2021 Chemistry Section 2

Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2021

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from permission@sqa.org.uk.

General marking principles for Higher Chemistry

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.
(a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
(b) If a candidate response does not seem to be covered by either the principles or detailed marking instructions, and you are uncertain how to assess it, you must seek guidance from your team leader.
(c) Do not award half marks.
(d) Where a candidate makes an error at an early stage in a multi-stage calculation, award marks for correct follow-on working in subsequent stages, unless the error significantly reduces the complexity of the remaining stages. Apply the same principle for questions that require several stages of non-mathematical reasoning. The exception to this rule is where the marking instructions for a numerical question assign separate 'concept marks' and an 'arithmetic mark'. In such situations, the marking instructions will give clear guidance on the assignment or partial marks.
(e) Unless a numerical question specifically requires evidence of working to be shown, award full marks for a correct final response (including units) on its own.
(f) Candidates may fully access larger mark allocations whether their responses are in continuous prose, linked statements, or a series of developed bullet points.
(g) Do not deduct marks for inaccurate or unconventional spelling or vocabulary as long as the meaning of the word(s) is conveyed. For example, responses that include 'distilling' for 'distillation', or 'it gets hotter' for 'the temperature rises', are acceptable.
(h) In many questions, the unit in which the answer is to be expressed is given. In these questions, the candidate does not need to state a unit in their answer; but if they do, the unit must be correct. The full mark allocation cannot be awarded if an incorrect unit is shown. In these questions, incorrect units would only be penalised once in any paper.
(i) If a correct response is followed by a wrong response, award no marks. For example in response to the question, 'State the colour seen when blue Fehling's solution is warmed with an aldehyde', do not award marks for the response 'red green'. However, if a correct response is followed by additional information which does not conflict with that, ignore the additional information, whether correct or not. For example in response to a question concerned with melting point, 'State why the tube should not be made of copper', the response 'Copper has a low melting point and is coloured grey' would gain marks.
(j) Award full marks for the correct response to a calculation without working. Award partial marks, as shown in the detailed marking instructions, when working is given but the final response is incorrect. An exception is when candidates are asked to 'Find, by calculation' do not award full marks for the correct response without working.
(k) Ignore the omission of one H atom from a full structural formula provided the bond is shown.
(l) Award marks for a symbol or correct formula in place of a name unless stated otherwise in the detailed marking instructions.
(m) When formulae of ionic compounds are given as responses, candidates only need to show ion charges if these have been specifically asked for. However, if ion charges are shown, they must be correct. If incorrect charges are shown, do not award marks.
(n) If an answer comes directly from the text of the question, do not award marks. For example, in response to the question, 'A student found that 0.05 mol of propane, $\mathrm{C}_{3} \mathrm{H}_{8}$ burned to give 82.4 kJ of energy. $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g})=3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\ell)$. Name the kind of enthalpy change that the student measured', do not award marks for 'burning' since the word 'burned' appears in the text.
(o) A guiding principle in marking is to give credit for correct elements of a response rather than to look for reasons not to give marks.

Example 1: The structure of a hydrocarbon found in petrol is shown below.

Name the hydrocarbon

- Award the full mark for ' 3 , methyl-hexane', although the punctuation is not correct.

Example 2: A student measured the pH of four carboxylic acids to find out how their strength is related to the number of chlorine atoms in the molecule. The results are shown.

$\mathrm{CH}_{3} \mathrm{COOH}$	1.65
$\mathrm{CH}_{2} \mathrm{ClCOOH}$	1.27
$\mathrm{CHCl}_{2} \mathrm{COOH}$	0.90
$\mathrm{CCl}_{3} \mathrm{COOH}$	0.51

Describe the relationship between the number of chlorine atoms in the molecule and the strengths of the acids.

- Award the full mark for a response such as 'the more Cl_{2}, the stronger the acid', although not completely correct.
(p) Unless the question is clearly about a non-chemistry issue, for example costs in an industrial chemical process, do not award marks for a non-chemical response.
For example, in response to the question, 'Why does the (catalytic) converter have a honeycomb structure?', do not award a mark for 'To make it work'. This response may be correct but it is not a chemical response.
(q) Only award marks for a valid response to the question asked. Where candidates are asked to:
- identify, name, give or state, they must only name or present in brief form.
- describe, they must provide a statement or structure of characteristics and/or features.
- explain, they must relate cause and effect and/or make relationships between things clear.
- compare, they must demonstrate knowledge and understanding of the similarities and/or differences between things.
- complete, they must finish a chemical equation or fill in a table with information.
- determine or calculate, they must determine a number from given facts, figures or information.
- draw, they must draw a diagram or structural formula, for example 'Draw a diagram to show the part of a poly(propene) molecule formed from two propene molecules.'
- estimate, they must determine an approximate value for something.
- predict, they must suggest what may happen based on available information.
- evaluate, they must make a judgement based on criteria.
- suggest, they must apply their knowledge and understanding of chemistry to a new situation. A number of responses are acceptable: award marks for any suggestions that are supported by knowledge and understanding of chemistry.
- use their knowledge of chemistry or aspect of chemistry to comment on, they must apply their skills, knowledge and understanding to respond appropriately to the problem/situation presented (for example by making a statement of principle(s) involved and/or a relationship or equation, and applying these to respond to the problem/situation). Candidates gain marks for the breadth and/or depth of their conceptual understanding.
- write, they must complete a chemical or word equation, for example 'Write the word equation for the complete combustion of ethanol.'

Marking instructions for each question

Question			Expected response	Max mark	Additional guidance
1.	(a)	(i)	Increases (across period)	1	
		(ii)	They don't form (covalent) bonds	1	Accept: They (noble gases) are unreactive. They are noble gases is not acceptable.
		(iii)	Screening increases so less attraction (of nucleus/protons for the bonding/outer/shared electrons) OR Covalent radius/atomic size/number of shells increases so less attraction (of nucleus/protons for the bonding/outer/shared electrons)	1	Shielding is acceptable in place of screening. 'Screening/shielding effect' by itself is not acceptable. Information in brackets is not required but if included, the direction of attraction must be correct.
	(b)	(i)	$2 \cdot 8 \pm 0.05$	1	
		(ii)	Cross at $(2 \cdot 1,1 \cdot 8)$ on graph 2 marks Partial mark For calculation of both average electronegativity ($2 \cdot 1$) and difference ($1 \cdot 8$) (1 mark) OR For correctly plotting the point for the values candidate has calculated (1 mark)	2	A point other than $(2 \cdot 1,1 \cdot 8)$ plotted with no calculated values is worth 0 marks.
		$\begin{aligned} & \text { (iii) } \\ & \text { A } \end{aligned}$	$\left(\mathrm{Li}^{+}\right)_{2} \mathrm{~S}^{2-}$ Both charges must be shown. Brackets are required for Li^{+}.	1	
		B	Carbon fluorine Sulfur fluorine Boron oxygen	1	Accept correct symbols. If candidate states name of a compound then it must be correct. Accept germanium and oxygen.
	(c)		Polar (covalent)	1	

Question		Expected response	Max mark	Additional guidance
2.	(c)	$+250 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (2 marks) Partial marks Treat as two concepts. Either would be acceptable for 1 mark. Evidence of understanding of reversal of first and second enthalpy values must be seen ie +283 and +286 (or positive multiples of either/both). The third enthalpy value (regardless of value) must be negative, or this partial mark cannot be awarded. OR Evidence of understanding of multiplying the second enthalpy value by 3 (shown as $3 x+/-286$ or $+/-858$) Multiplication of any other enthalpy value by any factor is taken as cancelling of this partial mark.	2	If correct answer is shown, award 2 marks. Only 1 concept mark can be awarded if the final answer is incorrect. If answer given is -250 , maximum of 1 mark can be awarded. No units required. Only 1 mark can be awarded for the correct answer if wrong unit is given. (Wrong units would only be penalised once in any paper). kJ is acceptable in place of $\mathrm{kJ} \mathrm{mol}^{-1}$ (KJ or Kj or $\mathrm{KJ} \mathrm{mol}^{-1}$ or $\mathrm{Kj} \mathrm{mol}^{-1}$ accepted).

| Question | | Expected response | Max
 mark | Additional guidance |
| :--- | :--- | :--- | :--- | :---: | :--- |
| 4. | (a) | Bond enthalpy is high (945)/has the
 highest bond enthalpy value (in the
 data booklet) | $\mathbf{1}$ | (Bond(s)) take(s) a lot of energy to
 break/are very strong would not be
 accepted on its own but would not
 be cancelling. |
| (b) | Diagram shows a workable method
 for removing carbon dioxide - must
 include label for KOH (solution)
 (1 mark) | $\mathbf{2}$ | Treat each mark separately. | |
| Diagram shows a workable method
 for passing gas over heated copper -
 must include label for heated copper
 (1 mark) | | | | |

Question			Expected response 2 marks for correct calculations AND 1 mark for a statement which follows on from the calculation stating that nitrogen is in excess or that lithium is the limiting reactant.	Max mark 3	Additional guidance	
4.	(c)	(i)	2 marks for correct calculations AND 1 mark for a statement which follows on from the calculation stating that nitrogen is in excess or that lithium is the limiting reactant. Partial marks By calculating number of moles: 1 mark for the correct calculation of number of moles of Li and N_{2}. 1 mark for correct application of		Correct calculation of moles of lithium $=0 \cdot 07 / 0 \cdot 072 / 0 \cdot 0725$ moles and nitrogen $=0 \cdot 04 / 0 \cdot 038 / 0 \cdot 0375$ moles The values in the tables shown provide guidance as to whether 1 mark or 2 marks for calculations should be awarded. 2 marks can be awarded for any one of the following paired values in the table obtained by applying the mole ratio	
			the mole ratio. This can be shown		have	need
			by dividing a calculated number of		0.5 g Li	$0.291 \mathrm{~N}_{2}$
			moles of Li by 6 or multiplying a		$0.91 \mathrm{~N}_{2}$	1.55 g Li
			number of moles of N_{2} by 6.		$0.91 \mathrm{~N}_{2}$	0.29 l N
			1 mark awarded for a correct		0.5 g Li	1.55 g Li
			statement following on from the		0.0725 mol Li	0.225 mol Li
			candidate's calculations.		$0.0375 \mathrm{~mol} \mathrm{~N}_{2}$	0.012 mol N
			By proportion:		1 mark can be awarded for any one of the following paired values in the table obtained without applying mole ratio	
					have	need
			1 mark for follow through from		0.5 g Li	$1.74 \mathrm{IN}_{2}$
			incorrect multiples of 6.9 g or 24 l		$0.91 \mathrm{~N}_{2}$	0.26 g Li
					$0.91 \mathrm{~N}_{2}$	$1.74 \mathrm{IN}_{2}$
			1 mark awarded for a correct		0.5 g Li	0.26 g Li
					This mark can only be awarded if the candidate shows appropriate calculations to justify the statement.	

Question			Expected response	Max mark	Additional guidance
4.	(c)	(ii)	$\mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	1	State symbols not required but if given must be correct. Accept electron without a negative sign.
		(iii)	(ionic) lattice/network	1	Covalent network is not acceptable
	(d)	(i)	atoms/molecules with an unpaired electron	1	
		(ii)	$676\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ -676 would be worth 1 mark Partial marking, 1 mark can be awarded for candidate correctly retrieves both of the relevant bond enthalpy data $(945,498)$ and attempts to use this with 91 OR calculation carried out correctly with one error in retrieval of bond enthalpy	2	No units are required but award only 1 mark for correct answer if incorrect unit is given. (Wrong units would only be penalised once in any paper). kJ is acceptable in place of $\mathrm{kJ} \mathrm{mol}^{-1}$ accepted)
		$\begin{aligned} & \text { (iii) } \\ & \text { A } \end{aligned}$	termination	1	
		B	$\mathrm{H}-\mathrm{O}-\mathrm{N}=\mathrm{O}$ or	1	

Question		Expected response	Max mark	Additional guidance	
4.	(e)	(i)	Decreasing temperature favours the exothermic reaction/increasing temperature favours endothermic reactions (1 mark) Increases the yield of ammonia (1mark)	2	
	(ii) A	$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9} \rightarrow$ $3 \mathrm{CO}_{2}+21 / 2 \mathrm{H}_{2} \mathrm{O}+11 / 2 \mathrm{~N}_{2}+1 / 4 \mathrm{O}_{2}$ OR correct multiples	1		
B	The shock/bump provides the activation energy/E OR the shock/bump provides sufficient/enough energy to start the reaction OR the reaction has a low activation energy/E	1	If candidate uses "it" in response, this can be taken as "the shock/bump".		

Question			Expected response	Max mark	Additional guidance
5.	(a)		1 mark for any correct feature and explanation as shown: - Contains oxygen to ensure complete combustion - Sample is surrounded by water so all energy transferred/reduce heat loss to surroundings - Sealed container prevents/ reduces heat loss to the surroundings - Stirring to ensure accurate temperature (measurement)	1	
	(b)	(i)	-34 $078\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Partial marks 1 mark for a demonstration of the correct use of the relationship $E_{h}=c m \Delta T$ as shown by ($4.18 \times($ an order of magnitude of 0.775$) \times 11.9$) (ignore units for this partial mark) 1 mark for evidence of the knowledge that enthalpy of combustion relates to 1 mole, evidenced by the scaling up of a calculated value of energy released. 1 mark for correct arithmetic. This mark should be awarded if the candidate has obtained the 2 partial marks above but has applied correct early rounding within the calculation resulting in an answer that differs from -34078).	3	Maximum of 2 marks can be awarded if negative enthalpy sign is not shown in final answer. Units not required. Only 2 marks can be awarded for the correct answer if wrong unit is given. (wrong units would only be penalised once in any paper). kJ is acceptable in place of $\mathrm{kJ} \mathrm{mol}^{-1}$ (KJ or Kj or $\mathrm{KJ} \mathrm{mol}^{-1}$ or $\mathrm{Kj} \mathrm{mol}^{-1}$ accepted).
		(ii)	0.71/0.713/0.7125	1	
	(c)	(i)	$23 \cdot 3$	1	Ignore any units
		(ii)	Glycerol has 3 hydroxyl groups.	1	Accept glycerol is propan(e)-1,2,3triol/an alcohol with 3 hydroxyl OH) groups

Question			Expected response		Max mark	Additional guidance
6.	(a)		Mass (1 mark) 0.00113 $1 \cdot 13$ 1130 Any correct line marks) Correctly calcula without units Appropriate unit	Unit (1 mark) kg g mg the table (2 d mass of iodine (1) 1)	2	As no unit is specified, the correct answer can be expressed with any appropriate unit (as shown in table). Any correct rounding accepted e.g. $1 \cdot 1278 / 1 \cdot 128 / 1 \cdot 13 \mathrm{~g}$ Partial mark for appropriate units can only be awarded when the order of magnitude of an incorrectly calculated mass matches the unit. If the candidate's working is unclear then the mark for units cannot be awarded.
	(b)	(i)	Measuring the mass of container + seaweed/sample and subtracting the mass of the container		1	Taring the balance with container and then adding the seaweed/ sample is accepted "use of Tare function" on its own is not accepted.
		(ii)	1-/iodide (ions)		1	
		(iii)	A solution of accurately/exactly/ precisely known concentration		1	
		$\begin{aligned} & \text { (iv) } \\ & \text { A } \end{aligned}$	$0 \cdot 00013$ (moles)		1	Units not required, but if present, must be correct. Wrong units are only penalised once per paper.
		B	$0.03299 \mathrm{~g} / 0.033 \mathrm{~g} / 0.03 \mathrm{~g}$)		1	To award this mark, the candidates answer to part B must be correct for their use of their answer to part A (i.e. answer to part A $\times 253 \cdot 8$). Units not required, but if present, must be correct. Wrong units are only penalised once per paper.

Question			Expected response	Max mark	Additional guidance
6.	(c)	(i)	Amino acid that must be acquired/obtained from the diet.	1	Amino acid that cannot be made by the body is accepted.
		(ii)	Correctly drawn structure for dipeptide. OR	1	Shortened structural formula accepted. All atoms and bonds must be present as shown. However, in the side chains only, bonds drawn from C (or S) to H (or N) would not be penalised.

Question		Expected response	Max mark	Additional guidance
7.	(a)		2	1 mark for correct top half (4 responses) and 1 mark for correct bottom half (4 responses). Accept correct chemical formula in place of names. Accept "air" for "excess air".

Question			Expected response	Max mark	Additional guidance
9.	(a)	(i)	1-575/1 $58 / 1 \cdot 6(\mathrm{~g})$	1	Units not required. 0 marks should be awarded for the correct answer if wrong unit is given. (Wrong units would only be penalised once in any paper).
		(ii)	Protein(s)	1	
		(iii)	pipette and burette	1	Volumetric flask would not be taken as cancelling.
	(b)		essential oils	1	
	(c)	(i)	2-methylbuta-1,3-diene	1	
		(ii)	ketone	1	accept terpenoids
	(d)	(i)	methanol	1	A correct structure would also be accepted
		(ii)	79.24/79-2/79 (\%) (2 marks) Partial marking for 1 mark Theoretical yield $=31 \cdot 17(\mathrm{~g})$ OR Allow follow through from incorrect calculation of theoretical yield.	2	Units not required, but if present, must be correct. Wrong units are only penalised once per paper. Rounding of a calculated theoretical yield to 31 g gives 77•68/79.7/80 (\%) which would be accepted.
		(iii)	$6 \cdot 5\left(\mathrm{~cm}^{3}\right)$ Partial marking for 1 mark For correct calculation of toxic dose $=9.1 \mathrm{~g}$ OR For calculation of the volume of oil of wintergreen containing 0.14 g of methyl salicylate $=0.1 \mathrm{~cm}^{3}$	2	Units not required. Only 1 mark can be awarded for the correct answer if wrong unit is given. Wrong units would only be penalised once in any paper. Allow follow from incorrect first step of candidate's calculation.

Question			Expected response	Max mark	Additional guidance
11.	(a)	(i)	Reactants/solvent is flammable/ catches fire with a flame	1	accept products
		(ii)	condenser	1	
	(b)	(i)	addition	1	
		(ii)	2-methylbutan-2-ol	1	
		(iii)	A correct structural formula for 3-methylhexan-3-ol e.g. a full structural formula or a shortened structural formula	1	A mixture of full and shortened structural formula is accepted, e.g.

Question		Expected response		Max mark	Additional guidance
12.	(a)	Poly(phenylethene)		1	
	(b)	$\mathrm{C}=0$ circled		1	accept ' $\mathrm{C}=0$ stretch'
	(c)	2 single ab 1 for C-H w cm^{-1} and 1 2260-2215 increasing absorption	ons (peaks) required the range 2700-3300 $\equiv \mathrm{N}$ within the range venumber $\left(\mathrm{cm}^{-1}\right)$	1	Ignore the intensity of the absorptions. Ignore the width of the absorptions so long as the peak maximum is defined and within the given range.

[END OF MARKING INSTRUCTIONS]

