bus

 cache memory

 clock speed

See appendix 6 — computer

structure

Version 3.0 56

Computer systems (CS)

Skills, knowledge and understanding
Exemplification/learning and

teaching activities and resources

Environmental

impact

Describe the environmental impact of intelligent systems:

 heating systems

 traffic control

 car management systems

See appendix 7 — environmental

impact

Security risks

and precautions

Describe and identify the implications for individuals and businesses of the

Computer Misuse Act 1990:

 unauthorised access to computer material

 unauthorised access with intent to commit a further offence

 unauthorised modification of programs or data on a computer

Describe and identify the security risks of:

 tracking cookies

 DOS (Denial of Service) attacks:

— symptoms

o slow performance, inability to access

— effects

o disruption to users and business

— costs

o lost revenue, labour in rectifying fault

— type of fault

o bandwidth consumption, resource starvation, Domain Name
Service(DNS)

Version 3.0 57

Computer systems (CS)

Skills, knowledge and understanding
Exemplification/learning and

teaching activities and resources

— reasons

o financial, political, personal

Describe how encryption is used to secure transmission of data:

 use of public and private keys

 digital certificates

 digital signatures

Computer

systems

Overview Homework and formative classroom

assessment

Version 3.0 58

Database design and development (DDD)

Skills, knowledge and understanding
Exemplification/learning and teaching

activities and resources

Analysis Identify the end-user and functional requirements of a database problem

that relates to the implementation at this level.

See appendix 8 — database analysis

Design Describe and exemplify entity-relationship diagrams with three or more

entities, indicating:

 entity name

 attributes

 name of relationship

 cardinality of relationship (one-to-one, one-to-many, many-to-many)

Describe and exemplify an instance using an entity-occurrence diagram.

Describe and exemplify a compound key.

Describe and exemplify a data dictionary with three or more entities:

 entity name

 attribute name

 primary and foreign key

 attribute type:

— text

— number

— date

— time

— Boolean

See appendix 9 — database design

Database design teaching materials

See appendix 10 — design of solution to

database queries

Version 3.0 59

Database design and development (DDD)

Skills, knowledge and understanding
Exemplification/learning and teaching

activities and resources

 attribute size

 validation:

— presence check

— restricted choice

— field length

— range

Exemplify a design of a solution to a query:

 tables and queries

 fields

 search criteria

 sort order

 calculations

 grouping

Version 3.0 60

Database design and development (DDD)

Skills, knowledge and understanding
Exemplification/learning and teaching

activities and resources

Implementation Describe, exemplify and use SQL operations for pre-populated relational

databases, with three or more linked tables:

 UPDATE, SELECT, DELETE, INSERT statements making use of:

— wildcards

— aggregate functions (MIN, MAX, AVG, SUM, COUNT)

— computed values, alias

— GROUP BY

— ORDER BY

— WHERE

Read and explain code that makes use of the above SQL.

See appendix 11 — SQL

SQL teaching Materials

www.w3schools.com
www.sqlcourse.com
www.codeacademy.com

www.tutorialspoint.com/sql

Testing Describe and exemplify testing:

 SQL operations work correctly at this level

Evaluation Evaluate solution at this level in terms of:

 fitness for purpose

 accuracy of output

Database

design and

development

Overview Homework and formative classroom

assessment

http://www.w3schools.com/
http://www.sqlcourse.com/
http://www.codeacademy.com/
http://www.tutorialspoint.com/sql

Version 3.0 61

Web design and development (WDD)

Skills, knowledge and understanding
Exemplification/learning and teaching

activities and resources

Analysis Identify the end-user and functional requirements of a website problem that

relates to the design and implementation at this level.

Design Describe and exemplify the website structure of a multi-level website with a

home page and two additional levels, with no more than four pages per

level.

Describe, exemplify and implement, taking into account end-user

requirements and device type, an effective user-interface design (visual

layout and readability) using wire-framing:

 horizontal navigational bar

 relative horizontal and vertical positioning of the media

 form inputs

 file formats of the media (text, graphics, video, and audio)

Describe, exemplify and implement prototyping (low fidelity) from wireframe

design at this level.

See appendix 12 — web design

Implementation

(CSS)

Describe, exemplify and implement efficient inline, internal and external

Cascading Style Sheets (CSS) using grouping and descendant selectors to:

 control appearance and positioning:

— display (block, inline, none)

— float (left, right)

— clear (both)

— margins/padding

See appendix 13 — CSS controlling

appearance and positioning

See appendix 14 — CSS horizontal

navigation bars.

Web-creation teaching materials

HTML/CSS online teaching resources

Version 3.0 62

Web design and development (WDD)

Skills, knowledge and understanding
Exemplification/learning and teaching

activities and resources

— sizes (height, width)

 create horizontal navigation bars:

— list-style-type:none

— hover

Read and explain code that makes use of the above CSS.

www.w3schools.com

www.codeacademy

www.net.tutorials

www.khanacademy.org

Implementation

(HTML)

Describe, exemplify and implement HTML code:

 nav

 header

 footer

 section

 main

 form

 id attribute

Describe, exemplify and implement form elements:

 form element: input

— text

— number

— textarea

— radio

— submit

See appendix 15 — HTML page layout

Web-creation teaching materials

See appendix 16 — HTML forms

http://www.w3schools.com/
http://www.codeacademy/
http://www.net.tutorials/
http://www.khanacademy.org/

Version 3.0 63

Web design and development (WDD)

Skills, knowledge and understanding
Exemplification/learning and teaching

activities and resources

 form element: select

Describe, exemplify and implement form data validation:

 length

 presence

 range

Read and explain code that makes use of the above HTML.

Implementation

(JavaScript)

Describe, exemplify and implement coding of JavaScript functions related to

mouse events:

 onmouseover

 onmouseout

 onclick

See appendix 17 — JavaScript

Web-creation teaching materials

Testing Describe, exemplify and implement usability testing using personas, test

cases and scenarios based on low-fidelity prototypes.

Describe and exemplify testing:

 input validation

 navigational bar works

 media content displays correctly

Description and exemplification of compatibility testing including:

See appendix 18 — web testing

Version 3.0 64

Web design and development (WDD)

Skills, knowledge and understanding
Exemplification/learning and teaching

activities and resources

 device type:

— tablet, smart phone, desktop

 browser

Evaluation Evaluate solution at this level in terms of:

 fitness for purpose

 usability

Web design and

development

Overview Homework and formative classroom

assessment

Version 3.0 65

Appendix 1: development methodologies (SDD)
The following table compares the iterative software development cycle (often called the

waterfall model) with agile software development.

Iterative Agile

Client interaction The client is heavily involved in

the initial analysis stage and at

the end of development, when

evaluating if the software meets

their needs and matches the

agreed specification.

The client is involved

throughout the process, giving

constant feedback on

prototypes of the software

during development. This

feedback is acted upon, quickly

ensuring the software evolves

throughout the project.

Changing goals during the

development can be positive in

terms of final client satisfaction

with the product.

Teamwork Teams of analysts,

programmers, testers and

documenters work

independently on each phase of

development. Teams mainly

work in isolation with some

communication required

between each phase.

Teams of developers

communicate and collaborate,

rather than teams of experts

operating in isolation.

During a project, fast, face-to-

face communication between

individuals with different skills is

an important factor in

progressing the project quickly.

Documentation A detailed project specification

is created at the beginning of a

project. Significant time is spent

during the project on design,

program commentary and test

plans.

While modelling solutions

remains important, creating

large documents that are never

updated or referred to again

upon completion of the project

are not.

Agile focuses on reducing

documentation. It spends time

on small cycles of coding,

testing and adapting to change.

Any documentation produced

(for example internal

commentary in code) should

focus purely on progressing the

project.

Version 3.0 66

Iterative Agile

Measurement of

progress

Follows a strict plan, with

progress measured against

timescales set at the beginning

of the project.

Breaks a project down into a

series of short development

goals (often called “sprints”).

This involves cross-functional

teams working on: planning,

analysis, design, coding, unit

testing, and acceptance testing.

Progress is measured by the

time it takes to produce

prototypes or working

components of the software.

Agile focuses on delivering

software as quickly as possible.

Adaptive vs

predictive

A predictive methodology,

focusing on analysing and

planning the future in detail and

catering for known risks.

Predictive methods rely on

effective early phase analysis

and if this goes very wrong, the

project may have difficulty

changing direction.

Predictive teams often institute

a change control board to

ensure they consider only the

most valuable changes.

An adaptive methodology,

focusing on adapting quickly to

changing realities. When the

needs of a project change, an

adaptive team changes as well.

An adaptive team has difficulty

describing exactly what they will

do next week but could report

on which features they plan for

next month.

The further away a date is, the

vaguer an adaptive method is

about what will happen on that

date.

Testing Testing is carried out when the

implementation phase of the

project is complete.

There is no recognised testing

phase, as testing is carried out

in conjunction with

programming.

Version 3.0 67

Appendix 2: analysis (SDD)
This is the start of the software development process and defines the extent of the software
task. This is called the software specification. It is often the basis of a legal contract between
the client (customer) and the software company writing the software.

Your analysis should include the following:

 Purpose: a general description of the purpose of the software.

 Scope: a list of the deliverables that the project will hand over to the client and/or end-
user, eg design, completed program, test plan, test results and evaluation report. It can
also include any time limits for the project.

 Boundaries: the limits that help to define what is in the project and what is not. It can
also clarify any assumptions made by the software developers regarding the client’s
requirements.

 Functional requirements: the features and functions that must be delivered by the
system in terms of inputs, processes and outputs.

Exemplar

Analysis

Purpose The purpose of this program is to take 20 pupil names, their prelim marks

and their assignment marks from a file. Calculate the percentage, and

then find and display the name and percentage of the pupil with the

highest percentage.

Scope This development involves creating a modular program. The deliverables

include:

 detailed design of the program structure

 test plan with completed test data table

 working program

 results of testing

 evaluation report

This development work must be completed within 4 hours.

Boundaries The program will read the pupil data (name, prelim mark and assignment

mark) for 20 pupils from a sequential file. The data is accurate, so there is

no need to implement input validation.

The pupil with the top mark will be the pupil who has the highest

percentage. The only output needed is the name and percentage of the

pupil with the highest percentage.

Version 3.0 68

Analysis

Functional

requirements

These are defined in terms of the inputs, processes and outputs

detailed below. All inputs are imported from a sequential file and

all outputs displayed on the screen. The program is activated by

double clicking on the file icon and then selecting “Run” from

the menu. Each process should be a separate procedure or

function that is called from the main program.

Inputs: Pupil name

 Prelim mark

 Assignment mark

Processes: Calculate the percentage for each pupil

 Find the name and percentage of the pupil with the

 highest percentage

Output: Name of the pupil with the highest percentage

 The highest percentage

Version 3.0 69

Appendix 3: design techniques (SDD)

Pseudocode

When using pseudocode to design efficient solutions to a modular problem, you must include

the following:

 Top level design — the major steps of the design. In the example below, numbered from
1 to 4.

 Data flow — shows the information that must flow In or Out from the
sub-programs. In the example below, written to the right of the top level design.

 Refinements — break down the design from the top level when required. In the example
below, numbered as a sub-number of the top level.

The following design is for a program that will read the name, prelim mark and coursework
mark for a class of 20 pupils from a file. It will calculate a percentage from each of their
prelim marks and coursework marks added together. It will then display the name of the pupil
with the highest percentage and their percentage.

1 Get results (OUT: pupil name(), prelim mark(), course mark())
2 Calculate percentages (IN: prelim mark(), course mark()
 OUT: percentage())
3 Find position of pupil with top mark (IN: percentage() OUT: top position)
4 Display pupil with top mark (IN: pupil name(), top position)

1.1 Open marks file
1.2 Start fixed loop for each pupil
1.3 Get pupil name()
1.4 Get prelim mark()
1.5 Get course mark()
1.6 End fixed loop
1.7 Close marks file

2.1 Start fixed loop for each pupil
2.2 percentage() equals (prelim mark() + course mark()) divided by 1.5
2.3 End fixed loop

3.1 top position equals first position
3.2 Start fixed loop from second pupil
3.3 If percentage() is greater than current top percentage Then
3.4 set position as new top position
3.5 End If
3.6 End fixed loop

4.1 Display “Top pupil is”, pupil name(top position), “with”, percentage(top position),

“percent”

Version 3.0 70

Structure diagrams

The following structure diagram solves the same problem as the pseudocode:

 Top level design — the major steps of the design.

 Data flow — shows the information that must flow In or Out from the sub-programs. In the example below, written underneath the top level
design with an arrow showing whether they are In or Out.

Version 3.0 71

 Refinements — break down the design from the top level into smaller steps. They can be shown separately from the top level design or
below the top level design.

Version 3.0 72

Appendix 4: evaluation (SDD)
This is an objective review of the software to establish whether it meets the required criteria.

Fitness for purpose

This reflects whether the software carries out all the tasks required of the software

specification.

Your evaluation should identify any discrepancies between the software specification and the

completed software.

Efficient use of coding constructs

This reflects whether the software writers have used their knowledge of constructs to help

them create efficient code. For example using:

 suitable data types or structures

 conditional or fixed loops

 arrays

 nested selection

 procedures or functions with parameter passing

Your evaluation should identify where your coding has been efficient.

Usability

This reflects how intuitive the software is from a user’s perspective and should include:

 the general user interface

 the user prompts

 the screen layout

 any help screens

Your evaluation should identify features of the software that have enhanced usability for the

user.

Maintainability

This reflects how easy it is to alter the software. The factors affecting maintainability include:

 readability of the code — made easier by using meaningful variable names, comments,
indentation and whitespace

 amount of modularity — using functions and procedures effectively

Your evaluation should identify how your code helps with the maintainability of the software.

Version 3.0 73

Robustness

This reflects how well the software copes with errors during execution including:

 exceptional data, eg the computer crashing if “out of range”

 incorrect data entered

Your evaluation should reflect the testing that has been undertaken to meet the specification,

as well as to demonstrate some degree of robustness.

Version 3.0 74

Appendix 5: floating-point representation (CS)
There are many ways to represent floating-point numbers, with the majority beyond the

requirements of the Higher Computing Science course. The course includes a simplified

version of floating-point representation, which takes its basis from the BCS Glossary of

Computing, 14th edition, 2016 (page 267).

Real numbers are stored in a computer as floating-point numbers. Floating point is a form of

representation where numbers are expressed as a binary or decimal fractional value called

the mantissa, together with an integer exponent. You can represent any number in any

number base, in the form:

m × b
e

where m is the mantissa, b is the base and e is the exponent.

To convert 34 006.8 to floating-point representation involves moving the point so the number

is a fractional value, and then counting how many decimal places you have moved the point,

for example

 34 006.8 = 0.340068 × 10
5

The 5 represents the fact that the point has moved 5 places to the left. The 10 represents the

base. The 5 is called the exponent and 340068 is called the mantissa.

The example above in denary is only used to illustrate the concept of floating-point

representation — all exemplification is expected to be in binary.

Here is an example in binary 1010.001 = 0.1010001 × 2
100

The mantissa is 1010001 and the exponent is 100.

The mantissa and exponent are usually of a fixed size, for example 8 bit for the exponent

and 16 bits for the mantissa including a sign bit. The sign bit of the mantissa is represented

in binary as 0 for positive and 1 for negative. The exponent is represented in two’s

complement, giving a range from 128 to 127.

Fixed point Floating point Sign (1bit) Mantissa (15 bit) Exponent (8 bit)

1000010.101 0.1000010101 × 2
111

 0 100001010100000 00000111

-101.00011 -0.10100011 × 2
11

 1 101000110000000 00000011

0.0010101 0.10101 × 2
-10

 0 101010000000000 11111110

-0.00001101 -0.1101 × 2
-100

 1 110100000000000 11111100

Version 3.0 75

Range and precision

The number of digits quoted in the mantissa indicates the precision of the number and the

number of digits in the exponent is a measure of the range of numbers that can be stored.

The number of total bits used to store both mantissa and exponent stays the same, so:

Increase mantissa, exponent must be decreased = increased precision, decreased range

Decrease mantissa, exponent must be increased = decreased precision, increased range

Version 3.0 76

Appendix 6: computer structure (CS)

The fetch-execute cycle

This is the process where an instruction is retrieved from memory, decoded and then carried

out.

 The processor sets up the address bus with the required address.

 The processor activates the read line on the control bus.

 An instruction is fetched from the memory location using the data bus and stored in the
instruction register.

 The instruction in the instruction register is then interpreted by the decoder and carried
out.

Factors affecting system performance.

A number of factors can improve the performance of a computer system. These include:

 Number of processors (cores)

This is the development of several sets of processor components in one microprocessor.

A dual core processor has two separate CPU’s in one chip and a quad core processor

has four separate CPU’s in one chip. The more cores a processor has, the more sets of

instructions the processor can receive and process at the same time — this improves

system performance. A dual core processor is not as fast as a single processor running

at twice the speed, as it is not always possible to share some tasks equally between the

cores. This reduces efficiency.

 Width of data bus

The data bus is a set of parallel wires that connects the processor with memory and

other hardware devices. By increasing the data bus from 32 wires to 64 wires, the

computer can transfer twice as much information at one time. Therefore, increasing the

size of the data bus improves the system performance of the computer.

 Cache memory

Cache memory is a small amount of fast accessible memory, usually on the same chip

as the processor. The processor checks this for data or instructions before accessing the

main memory. If it finds the data or instruction, then this is termed as a cache ‘hit’,

resulting in an improved performance. If the instruction is not present, then a cache

‘miss’ occurs and a slower main memory is accessed. Many computers use multiple

levels of cache, with small caches backed up by larger, slower caches. Multi-level

caches operate by checking the fastest cache (level 1) first. If it has a match, the

processor proceeds at high speed. If it does not have a match, it checks the next fastest

cache (level 2) and so on.

Version 3.0 77

 Clock speed

This is the electronic unit that synchronises related components by generating pulses at

a constant rate. Clock pulses are used to trigger components to take their next step. The

clock rate is the frequency at which the clock generates pulses. The higher the clock

rate, the faster the computer may complete a series of instructions. Different

manufacturers measure the clock rate in different ways, so it is not always possible to do

direct comparions between different processor manufacturers.

Version 3.0 78

Appendix 7: environmental impact (CS)

Heating systems
Smart heating systems use a variety of ways to control the amount of heat required in our
homes. Using activity sensors, some smart systems learn the temperatures that you prefer in
certain rooms and at what times. Monitoring the activity in rooms can mean that the smart
system adjusts the heating up or down depending on whether there is unusual activity in the
house. The thermostat is connected to wi-fi and can be manually controlled by using an app
on your phone. This allows you to turn the heating system off if you are not going home or to
turn it on so that it is at the optimum temperature if you are coming home early.

Traffic control
Vehicles are considered one of the main contributing sources of greenhouse gas. Studies in
the European Union showed that transport causes 25% of all carbon dioxide emissions.
Vehicles consume greater amounts of fuel when they are constantly accelerating and braking
in traffic jams. The optimum speed for low fuel consumption and low emissions is between
45 and 65 miles per hour.

Intelligent transport systems use software and hardware, along with information and
communications technologies, to improve the efficiency and safety of transport networks.
They use a variety of information from cameras and sensors, along with control of traffic
signals, to try to keep traffic moving, reducing the amount of harmful emissions. Cars with
individual navigation systems use satellite information on traffic flow to guide drivers away
from traffic congestion and on to more free-flowing routes.

Car management systems
A number of different car management systems are used to reduce the impact on the
environment.

Start-stop systems automatically shut down the engine when the car is not moving — this

reduces the amount of time the engine spends idling, reducing fuel consumption and

emissions. The car automatically re-starts when the accelerator is pressed, which is most

advantageous for vehicles that spend significant amounts of time waiting at traffic lights or

frequently come to a stop in traffic jams.

Engine control units use sensors to ensure the engine’s air/fuel ratio can be controlled very

accurately, ensuring optimum fuel consumption and a reduction of carbon dioxide emissions.

Version 3.0 79

Appendix 8: analysis (DDD)
During the analysis stage of database development, you should identify the following
requirements:

1 End-user requirements:

 the end users are the people who are going to be using the database

 their requirements are the tasks they expect to be able to do using the database

2 Functional requirements:

 processes and activities that the system has to perform

 information that the system has to contain to be able to carry out its functions

These requirements will help:

 clarify the design of the database

 identify the features to be implemented on the database

 evaluate whether the system is fit for purpose after development is complete

Worked example

A travel agency wants to create a relational database to store details of bookings for hotels in

Scottish holiday resorts. The database will allow travel agents to view details of hotels and

make bookings for customers. Four separate entities are required:

 Hotel (used to store details of hotels in each resort)

 Resort (used to store details of Scottish holiday resorts)

 Customer (used to store details of customers who make holiday bookings)

 Booking (used to store details of hotel bookings)

They have appointed a developer team to carry out an analysis of the database
requirements. The developers ask some of the travel agency staff about the features they
would expect to see in the completed database. The following are a few of the comments
made by the staff:

Version 3.0 80

End-user requirements

Travel agency staff should be able to perform a range of searches to display:

 full details of any booking

 availability of hotels in a particular resort, with specified facilities (meal plan or pool)

 details of hotels in a particular type of resort

 details of hotels available for a specified star rating

 resorts that have train stations

Staff should be able to sort search results in order of ascending order of price and should be
able to calculate:

 the total cost of any holiday booking

 the number of hotels within a certain price range or available on a certain start date

I need to know what
hotels are available for a
given date (eg start of
season) or within a
certain price range.

Customers are interested to
know how many 4-star
hotels are in resorts that
have a train station.

Customers expect me to
give them information about
hotels that have a specific
star rating. They want me to
calculate the total cost of a
stay in those hotels, for a
specified number of nights
and for a certain number of
people in the party.

Customers want to see
hotel details, together
with resort information,
listed from cheapest to

the dearest.

I need to provide
customers with details
of hotels in different
types of resorts,
eg coastal or country.

I have to prepare invoices for
customers that show the full details
of their booking (details should
include the hotel and resort name,
date, price per person, number of
nights, number in party, total cost,
customer name and full address) as
well as the total cost of the booking.

Customers often want to visit a
particular resort and ask me to
check the availability of hotels
with facilities, for example a
pool or with different meal
plans.

Version 3.0 81

Functional requirements

The relational database will have four tables: Hotel, Resort, Booking and Customer.

Each table requires a suitable primary key field, with foreign keys linking the four tables.

In addition to a primary key and any necessary foreign keys, the following fields are required:

 Hotel:

— hotel name

— start of season date

— check-in time

— price per night

— meal plan

— swimming pool

— star rating

 Resort

— resort name

— resort type

— train station

 Customer

— first name

— surname

— address

— town

— postcode

 Booking

— start date

— number in party

— number of nights

Use the following:

 simple and complex queries to search the database

 a simple sort to order the query results

 a calculation to work out the total cost of a booking

 an aggregate function to work out the number of 4-star hotels located in resorts that
have a train station

Version 3.0 82

Appendix 9: design (DDD)

Entity-relationship modelling

In the development of a complex database system, entity-relationship modelling is used to

plan the structure of the database. In entity-relationship modelling, specialist terminology is

used to define each component of the model. This terminology includes:

 entity

 entity occurrence

 attribute

 primary key

 foreign key

 compound key

 relationship

 cardinality

 entity-occurrence diagram

 entity-relationship diagram

For a definition of each of these terms, see below:

Entity

An entity is a person, place, thing, event or concept of interest to the business or

organisation about which data is to be stored. For example, in a school, possible entities

might be Student, Teacher, Class and Subject.

Entity occurrence

A specific example of an entity is called an instance or entity occurrence. For example, John

Smith, Mary McLeod and Omar Shaheed are all entity occurrences found in the Student

entity; English, Computing and Chemistry are all entity occurrences within the Subject entity.

Attribute

An entity is described by its attributes. Each attribute is a characteristic of the entity. For

example, attributes of the Student entity would include studentID, firstname, surname and

dateOfBirth.

Primary key

An attribute or combination of attributes that uniquely identifies one, and only one, entity

occurrence is called a primary key. For example, the primary key of the Student entity would

be studentID. A primary key is signified by underlining in the entity-relationship diagram.

Version 3.0 83

Foreign key

An attribute in one table that uniquely identifies a row of another table. A foreign key is

signified by an asterisk in the entity-relationship diagram.

Compound key

A compound key is a primary key that comprises two or more attributes. Each attribute that

makes up a compound key is a primary key in its own right. For example, the primary key of

the Class entity would be the compound key formed by combining subjectCode + teacherRef

+ columnID. In this example, subjectCode would be the primary key of the Subject entity,

teacherRef would be the primary key of the Teacher entity and columnID would be the

primary key of the Column entity.

Relationship

A relationship is a natural association between one or more entities. For example, Students

learn Subjects and Teachers educate Students.

Cardinality

The cardinality of a relationship defines the number of participants in the relationship. It

states the number of entity occurrences in one entity that are associated with one occurrence

of the related entity. Cardinality can be:

 one-to-one

 one-to-many

 many-to-many

One-to-one relationship

In a one-to-one relationship, each entity occurrence in an entity is associated with one, and

only one, entity occurrence within a related entity. For example, a School is managed by one,

and only one, Headteacher, with a Headteacher managing one, and only one, School.

See Entity-occurrence diagram example 1 and Entity-relationship diagram example 1

One-to-many relationship

In a one-to-many relationship, each entity occurrence in an entity can be associated with one

or more entity occurrences in a related entity. For example, a School employs many

Teachers and each of those Teachers is employed by one School.

See Entity-occurrence diagram example 2 and Entity-relationship diagram example 2

Many-to-many relationship

In a many-to-many relationship, several entity occurrences in an entity can be associated

with multiple entity occurrences in a related entity. For example, many Students study

several different Subjects and each of those Subjects is studied by many Students. Direct

many-to-many relationships between two entities cannot be implemented by a relational

database system. To overcome this problem, many-to-many relationships can be resolved to

form two one-to-many relationships.

See Entity-occurrence diagram example 3 and Entity-relationship diagram example 3

Version 3.0 84

Entity-occurrence diagrams

An entity-occurrence diagram illustrates the relationships between the entity occurrences of

one entity, with the entity occurrences within a related entity. The creation of an entity-

occurrence diagram helps to identify the cardinality of the relationship that exists between the

two entities.

In an entity-occurrence diagram, each entity is shown as a tall oval. Inside each entity, each

entity occurrence is represented by the value of its identifier and each relationship is

illustrated by drawing a line between associated entity occurrences.

Examples of entity-occurrence diagrams are shown below.

Entity-occurrence diagram example 1: one-to-one relationship

The following table indicates which School is managed by which Headteacher and which

Headteacher manages which School.

School Headteacher

IC42 92

IC57 84

IC23 128

Here is the matching entity-occurrence diagram.

From this entity-occurrence diagram, we can see that each occurrence in the School entity

has an association with one, and only one, entity occurrence in the Headteacher entity.

Similarly, each occurrence in the Headteacher entity has an association with one, and only

one, occurrence in the School entity.

This confirms that there is a one-to-one relationship between the School and Headteacher

entities.

Version 3.0 85

Entity-occurrence diagram example 2: one-to-many relationship

The following table indicates which School employs which Teachers and which Teachers are

employed by which School.

School Teacher

IC42 135

IC57 123

IC23 111

IC23 184

IC57 77

IC57 295

IC23 93

Here is the matching entity-occurrence diagram.

From this entity-occurrence diagram, we can see that each occurrence in the School entity

has an association with one or more entity occurrences in the Teacher entity. We can also

see that each occurrence in the Teacher entity has an association with one, and only one,

occurrence in the School entity. This confirms that there is a one-to-many relationship

between the School and Teacher entities.

Note: this diagram is equivalent to the following entity-occurrence diagram.

Version 3.0 86

Entity-occurrence diagram example 3: many-to-many relationship

The following table indicates which Students study which Subjects and which Subj

ects are

studied by which Students.

Student Subject

14078 COMPH1

14079 MATH2

14080 ENGH1

14078 MATH2

14081 ENGH1

14082 ENGH1

14082 COMPH1

14081 MATH2

Here is the matching entity-occurrence diagram.

Version 3.0 87

From this entity-occurrence diagram, we can see that each occurrence in the Student entity

has an association with one or more entity occurrences in the Subject entity. We can also

see that each occurrence in the Subject entity has an association with one or more

occurrences in the Student entity.

This confirms that there is a many-to-many relationship between the Student and Subject

entities.

Entity-occurrence diagram example 4: multiple entities

An entity-occurrence diagram may be used to illustrate the relationship between multiple

entities as shown below:

Entity-relationship diagrams

An entity-relationship diagram is a graphical representation of the entities in a system. It is

used to summarise the relationship that exists between two or more entities. An

entity-relationship diagram indicates:

 the name of each entity in the system

 the name of the relationship between two entities

 the cardinality of the relationship between two entities

 if required, the name of each attribute can be shown

The entities on an entity-relationship diagram are represented by labelled rectangles. If

required, the attributes within each entity can be represented as labelled ovals. The

relationship between two entities is represented by the labelled line which is used to join the

entities. Although several different representations can be used, the entity-relationship

diagrams in the examples below make use of the crow’s feet notation to indicate the ‘many’

sides of a relationship.

Version 3.0 88

Examples of entity-relationship diagrams are shown below.

Entity-relationship diagram example 1: one-to-one relationship

This entity-relationship diagram illustrates the relationship between the two entities School

and Headteacher. A description of the relationship can be generated by reading across the

diagram in both directions:

Each School is managed by one, and exactly one, Headteacher while each Headteacher

manages one, and only one, School.

Entity-relationship diagram example 2: one-to-many relationship

This entity-relationship diagram illustrates the relationship between the two entities School

and Teacher. A description of the relationship can be generated by reading across the

diagram in both directions:

Each School employs one or more Teachers and each Teacher is employed by one, and

only one, School.

Entity-relationship diagram example 3: many-to-many relationship

This entity-relationship diagram illustrates the relationship between the two entities Student
and Subject. A description of the relationship can be generated by reading across the
diagram in both directions:

Each Student studies one or more Subjects and each Subject is studied by one or many
Students.

Version 3.0 89

Entity-relationship diagram example 4: worked example

A relational database is used by a travel agency to store details of Scottish holiday resorts

and hotels in each resort. The database also stores details of customers and their hotel

bookings. The Booking, Customer, Resort and Hotel details are arranged in four separate

entities.

Entity: Resort Entity: Hotel Entity:

Customer

 Entity: Booking

resortID

resortName

resortType

trainStation

 hotelRef

hotelName

resortID*

starRating

seasonStartDate

swimmingPool

mealPlan

checkInTime

pricePersonNight

 customerNo

firstname

surname

address

town

postcode

 bookingNo

customerNo*

hotelRef*

startDate

numberNights

numberInParty

The matching entity-relationship diagram is shown below.

Resort Hotel
is location of

Booking

Customer

is part of

makes

Version 3.0 90

Entity-relationship diagram example 5: worked example

As exemplified in National 5, entity-relationship diagrams can also be used to illustrate the

attributes that are stored in each entity.

Based on the details of the entities and attributes provided in Entity-relationship diagram

example 4, the matching entity-relationship diagram is shown below:

Resort

resortID

resortName

resortType
trainStation

Hotel

mealPlan

checkInTime

hotelRef

hotelName
resortID*

starRating

seasonStartDate

swimmingPool

pricePersonNight

is location for

Customer

firstname

surname

address
town

Booking

hotelRef*

numberNights
postcode

customerNo
bookingNo

customerNo*

startDate

numberInParty

makes

is for

Version 3.0 91

Appendix 10: design of solution to database queries
(DDD)
A travel agency uses a relational database to enable their employees to view details of hotels

in Scottish holiday resorts and make bookings for customers. The details are stored in four

separate tables called Hotel, Resort, Booking and Customer.

The structure of these tables is shown below:

The design of the SQL query should indicate:

 any field(s) or computated values required

 the table(s) needed to provide all of the details required

 any search criteria to be applied

 what grouping is needed (if appropriate)

 the field(s) used to sort the data and the type(s) of sort required

Planning ahead helps to reduce the amount of frustration that candidates may otherwise

encounter when working with the SQL code.

A simple table template, like in the examples below, can be used by candidates to indicate

the planned design of the SQL query.

Version 3.0 92

Example 1: design a query to display the name, swimming pool details, resort and resort

type of any hotel in a coastal resort that starts with the letter ‘A’.

Field(s) and calculation(s)
hotelName, swimmingPool, resortName,
resortType

Table(s) and query Hotel, Resort

Search criteria resortType = "coastal" and resortName like "A%"

Grouping

Sort order

Example 2: design a query to display a customer’s full name, booking number, start date,

hotel name and resort name for all customers who have an ‘h’ as the second letter of their

surname. List these details in alphabetical order of surname; listing customers with the same

surname in order of the earliest holiday first.

Field(s) and calculation(s)
firstname, surname, bookingNo, startDate,
hotelName, resortName

Table(s) and query Customer, Booking, Hotel, Resort

Search criteria surname LIKE "_h%"

Grouping

Sort order surname ASC, startDate ASC

Example 3: design a query that uses a readable heading to display the cheapest and
dearest price per night.

Field(s) and calculation(s)

Dearest price per night =
MAX(pricePersonNight),

Cheapest price per night =
MIN(pricePersonNight)

Table(s) and query Hotel

Search criteria

Grouping

Sort order

Example 4: design a query to display the average number of nights booked.

Field(s) and calculation(s) AVG(numberNights)

Table(s) and query Booking

Search criteria

Grouping

Sort order

Version 3.0 93

Example 5: design a query to display a list of the different types of resort, together with the

number of resorts in each of those categories.

Field(s) and calculation(s) resortType, COUNT(*)

Table(s) and query Resort

Search criteria

Grouping resortType

Sort order

Example 6: design a query to display the number of bookings for hotels in coastal resorts.

Show the resort type and use a readable heading for the results returned by the aggregate

function.

Field(s) and calculation(s) resortType, Number of Hotels = COUNT(*)

Table(s) and query Resort, Hotel, Booking

Search criteria resortType = "coastal"

Grouping resortType

Sort order

Example 7: design a query to display a list of each type of meal plan, together with the

number of bookings made for each of those meal plans. List the details from the least

popular meal plan to the most popular.

Field(s) and calculation(s) mealPlan, COUNT(*)

Table(s) and query Hotel, Booking

Search criteria

Grouping mealPlan

Sort order COUNT(*) ASC

Example 8: design a query that uses a readable heading to display the total number of

people booked into a hotel in July.

Field(s) and calculation(s) People booked in July = SUM(numberInParty)

Table(s) and query Booking

Search criteria startDate LIKE "%/07/%"

Grouping

Sort order

Version 3.0 94

Example 9: design a SELECT query to display the hotel name and the improved rating, if all

hotels in Ayr gain an extra star (use a readable heading to display the improved ratings).

Field(s) and calculation(s) hotelName, Improved rating = starRating + 1

Table(s) and query Hotel, Resort

Search criteria resortName = “Ayr”

Grouping

Sort order

Example 10: design a query to display the surname, booking number, number of nights,

number in party, price per night and the total cost of each booking (with a readable column

heading). Display the dearest booking first.

Field(s) and calculation(s)

surname, bookingNo, numberNights,
numberInParty, pricePersonNight, Total Cost =
(numberNights * numberInParty *
pricePersonNight)

Table(s) and query Customer, Booking, Hotel

Search criteria

Grouping

Sort order
numberNights * numberInParty * pricePersonNight
DESC

Example 11: design a query to display the name of the resorts that have hotels with the

highest star rating together with the highest star rating (use a readable heading to display the

highest star rating).

Since it is not possible to use an aggregate function in a WHERE clause, this solution

requires two separate queries:

 the first query is a simple query to generate a single value — in this case, the highest star

rating

 the second query makes use of the value generated by the first query

Query 1 — Find Maximum Rating

Field(s) and calculation(s) Highest Star Rating = MAX(starRating)

Table(s) and query Hotel

Search criteria

Grouping

Sort order

Version 3.0 95

Query 2 — Display Names Of Resorts with Maximum Rating

Field(s) and calculation(s) resortName, [Highest Star Rating]

Table(s) and query Hotel, [Find Maximum Rating]

Search criteria starRating = Highest Star Rating

Grouping

Sort order

Example 12: design a query to display details of any hotel with a price per person that is

below the average price per person. The query should display the hotel name, star rating,

meal plan and the price per night. The dearest hotel should be listed first.

This solution requires two separate queries:

 the first query is used to generate a single value — in this case, the average price per

night

 the second query makes use of the value generated by the first query

Query 1 — Find Average Per Person

Field(s) and calculation(s)
Average Price per Person (£) =
AVG(pricePersonNight)

Table(s) and query Hotel

Search criteria

Grouping

Sort order

Query 2 — Display Details of Hotels with Price Per Person Below Average

Field(s) and calculation(s)
hotelName, starRating, mealPlan,
pricePersonNIght

Table(s) and query Hotel, [Find Average per Person]

Search criteria pricePersonNight = Average Price per Person (£)

Grouping

Sort order pricePersonNight DESC

Version 3.0 96

Appendix 11: SQL (DDD)
Note: we are using the following relational database to exemplify the Higher SQL commands.

A travel agency uses a relational database to enable their employees to view details of hotels

in Scottish holiday resorts and make bookings for customers. The details are stored in four

separate tables called Hotel, Resort, Booking and Customer.

The structure of these tables is shown below:

A sample record stored in each table is shown below:

Hotel table Resort table

hotelRef
hotelName
resortID
starRating
seasonStartDate
swimmingPool
mealPlan
checkInTime
pricePersonNight

AY72
Cliff Top
168
3
29/04/2018
False
Half Board
14:30
58.99

 resortID
resortName
resortType
trainStation

168
Ayr
Coastal
True

Booking table Customer table

bookingNo
customer#
hotelRef
startDate
numberNights
numberInParty

134
426
AY72
30/04/2018
7
3

 customer#
firstname
surname
address
town
postcode

426
Omar
Shaheed
26a High Bridge
Perth
PH12 34X

Note: The field customer# is enclosed in square brackets to avoid syntax errors.

Version 3.0 97

Wildcards

A wildcard character is used to replace one or more characters in a string. Wildcards are

useful in situations when incomplete information is available and it would be impossible to

write a WHERE clause using one of the existing logical operators =, <, >, ≤ or ≥.

Wildcard characters are used with the SQL LIKE operator. The LIKE operator is used in a

WHERE clause to perform search operations. Two different wildcards can be used:

% (the percent symbol) is used to represent zero, one or multiple characters

_ (the underscore symbol) is used to represent a single character

Note: MS Access uses:

 * rather than %

 ? rather than _

The following are some examples of LIKE used with the wildcards:

Example Purpose

WHERE surname LIKE ’Thom%’
Used to find any values in the surname

field that start with “Thom”

WHERE surname LIKE ‘%son’
Used to find any values in the surname

field that end with “son”

WHERE surname LIKE ‘%is%’
Used to find any values that have “is”

anywhere in the surname field

WHERE surname LIKE ‘_h%’

Used to find any values in the surname

field that have “h” as the second

character

WHERE surname LIKE ‘m_%_%’

Used to find any values in the surname

field that start with “m” and have at least

3 characters

WHERE surname LIKE ‘a%z’

Used to find any values in the surname

field that that start with “a” and end with

“z”

Example 1: used to search the database to display the name, swimming pool details, resort

and resort type of any hotel in a coastal resort that starts with the letter ‘A’.

SELECT hotelName, swimmingPool, resortName, resortType

FROM Hotel, Resort

WHERE Hotel.resortID = Resort.resortID AND resortName LIKE

‘A%’ AND resortType = ‘coastal’;

Version 3.0 98

Example 2: used to display the customer’s full name, booking number, start date, hotel

name and resort name of all customers who has an ‘h’ as the second letter of their surname.

These details should be listed in alphabetical order of surname; customers with the same

surname should be listed so that the customer with the earliest holiday should be listed first.

SELECT firstname, surname, bookingNo, hotelName,

resortName, startDate

FROM Customer, Booking, Hotel, Resort

WHERE Customer.[customer#]=Booking.[customer#] AND

Booking.hotelRef=Hotel.hotelRef AND

Hotel.resortID=Resort.resortID AND surname LIKE ‘_h%’

ORDER BY surname ASC, startDate ASC;

Aggregate functions

Aggregate functions operate on a set of rows to return a single, statistical value. You apply

an aggregate to a set of rows, which may be:

 all the rows in a table

 only those rows specified by a WHERE clause

 those rows created by a GROUP BY clause (see later)

The most common aggregate functions used are listed below:

Function Description

AVG() returns the average value of a numeric column or expression

COUNT()
returns the number of rows that match the criteria in the

WHERE clause

MAX() returns the largest value of the selected column or expression

MIN()
returns the smallest value of the selected column or

expression

SUM() returns the total sum of a numeric column or expression

In the same way that pre-defined programming functions receive parameter values, SQL

aggregate functions require an expression. This expression is usually a column name but it

can be a column name together with an operator.

The following points should be noted:

 SUM() and AVG() can only be applied to numeric data types; MIN() and MAX() work

with characters, numeric, and date/time datatypes; COUNT() works with all data types.

 All aggregate functions except, COUNT(), ignore nulls.

Version 3.0 99

 COUNT() always returns a positive integer or zero. The other aggregate functions

return null if the set contains no rows or contains rows with only nulls.

 An aggregate expression cannot be used in a WHERE clause.

 It is possible to use more than one aggregate expression in a SELECT statement as

shown here:

SELECT MIN(price), MAX(price)

FROM Product;

 Mixing non-aggregate and aggregate expressions in a SELECT statement is not

permitted. A SELECT statement must contain either all non-aggregate expressions or all

aggregate expressions. The query below is illegal, as it mixes non-aggregate
productName with the aggregate function MAX.

SELECT productName, MAX(price)

FROM Product;

Example 3: uses readable headings to display the cheapest and dearest price per night.

SELECT MIN(pricePersonNight) AS [Cheapest Price per

Night], MAX(pricePersonNight) AS [Dearest Price perNight]

FROM Hotel;

Example 4: used to display the average number of nights booked.

SELECT ROUND(AVG(numberNights),2)

FROM Booking;

Note: the SQL ROUND() function is used to round the average to 2 decimal places.

Example 5: used to display a list of the different types of resort together with the number of

resorts in each of those categories.

SELECT resortType, COUNT(*)

FROM Resort

GROUP BY resortType;

Version 3.0 100

Example 6: uses a readable heading to display the total number of people booked into a

hotel in July.

SELECT SUM(numberInParty) AS [People on holiday in July]

FROM Booking

WHERE startDate LIKE '%/07/%’;

Computed values with aliases

Arithmetic expressions can be used to compute values as part of a SELECT query. The

arithmetic expressions can contain column names, numeric numbers, and arithmetic

operators.

Whenever a value is generated by a query, it is allocated its own column in the query answer

table. A computed value is temporary — it only exists within the query. Because of this,

computed values are not stored in the database, which eliminates the need to store data that

can be computed at run-time.

An alias can be used to give any column in an answer table a temporary name. Doing this

makes the headings in the answer table more readable. Since it is generated at run-time, an

alias only exists for the duration of the query. An alias is listed in the SELECT list by using the

AS statement.

For example, the query below will display the name, price, quantity and cost of each product

in a specified order:

SELECT productName AS ['Product Name'], price, quantity,

price*quantity

FROM Product, Order

WHERE Product.productID = [Order].productID AND order# -

123456;

Version 3.0 101

Executing the query produces the answer table below:

Product Name price quantity price*quantity

Oven cleaner 3.45 3 10.35

Carpet cleaner 4.16 2 8.32

Bleach 1.99 5 9.95

We can make the answer table more readable by using an alias:

SELECT productName AS ['Product Name'], price, quantity,

price*quantity AS ['Product Cost']

FROM Product, Order

WHERE Product.productID = [Order].productID AND order# =

123456;

Executing the updated query produces the answer table below:

Product Name price quantity Product Cost

Oven cleaner 3.45 3 10.35

Carpet cleaner 4.16 2 8.32

Bleach 1.99 5 9.95

The column headings in this second answer table are more readable than those in the first

answer table, due to the use of aliases in the second query.

GROUP BY

The GROUP BY clause is used in a SELECT to form sets (or groups) of records. It does this

by gathering together all records that have identical data in the specified column(s).

When used with an aggregate function, GROUP BY ensures that one result is returned for

each set of grouped records. This makes it possible to mix non-aggregate and aggregate

expressions for grouping columns; without GROUP BY, this is not possible.

For example, the query shown below is used to display a list of product categories together

with the dearest product in each of those categories. The category with the cheapest product

is listed first.

SELECT productCategory, MAX(price)

FROM Product

GROUP BY productCategory

ORDER BY MAX(price) ASC;

Note: whenever a single query has both GROUP BY and ORDER BY clauses, the GROUP BY

clause always precedes the ORDER BY clause. If the clauses are reversed, a syntax error

will be generated.

Version 3.0 102

Example 7: use to display the number of bookings for hotels in coastal resorts. Show the

resort type and use a readable heading for the results returned by the aggregate function.

SELECT resortType, COUNT(*) AS [Number of Bookings]

FROM Resort, Hotel, Booking

WHERE Resort.resortID = Hotel.resortID AND Hotel.hotelRef

= Booking.hotelRef AND resortType = ‘coastal’

GROUP BY resortType;

Example 8: use to display a list of each type of meal plan together with the number of

bookings made for each of those meal plans. The details should be listed from least popular

meal plan to most popular.

SELECT mealPlan, COUNT(*)

FROM Hotel, Booking

WHERE Hotel.hotelRef = Booking.hotelRef

GROUP BY mealPlan

ORDER BY COUNT(*) ASC;

Note: the sequencing of the GROUP BY and ORDER BY clauses.

UPDATE query used to edit more than one field

The UPDATE query is used at National 5 to edit the value(s) stored in one or more fields

using a single criteria. For example:

UPDATE Product

SET productName = "Oven cleaner exceptional", price =

price * 1.10

WHERE productName = "Oven cleaner";

This query will update the product name and the price of the product called ‘Oven cleaner’.

At Higher level, candidates are required to implement complexity in the WHERE clause. This

could include multiple conditions, the use of alias, wildcard or conditions with calculated

values. The general syntax of this UPDATE query is:

UPDATE tableName

SET field1 TO expression, field2 TO expression, … … …

WHERE criteria to be matched;

Version 3.0 103

Note: each expression used in the SET clause can be a specific value or an expression

(which can, if required, use arithmetic operators).

Example 9: customer Omar Shaheed has moved. Use an UPDATE query to edit his details

(his new address is provided below):

New Address 31 Pike Place

New Postcode PH31 31P

UPDATE Customer

SET address = ‘31 Pike Place’, postcode = ‘PH31 31P’

WHERE firstname = ‘Omar’ AND surname = ‘Shaheed’;

Example 10: all the hotels in Fort William (hotel references starting with the letters FW) have

gained an extra star and have increased the price per night

by 4%. Edit the relevant details in the database.

UPDATE Hotel

SET pricePersonNight = ROUND(pricePerNight * 1.04,2),

starRating = starRating + 1

WHERE hotelRef LIKE ‘FW%’;

Using the result of a query

The result of stored query can be used within another query. The stored answer table is

considered as a table by the database engine and any value generated by the query can be

used as part of the WHERE clause in a second query. This is especially useful when working

with aggregate functions.

Example 11: used to display the name of the resorts that have hotels with the highest star

rating together with the highest star rating (use a readable heading to display the highest star

rating).

Query 1 — Find Maximum Rating

SELECT MAX(starRating) AS [Highest Star Rating]

FROM Hotel;

Query 2 — Display Names Of Resorts with Maximum Rating

SELECT resortName AS [Resorts with Highest Rated Hotels],

[Highest Rating]

FROM Resort, Hotel, [Find Maximum Rating]

WHERE Resort.resortID = Hotel.resortID

AND starRating = [Highest Star Rating];

Version 3.0 104

A subclause may be used to combine the two queries. Using subclauses is beyond the

scope of the Higher course and will not be assessed. However, it may be useful to help to

understand how the result of a query can be used within another query. The SQL statement

below demonstrates using an aggregate function as part of a condition, allowing the selection

of all records that match the maximum rating.

SELECT resortName AS [Resorts with highest rating]

FROM Resort,Hotel

WHERE Resort.resortID = Hotel.resortID

AND starRating = (SELECT MAX(starRating) FROM Hotel;);

Example 12: used to display details of any hotel with a price per person that is below the

average price per person. The query should display the hotel name, star rating, meal plan

and the price per night. The dearest hotel should be listed first.

Query 1 — Find Average Per Person

SELECT Round(AVG(pricePersonNight),2) AS [Average Price

per Person (£)]

FROM Hotel;

Query 2 — Display Details of Hotels with Price Per Person Below Average

SELECT hotelName, starRating, mealPlan, [Average Price per

Person (£)]

FROM Hotel, [Find Average Per Person]

WHERE pricePersonNight < [Average Price per Person (£)]

ORDER BY pricePersonNight DESC;

Version 3.0 105

Appendix 12: design (WDD)
The design of the structure of a website is vital to ensure that users can easily find

information on what could be thousands of individual pages. Hierarchical structures, using

navigational bars, allow navigation through multi-level websites to be logical and

straightforward.

There are many design notations used to demonstrate the navigational structure. However,

SQA will always use a shaded background to show the pages that are part of the horizontal

navigational bar, which are at the top of each page in the site. The home page naturally is

included in the navigational bar. The horizontal lines show the multi-links that link them all

together. The vertical lines show the links that are only one way, from top to bottom.

Version 3.0 106

Example

Penny High School is developing a new website. The website will have a multi-level

structure, consisting of a home page with a horizontal navigation bar that gives clear links to

four main areas (pages). Each of the four main pages will have links to relevant sub-pages.

The following diagram shows the navigational structure of the Penny High School website:

The user-interface planning should be illustrated using wireframes. A separate wireframe is

needed for each page on a website. Each wireframe indicates the intended layout of the

page and shows the horizontal and vertical position of:

 navigational bars

 all text elements on the page

 any media elements (images, audio clips and video clips)

 elements that allow the user to interact with the page

 any form inputs

together with intended position and type of all hyperlinks on the page.

Level 1

Level 2

Version 3.0 107

Version 3.0 108

Version 3.0 109

Version 3.0 110

Appendix 13: Cascading Style Sheets (CSS) —
controlling appearance and positioning (WDD)
The following CSS declarations control the appearance and position of HTML page

elements:

 display — block, inline, none

 float — left, right

 clear — both

 margins/padding

 sizes — height, width

The following examples have been taken from the Higher Computing Science example

website. The example website can be downloaded as a zip file from the Higher Computing

Science page on SQA’s website. To view the full code in context, open and view the source

code from the pages noted.

The box model

Margins and padding are used to push content away from the outer and inner edge of

elements.

The box model allows us to define the space between elements.

Margin: declares a transparent area around the outside of an element. This pushes the

element away from other adjacent elements.

Padding: declares a transparent area inside the edge of the element. This pushes content in

from the edge of the element.

Universal selector

Browsers use default settings for margins and padding when displaying HTML elements. To

override these defaults, a universal selector (*) can be used at the top of a stylesheet to set

the margin and padding of every element to 0.

* {margin:0;padding:0}

Using the universal selector this way allows candidates to witness only the margins and

paddings they actually code.

Margin

Element

Padding
Content

https://www.sqa.org.uk/sqa/56924.html
https://www.sqa.org.uk/sqa/56924.html

Version 3.0 111

Note: universal selectors are not included in Higher content but can be useful when teaching.

Margins (all pages): main page areas

Margins can be declared as:

 margin

 margin-top

 margin-bottom

 margin-left

 margin-right

These properties may have the values:

 auto (calculated by the browser)

 length (usually in pixels)

Margins can be declared on all four sides of an element simultaneously using the

abbreviation: margin:10px .

In the example website, CSS declarations for the main page elements (<header>, <nav>,

<div> and <footer>) are used to separate out content when displayed.

The small gap at the top of each area is implemented by styling a margin of 5 pixels at the

top of the four elements. For example:

header, nav, main, footer {margin-top:5px}

Margins

Version 3.0 112

Grouping selectors using commas reduces the amount of code required and is more efficient

than writing each CSS declaration separately.

Separate declarations Grouped declaration

header {margin-top:5px}

nav {margin-top:5px}

main {margin-top:5px}

footer {margin-top:5px}

Auto margins are used to position an element in the middle of the browser’s window or within

another element. In the example website, the 800 pixel wide page <body> element is always

positioned in the middle of the window:

body{margin:auto}

Padding (drama page): sub-division of content

Padding can be declared as:

 padding

 padding-top

 padding-bottom

 padding-left

 padding-right

These properties may have the value:

 length (usually in pixels)

Padding can be declared on all four sides of an element simultaneously using the

abbreviation: padding:10px

White space around page content, aids the usability of a web page. Appropriate use of white

space can also aid readability of text.

Using padding to move content in from the edge of an element is one method to generate

white space.

header, nav, main, footer {margin-top:5px}

Version 3.0 113

With padding: header, div, main, footer, section {padding:10px}

Without padding: header, div, main, footer, section {padding:0px}

Version 3.0 114

Sizes — height/width (all pages)

Web page design and implementation involves creating areas that either have a fixed size or

change size with content or display (changing window size or resolution).

In the example website, the <body> of each web page is set to a fixed width of 800px:

body{width:800px}

The height of the <header>, <nav> and <footer> elements are all set to a fixed size,

remaining constant throughout the website:

header {height:80px}

footer {height:60px}

nav {height:35px}

The <main> element, which holds content of the pages, is not declared as a fixed size, as it

changes according to the differing amount of content on each page.

Float — left/right (all pages)

An element can be positioned on the left or right of its container, using the float property.

In the example website, the element has been positioned on the right of its container,

the <header> element:

HTML

<header>

<h1>School Activities</h1>

</header>

CSS

.imageBanner {width:200px;height:80px;float:right}

Version 3.0 115

Float can also be used to word-wrap text around an image, as demonstrated in the drama

page below. The addition of margins creates white space between the graphic and the text.

HTML

<p> <img class="imageIconRight"

src="../images/curiousIncident.jpg">

The drama department offer a variety of after school

activities covering different acting experiences;

Shakespeare, improvisation, play writing. These clubs are

used to prepare participants for the annual school show

which is presented in collaboration with the Music

department. There are also several annual visits to local

performances.</p><p>If you wish to put your name down for a

Drama department visit to a performance please fill in the

form:</p>

CSS

.imageIconRight {width:60px;height:90px;float:right;margin-

left:10px;margin-bottom:10px}

Clear (all pages):

The effect of floating elements continues until cancelled, using the clear property on a

subsequent element.

To ensure that the four main page elements <header>, <nav>, <main> and <footer> start a

new line and remain unaffected by any float properties applied elsewhere in the page,

clear:both was implemented for these elements.

header, nav, main, footer {display:block;clear:both}

Version 3.0 116

Display — block/inline/none (all pages):

HTML elements have default display values depending on the type of element. This value

specifies how or if an element is to be displayed. The default display value for most elements

is block or inline:

display:block — an element takes up the entire width of its container

display:inline — an element takes up only as much room as necessary

display:none — the element is not visible. The space where the element should be

collapses as if there was no content in that place.

In the <header> element of the example website, the <h1> heading uses display:inline.

This allows the image to be floated level with the heading.

If the <h1> element used display:block it would force the image to float on a new line.

In the music page, display:none is used to hide three <section> elements when the page

loads.

Version 3.0 117

HTML

<section id="junior" style="display:none;height:100px">

<p>Junior Choir
The junior meet every Monday

lunchtime. It is open to anyone from S1 to S3.</p>

</section>

The above section is revealed when the ‘Junior Choir’ image on the page is clicked. This is

achieved using a JavaScript onclick event to change the display property of the <section> to

block.

For more details, see appendix 17: JavaScript.

Version 3.0 118

Appendix 14: Cascading Style Sheets (CSS) —
horizontal navigation bar (WDD)
The HTML 5 <nav> element is used to contain website navigation links, usually as a
navigation bar. A navigation bar is declared as an unordered list of hyperlinks:

<nav>

…

hyperlink

hyperlink

…

</nav>

The look and feel of a navigation bar is then created using CSS declarations.

List of hyperlinks before and after CSS declarations

Before CSS declarations are added, the list of HTML hyperlinks are displayed as a simple

bullet point list:

HTML

<nav>

 Home

 Sport

 Music

 Study

 Drama

</nav>

The addition of CSS declarations alter the position, look and behaviour of the list to create a

navigation bar.

Version 3.0 119

CSS

nav ul {list-style-type:none;}

nav ul li {float:left;width:80px;text-align:center}

nav ul li a {display:block;padding:8px}

nav ul li a:hover {background-color:#000;color:White}

The following examples breakdown the above code and provide explanations of each

declaration. They have been taken from the navigation bar used within the Higher Computing

Science example website. The example website can be downloaded as a zip file from the

Higher Computing Science page on SQA’s website. To view the full code in context, open

and view the source code from any of the example web pages along with the external CSS

file.

Example: removing bullets points

Declaring the list-style-type of the unordered list element as none removes the bullet

points from the list:

nav ul {list-style-type:none}

Using descendant selectors (nav ul) ensures that the style is only applied to the ul element

within the nav element.

Example: positioning list items horizontally

To ensure the list of hyperlinks is distributed horizontally, each element is floated to the

left:

nav ul li {float:left}

Example: spacing out each list item

To create space between each list item, a width is declared and the link text is centred within

each width:

nav ul li {float:left;width:80px;text-align:center}

https://www.sqa.org.uk/sqa/56924.html

Version 3.0 120

Example: creating clickable boxes

In most navigation bars, clicking the area around the hyperlink also selects the link. A

clickable box area around the link text is achieved by displaying the <a> element as a block:

nav ul li a {display:block}

Example: controlling vertical alignment

The vertical positioning of the link text in the navigation bar is controlled by declaring the

height of the <nav> element and including padding within the <a> element:

nav {height:35px}

nav ul li a {display:block;padding:8px}

Example: adding interactive colours

The state of the <a> element can be styled to change the background colour and text colour

of each link, when the mouse hovers over an <a> element:

nav ul li a:hover {background-color:#000;color:White}

Version 3.0 121

Appendix 15: HTML — page layout (WDD)
HTML 5 introduces new elements used to define different areas of a web page. Elements

implemented at Higher level are:

 <header>

 <nav>

 <section>

 <footer>

These are implemented as shown below:

Contains the page banner, often

including a title, graphic, company

icon or link to the home page.

Contains the navigation bar/links.

Contains the page content:

graphics, text, sound and video.

Contains general information, for

example links to contact details,

FAQs, copyright information or legal

agreements.

The following examples have been taken from the Higher Computing Science example

website. The example website can be downloaded as a zip file from the Higher Computing

Science page on SQA’s website. To view the full code in context, open and view the source

code from the pages noted in each of the examples.

https://www.sqa.org.uk/sqa/56924.html
https://www.sqa.org.uk/sqa/56924.html

Version 3.0 122

Simple page layout (study quiz page): example 1

The example below implements a simple page, with a main element used to contain the

page content. The content is then sub-divided using section elements:

<header> </header>

<nav> </nav>

<main>

</main>

<footer> </footer>

Page layout with sub-divided content (study page): example 2

Page content can be sub-divided into different areas using both <section> and <div>

elements. Using both elements allows the sub-divided content to be independently styled,

without the need to implement classes or ids:

Version 3.0 123

The following example website uses the study page to demonstrate the above layout:

<main>

<section>

</section>

<section>

</section>

<section>

</section>

</main>

Page layout with side-by-side content (drama page): example 3

Page content can also be styled with CSS, to position page components side-by-side. In this

example, the content has been sub-divided using three section elements, which are then

controlled using float and clear CSS declarations:

Version 3.0 124

The drama page shows the area containing the form, positioned to the right of the drama text

area using CSS.

<main> — this is used to wrap around all the main

content of the page. This is styled a light-grey colour:

<div> — the first div is styled white and

uses float:left and width:300px

to implement position and size.

<div> — the float left applied to the first

div ensures that this area positions

itself in line with the first. The margin

between the two sections was created

by pushing the left-hand edge of this

section away from the

left-hand edge of the page using

margin:330px.

<section> — the style clear:both ensures that the final section sits on a new line and

does not overlap the two sections above. The outer edge of the section is not apparent as it

uses styles contained within the id ‘newsArticle’ to appear the same light-grey colour as the

main element.

Version 3.0 125

Appendix 16: HTML — forms (WDD)
The HTML <form> element defines a form that is used to collect user input:

<form>

.

form elements

.

</form>

HTML 5 can be used to create and perform client-side validation on forms, without the need

for JavaScript. Form elements implemented at Higher level are:

 input

— text

— number

— textarea

— radio

— submit

 select

Where appropriate, form inputs will be validated using length, presence and range checks.

The following examples have been taken from the form used within the drama page of the

Higher Computing Science example website. The example website can be downloaded as a

zip file from the Higher Computing Science page on SQA’s website. To view the full code in

context, open and view the source code from the drama page.

https://www.sqa.org.uk/sqa/56924.html

Version 3.0 126

Input: example 1 — text

The example below implements two text input boxes, including length and presence checks:

<form>

First name:

<input type="text" name="firstname" size="30" maxlength="15"

required>

Last name:

<input type="text" name="lastname" size="30" maxlength="15"

required>

</form>

The above code includes the following:

type="text" Identifies input type of the form element as text.

name="firstname" The name attribute is required when a form’s data is submitted

to a server for processing. Although submitting a form to a

server is not required until Advanced Higher, it is good practice

to include the name attribute in all form elements.

size="30" Width of the input box, in characters, when displayed in a

browser.

maxlength="15" Length check limiting input to 15 characters.

required A presence check is applied to the input.

Input: example 2 — number

Number input may be limited to a minimum value, maximum value or both:

Number of Tickets Required (between 1 and 3):

<input type="number" name="tickets" min="1" max="3">

The above code includes the following:

type="number" Identifies input type of the form element as numeric.

min="1" max="3" A range check to ensure values entered are >=1 and <=3.

Version 3.0 127

Input: example 3 — textarea

A larger text box, for use with extended text input, can be implemented using the textarea

form element:

If required, please delete and state any special requirements:

<textarea name="message" rows="3" cols="55"> </textarea>

The width and height of the textarea element is set using rows and columns.

If required, a length and presence check can be applied to the above input element.

Input: example 4 — radio buttons

Radio input can be implemented using multiple input elements of type radio:

Choose your age:

<input type="radio" name="age" value="12 to 14"> 12-14

<input type="radio" name="age" value="15 or 16"> 15,16

<input type="radio" name="age" value="17 or over"> over 16

When submitted, the above form would return the name attribute “age” along with one of the

listed values: 12 to 14, 15 or 16, 17 or over. Although Higher forms are not submitted to a

server, it is good practice to include both the name and value attributes.

If the
 elements are omitted from the form, the radio buttons align horizontally.

Version 3.0 128

Input: example 5 — submit

When a form is submitted, the browser shows any validation errors (check browser versions,

as this is browser dependent).

To allow candidates visual acknowledgement that an action is performed when the submit

button is clicked, a JavaScript onclick event can be applied to the button as shown below:

<input type="submit" onclick="alert('Form Entered')" value="Submit">

Visual acknowledgement that the form is submitted can be helpful to candidates who are not

yet experiencing a response generated by server-side processing.

Version 3.0 129

Select: example 1 — drop-down menu

The select element is used to create a list of possible inputs in the form of a

drop-down menu. Input choices are placed inside option elements:

Select play:

 <select name="play">

 <option value="hamlet">Hamlet</option>

 <option value="godo">Waiting for Godo</option>

 <option value="brothers">Blood Brothers</option>

 <option value="curious">Curious Incident</option>

 </select>

As previously stated, the name and value attributes are not required at Higher, but it is good

practice to include both.

Select: example 2 — drop-down menu with size attribute

The size attribute can be used within the select element, to display a set number of options.

If the number of options is larger than the size attribute, a scroll bar will automatically appear:

<select name="play" size="3">

Select: example 3 — drop-down menu with multiple attribute

To allow users to select more than one option, the multiple attribute is used with the select

element:

 <select name="play" size="4" multiple>

Version 3.0 130

Pre-populating form input

To aid user input, form elements can be given values that are displayed when the web page

loads. These can be left unchanged, deleted or edited by the user, when they are completing

the form.

Example 1: text

The value attribute can be used to pre-populate text input elements:

<input type="text" name="firstname" value="forename"

size="30" maxlength="15" required>

Example 2: number

The value attribute is also used to pre-populate numeric input elements:

<input type="number" name="tickets" value="1" min="1"

max="3">

Example 3: textarea

To pre-populate a textarea element, the text is included between the start and end elements:

<textarea name="message" rows="3" cols="55">none</textarea>

Example 4: radio

Checked is used to initially check one of the radio buttons in a form:

<input type="radio" name="age" value="12 to 14" checked>

12-14

Version 3.0 131

Appendix 17: JavaScript (WDD)
JavaScript events (onmouseover, onmouseout and onclick) are used to implement

interactive web content.

Events are placed within HTML elements as shown below:

The inverted commas contain the action to be executed when the event takes place.

Possible actions include:

 hiding page elements

 revealing page elements

 changing the position of an element

 changing the size of an element

 changing the colour of an element

 changing the look of text

Actions can be executed by:

 referring to the element containing the JavaScript event

 referring to a different element, identified by an id

 calling a JavaScript function containing the actions

The following examples have been taken from the Higher Computing Science example

website. The example website can be downloaded as a zip file from the Higher Computing

Science page on SQA’s website. To view the full code in context, open and view the source

code from the pages noted in each example.

Interactively changing the size of a graphic (home page): example 1

Inline JavaScript can be used to increase and decrease the size of a graphic, as a mouse

pointer passes over and out of a graphic.

<img src="../images/hockey.jpg"

onmouseover="this.style.width='150px';this.style.height='150px'"

onmouseout="this.style.width='100px';this.style.height='100px'">

https://www.sqa.org.uk/sqa/56924.html
https://www.sqa.org.uk/sqa/56924.html

Version 3.0 132

This example contains two events, onmouseover, onmouseout used to execute four

actions:

width='150px' height='150px' width='100px' height='100px'

Each action in a JavaScript statement is separated by a semi-colon.

Each action in the above events are prefixed by this.style.

this meaning this element. In example 1 this refers to the graphic (img) element

containing the event.

style the style of this element will be altered using a CSS declaration

Interactively changing the size of a graphic (home page): example 2

JavaScript functions may be called to increase and decrease the size of a graphic, as a

mouse pointer passes over and out of a graphic.

<img src="../images/guitar.jpg"

onmouseover="displayLarger(this)"

onmouseout="displaySmaller(this)">

The JavaScript functions above are passed the parameter this, referring to the element

containing the event displayLarger(this)

The JavaScript functions are placed within a <script> element in the <head> section of the

HTML document:

<script>

function displayLarger(my_image)

{my_image.style.width='150px';

my_image.style.height='150px';}

function displaySmaller(my_image)

{my_image.style.width='100px';

my_image.style.height='100px';}

</script>

The parameter is used by each function to implement the same actions as example 1.

Version 3.0 133

Implementing example 2 as a function, allows the same code to be called from multiple

events:

<img src="../images/drama.jpg"

onmouseover="displayLarger(this)"

onmouseout="displaySmaller(this)">

<img src="../images/study.jpg"

onmouseover="displayLarger(this)"

onmouseout="displaySmaller(this)">

<img src="../images/rugby.jpg"

onmouseover="displayLarger(this)"

onmouseout="displaySmaller(this)">

Creating a rollover image (sports page): example 1

Rollover images can be created using two JavaScript events. The first event (onmouseover)

displays an alternate graphic when the mouse passes over the image element. The second

event (onmouseout) displays the original graphic when the mouse pointer leaves the image.

The following is the view in browser when the mouse pointer is not over any image:

The following is the view in browser when mouse passes over the right-hand image:

This can be implemented using the inline JavaScript shown below:

<img class="sportImage" src="../images/karate.jpg"

onmouseover="this.src='../images/basketball.jpg'"

onmouseout="this.src='../images/karate.jpg'">

The action src=' ' points the image element towards a given address.

Version 3.0 134

Creating a rollover image (sports page): example 2

A rollover image can also be achieved using two functions. The first function is called using

onmouseover. The second is called using onmouseout. Each function is passed the img

element as a parameter using this. As before each function changes the src of the image:

HTML

<img class="sportImage" src="../images/football.jpg"

onmouseover="displaySport1A(this)"

onmouseout="displaySport1B(this)">

JavaScript

<script>

function displaySport1A(my_image)

{my_image.src ='../images/netball.jpg';}

function displaySport1B(my_image)

{my_image.src ='../images/football.jpg';}

</script>

Highlighting text by dynamically changing its colour (home page):

Text may be highlighted by changing its style when the mouse pointer passes over the

element containing the text.

The example below highlights a paragraph element dark red, by using an onmouseover

event:

<p onmouseover="this.style.color='darkRed'">

Wednesday 12th June.
 The Computing … … Room B9.

</p>

Highlighting text by dynamically changing its colour (study page):

To implement an action on a different page element, an id is required to identify the element

the action will be performed on.

An element is identified using document.getElementById(' ')

The example below highlights the paragraph text when the mouse passes over the image

contained in the paragraph:

<p id="highlight"><img class="imageIconLeft"

src="../images/newsIcon.png"

onmouseover="document.getElementById('highlight').style.colo

r='darkRed'">Thursday 13th June.
 The guidance …

… suits them. </p>

Version 3.0 135

Revealing an element using onclick (study quiz page):

When a web page loads, elements may be initially hidden by applying the CSS declaration

display:none. This can be implemented using an inline or internal style, or by

implementing an external style (using a class, as shown below):

CSS

.hidden{display:none}

The graphic element in the example (reveal.png) contains an onclick event that uses the

paragraph element’s id to execute the action ‘display=block’ on the paragraph. The result of

this action is that the paragraph becomes visible on the page.

HTML

<p> Q1 - Do you make notes or draw diagrams when studying? </p>

<img class="reveal" src="../images/reveal.png"

onClick="document.getElementById('reveal1').style.display='block'">

<p id="reveal1" class="hidden"> Research shows that a very small

percentage of people memorise knowledge simply by reading it. Most

people learn more effectively when they write something out in their

own words or produce graphical representations of the knowledge such

as mind-maps.</p>

The following is the view in browser when page loads:

The following is the view in browser after ‘Reveal’ has been clicked:

paragraph

appears

Version 3.0 136

Revealing one of three hidden elements using onclick (music page):

Image elements, with associated onclick events, can be used to offer users a choice of what

they view on a web page. Each onclick event is used to reveal a hidden <section> element

containing a graphic and text relating to each option.

The following is the view in browser when page loads:

The following is the view in browser when the ‘Junior Choir’ graphic is then clicked.

The following is the view in browser when the ‘Senior Choir’ button in then clicked.

Each onclick event calls a function:

<p> Click on an option below to find out more about the

various performance groups available.

<img class="musicOptions"

src="../images/juniorChoirOption.png" onclick="displayJC()">

<img class="musicOptions"

src="../images/seniorChoirOption.png" onclick="displaySC()">

<img class="musicOptions"

src="../images/orchestraOption.png" onclick="displayO()">

</p>

Version 3.0 137

The three section elements, containing the graphic and text to be revealed, are each

identified by an id and initially hidden using display:none.

<section id="junior" style="display:none">

<p>Junior Choir
The junior meet every Monday

lunchtime. It is open to anyone from S1 to S3.</p>

</section>

<section id="senior" style="display:none">

<p>Senior Choir
The senior choir is open to anyone

from S4 to S6. It meets every Friday, after school. The

senior choir has recently won several prestigious choir

competitions.</p>

</section>

<section id="orchestra" style="display:none">

<p>Orchestra
The orchestra is not age limited,

instead being open to anyone who plays their instrument at

grade 3 level or higher.</p>

</section>

Each of the three JavaScript functions called by the onclick event reveals one of the three

<section> elements and hides the other two using three style.display actions:

<script>

function displayJC() {

document.getElementById("junior").style.display="block";

 document.getElementById("senior").style.display="none";

 document.getElementById("orchestra").style.display="none";

}

function displaySC() {

 document.getElementById("junior").style.display="none";

 document.getElementById("senior").style.display="block";

 document.getElementById("orchestra").style.display="none";

}

function displayO() {

 document.getElementById("junior").style.display="none";

 document.getElementById("senior").style.display="none";

 document.getElementById("orchestra").style.display="block";

}

</script>

Version 3.0 138

Appendix 18: testing (WDD)

Usability testing

Usability testing involves systematic observation to determine how well people can use a

product. In this case, the product will be the low-fidelity prototypes of a website. The goal

with usability testing is to recreate real-world scenarios where the tester will actually be able

to use your product. Then, by observing their behaviour, you will be able to understand what

could be done better. In this case, the product will be the low-fidelity prototypes of a website.

This helps to eliminate design problems at an early stage, before money has been spent

implementing the design.

The testers may be given:

 a persona — this may relate to the age or experience that the tester should exhibit

 test cases — a set of actions executed to verify a particular feature or function of the
website

 scenarios — they may be asked to use the website to place an order or book flights

They use the low-fidelity prototypes under a variety

of conditions, while they are observed.

The observers make notes about any difficulties

that the testers experienced and what alterations

are required to the website design to make it easier

to use the website.

Testing websites

There are a number of tests you should carry out

on your website to ensure that it meets the functional requirements.

 Input validation:

— check that every field in a form has the correct validation by trying to get every field

on the form to accept incorrect data

 Links and navigation:

— test the navigational bar links take you to the correct pages

— test all external links work correctly

— test that all pages can get back to the home page

— test all internal links work correctly

— test to check if there are any orphan pages (pages that are not linked to any others)

 Media content:

— ensure that the text, graphics and video display correctly and in the position in which

it was designed to appear

Version 3.0 139

Compatibility testing
This is when you test your website to ensure that it works in the same way across a range of
platforms.

Types of compatibility testing include:

Browser testing It is important that your website will work on all the main
browsers, for example Chrome, Firefox, Internet Explorer,
Safari, and Opera. Your customers will not use your
website if it does not function properly on their chosen
browser.

Device type You should check that your website is accessible on

tablets, smartphones and desktop computers, as there
are so many different types of hardware with different size
screens available.

Common compatibility testing exposes the following types of problem:

 changes in font size

 changes in the user interface

 alignment issues

 changes in CSS style and colour

 scroll bar related issues

 content or label overlapping

 broken tables or frames

Version 3.0 140

Copyright acknowledgements

All images Shutterstock:

Page 111,112,113,115,121 and 122: School activities banner — 553188940

Page 112,114 and 123: Drama opportunities — 329907647

Page 112,115,116,122 and 123: News icon — 735471220

Page 116 and 135: Junior choir — 432363805

Page 131: Hockey — 132311264

Page 131: Guitar — 145132324

Page 131: Drama — 752638612

Page 131: Studying — 549484090

Page 131: Rugby — 325167287

Page 131: Wind band — 723313330

Page 132: Footballer lifting trophy — 370092275

Page 132: Table tennis — 87611998

Page 132: Karate — 740133061

Page 132: Basketball — 198943043

Page 135: Senior choir — 588701573

Page 137: Man designing a website — 698323777

Version 3.0 141

Administrative information

Published: May 2023 (version 3.0)

History of changes

Version Description of change Date

2.0 Table header on page 10 changed from ‘Software’ to ‘Database’.

Course support notes added as appendix.

June

2018

2.1 Appendix 5 ‘range and precision’ section — references to

'accuracy' changed to 'precision'.

Appendix 10 and appendix 11 — wildcard notations changed from

Access specific (*) and (?) to generic (%) and (_), reflecting how

they will be presented in the assessment.

Appendix 12 — distorted graphics replaced.

August

2018

2.2 Page 101 (appendix 11 — SQL): we have amended the guidance

on the UPDATE query to clarify the difference between National 5

and Higher.

October

2020

2.3 Page 37 — National 5 content changed from EU GDPR to UK

GDPR, in line with change made to National 5 course specification.

August

2021

3.0 Amendments to the ‘Course assessment overview’ section,

‘Course Assessment’ section and ‘Course support notes’ to reflect

the option of assessing DDD or WDD. This covers changes to the

total marks and durations, and information on the structure of both

the question paper and the assignment.

May 2023

Note: you are advised to check SQA’s website to ensure you are using the most up-to-date

version of this document.

© Scottish Qualifications Authority 2018, 2020, 2021, 2023

	Higher Computing Science Course Specification
	Course overview
	Course rationale
	Purpose and aims
	Who is this course for?
	Course content
	Skills, knowledge and understanding
	Skills for learning, skills for life and skills for work
	Course assessment
	Course assessment structure: question paper
	Course assessment structure: assignment
	Grading
	Equality and inclusion
	Further information
	Appendix: course support notes
	Introduction
	Developing skills, knowledge and understanding
	Approaches to learning and teaching
	Preparing for course assessment
	Developing skills for learning, skills for life and skills for work
	Resources to support the Higher Computing Science course
	Appendix 1: development methodologies (SDD)
	Appendix 2: analysis (SDD)
	
	Appendix 3: design techniques (SDD)
	Appendix 4: evaluation (SDD)
	Appendix 5: floating-point representation (CS)
	Appendix 6: computer structure (CS)
	Appendix 7: environmental impact (CS)
	Appendix 8: analysis (DDD)
	Appendix 9: design (DDD)
	Appendix 10: design of solution to database queries (DDD)
	Appendix 11: SQL (DDD)
	Appendix 12: design (WDD)
	Appendix 13: Cascading Style Sheets (CSS) — controlling appearance and positioning (WDD)
	Appendix 14: Cascading Style Sheets (CSS) — horizontal navigation bar (WDD)
	Appendix 15: HTML — page layout (WDD)
	Appendix 16: HTML — forms (WDD)
	Appendix 17: JavaScript (WDD)
	Appendix 18: testing (WDD)
	Copyright acknowledgements
	Administrative information

